Advertisement

Sidedness and Coupling of Transport Processes in Small Intestinal and Renal Epithelia

  • H. Murer
  • R. Kinne
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

Epithelial cells separate phases of different ionic composition and by transepithelial transport maintain or establish the asymmetric distribution of ions. The epithelia of the small intestine and the proximal tubule are additionally specialized in the (re)absorption of a variety of solutes, such as sugars, amino acids, and phosphate. Such vectorial transports can only be performed if a sidedness of the epithelial cell in respect to the transport properties of the luminal and contraluminal membrane exists. Maintenance of asymmetric distribution of solutes involves active transport processes that are energized by cellular metabolism. The coupling of transepithelial transport to energy can be direct or indirect. In primary active transport the movement of a solute across the cell membrane is directly coupled to an energy-transducing chemical reaction, such as the coupling of sodium transport via the Na+-K+-ATPase to ATP hydrolysis. In secondary active transport the movement of the solute across the membrane is coupled to a flux of a primary actively transported substrate.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berner, W., Kinne, R.: Transport of p-aminohippuric acid by plasma membrane vesicles isolated from rat kidney cortex. Pflügers Arch. 361, 269–277 (1976)PubMedCrossRefGoogle Scholar
  2. Berner, W., Kinne, R., Murer, H.: Phosphate transport into brush border membrane vesicles isolated from rat small intestine. Biochem. J., in press (1976)Google Scholar
  3. Frömter, E., Rumrich, G., Ullrich, K.J.: Phenomenologic description of Na+, Cl- and HCO3 - absorption from proximal tubules of the rat kidney. Pflügers Arch. 343, 189–220 (1973)PubMedCrossRefGoogle Scholar
  4. Hoffmann, N., Thees, M., Kinne, R.: Phosphate transport by isolated renal brush border vesicles. Pflügers Arch. 362, 147–156 (1976)PubMedCrossRefGoogle Scholar
  5. Hopfer, U., Sigrist-Nelson, K., Murer, H.: Intestinal sugar transport. Studies with isolated plasma membranes. Ann. N.Y. Acad. Sci. 264, 414–426 (1975)PubMedCrossRefGoogle Scholar
  6. Kinne, R., Murer, H.: Polarity of epithelial cells in relation to transepithelial transport in kidney and intestine. In: Intestinal Ion Transport. Robinson, J.W.L. (ed.). Lancaster: MTP Press Ltd., 1976, pp. 79–95Google Scholar
  7. Kinne, R., Murer, H., Kinne-Saffran, E., Thees, M., Sachs, G.: Sugar transport by renal plasma membrane vesicles. Characterization of the systems in the brush-border microvilli and basal-lateral plasma membranes. J. Membrane Biol. 21, 375–395 (1975)CrossRefGoogle Scholar
  8. Murer, H., Hopfer, U.: Demonstration of electrogenic Na+ dependent D-glucose transport in intestinal brush border membranes. Proc. Natl. Acad. Sci. U.S. 71, 484–488 (1974)CrossRefGoogle Scholar
  9. Murer, H., Hopfer, U.: The functional polarity of the intestinal epithelial cell. Studies with isolated plasma membrane vesicles. In: Intestinal Permeation. Lauterbach, F., Kramer, M. (eds.). Amsterdam, Excerpta Medica Monographs. In press (1976)Google Scholar
  10. Murer, H., Hopfer, U., Kinne, R.: Sodium/proton antiport in brush-border-membrane vesicles isolated from rat small intestine. Biochem. J. 154, 597–604 (1976)PubMedGoogle Scholar
  11. Murer, H., Hopfer, U., Kinne-Saffran, E., Kinne, R.: Glucose transport in isolated brush-border and lateral-basal plasma-membrane vesicles from intestinal epithelial cells. Biochim. Biophys. Acta 345, 170–179 (1974)PubMedCrossRefGoogle Scholar
  12. Murer, H., Sigrist-Nelson, K., Hopfer, U.: On the mechanism of sugar and amino acid interaction in intestinal transport. J. Biol. Chem. 250, 7392–7396 (1975)PubMedGoogle Scholar
  13. Schultz, S.G., Curran, P.F.: Intestinal absorption of sodium chloride and water. In: Handbook of Physiology, Vol. III, Section 6. Code, C.F. (ed.). Washington: American Physiological Society 1968, pp. 1245–1275Google Scholar
  14. Sigrist-Nelson, K., Murer, H., Hopfer, U.: Active alanine transport in isolated brush border membranes. J. Biol. Chem. 250, 5674–5680 (1975)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1977

Authors and Affiliations

  • H. Murer
  • R. Kinne

There are no affiliations available

Personalised recommendations