Skip to main content

Drug-Receptor Inactivation: A New Kinetic Model

  • Chapter
Kinetics of Drug Action

Abstract

In this volume Mackay (1977) has reviewed various drug-receptor theories that have been proposed over the past 30 to 40 years. We offer here a new hypothesis for consideration. As a scheme of drug-receptor kinetics it appears to be at least as successful as earlier models in accounting for a variety of experimental phenomena. The resulting explanations are plausible and attractive but certainly not demonstrably correct. Indeed, like many explanations derived from rival theories, they apparently are not susceptible to rigorous proof by any experimental technique available today. The new proposal, however, does offer an alternative way to interprete experimental data on receptor mechanisms. It also serves to reconcile several rival models by incorporating them into a unifying hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ariëns, E.J.: Molecular pharmacology, Vol. I. New York: Academic Press 1964.

    Google Scholar 

  • Ariëns, E.J., Rossum, J.M.van, Simonis, A.M.: Affinity, intrinsic activity, and drug interactions. Pharm. Rev. 9, 218–236 (1957).

    PubMed  Google Scholar 

  • Beckett, A.H., Casy, A.F., Harper, N.J.: Analgesics and their antagonists: some steric and chemical considerations. J. Pharm. Pharmacol. 8, 874 (1956).

    Article  PubMed  CAS  Google Scholar 

  • Beidler, L.: Taste receptor stimulation, In: Butler, J.A.V., Huxley, H.E., Zirkle, R.E. (Eds.): Progress in biophysics and biophysical chemistry. Vol.12, Chap. 4, pp. 107–151. New York: Pergamon Press 1962.

    Google Scholar 

  • Belleau, B.: A molecular theory of drug action based on induced conformational perturbations of receptors. J. med. Chem. 7, 776–784 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Belleau, B., Lacasse, G.: Aspects of the chemical mechanism of complex formation between acetylcholinesterase and acetylcholine-related compounds. J. med. Chem. 7, 768–775 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Bloom, B.M., Goldman, I.M.: The nature of catecholamine-adenine mononucleotide interactions in adrenergic mechanisms. In: Harper, N.J., Simonds, A.B. (Eds.): Advances in drug research, Vol. 3, pp. 121–169. London: Academic Press 1966.

    Google Scholar 

  • Brink, F.G.v.d.: Histamine and antihistamines. Molecular pharmacology structure-activity relations, gastric acid secretion. Ph. D. Thesis, Univ. of Nijmegen, Nijmegen, Netherlands 1969.

    Google Scholar 

  • Butcher, R.W.: Role of cyclic AMP in hormone actions. New Engl. J. Med. 279, 1378–1384 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Castillo, J.del, Katz, B.: Interactions at end-plate receptors between different choline derivatives. Proc. roy. Soc. Lond. B 146, 369–381 (1957).

    Article  Google Scholar 

  • Changeux, J., Thiery, J., Tung, Y., Kittel, C.: On the cooperativity of biological membranes. Proc. nat. Acad. Sci. (Wash.) 57, 335–341 (1967).

    Article  CAS  Google Scholar 

  • Clark, A.J.: The mode of action of drugs on cell. Baltimore: Williams and Wilkins 1933.

    Google Scholar 

  • Clark, A.J.: General pharmacology. In: Heffter’s Handbuch der exper. Pharmakol. IV. Berlin: Springer 1937.

    Google Scholar 

  • Croxatto, R., Huidobro, F.: Fundamental basis of specificity of pressor and depressor amines in their vascular effects; theoretical fundaments; drug receptor linkage. Arch. int. Pharmacodyn. 106, 207–243 (1956).

    PubMed  CAS  Google Scholar 

  • Feher, O., Bokri, E.: Contributions to the kinetics of the acetylcholine-receptor function. Pflügers Arch. ges. Physiol. 272, 553–561 (1961).

    Article  CAS  Google Scholar 

  • Filmer, D.L., Cannon, J.R., Reiss, N.: A method of determination of rate constants in enzyme reactions. J. theor. Biol. 16, 280–293 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Furchgott, R.F.: Receptor mechanisms. Ann. Rev. Pharmacol. 4, 21–50 (1964).

    Article  CAS  Google Scholar 

  • Furchgott, R.F.: The use of β-haloalkylamines in the differentiation of receptors and in the determination of dissociation constants of receptor-agonist complexes. In: Harper, N.J., Simonds, A.B. (Eds.): Advances in drug research, Vol. 3, pp. 21–55. London: Academic Press 1966.

    Google Scholar 

  • Gaddum, J.H., Hameed, K.A., Hathway, D.E., Stephens, F.E.: Quantitative studies of antagonists for 5-hydroxytryptamine. Quart. J. exp. Physiol. 40, 49–74 (1955).

    PubMed  CAS  Google Scholar 

  • Gosselin, R.E.: Drug receptor kinetics: a new model. Pharmacologist 10, 215 (1968).

    Google Scholar 

  • Jensen, E.V., Jacobsen, H.L.: Basic guides to one mechanism of estrogen action. Recent Progr. Hormone Res. 18, 387–414 (1962).

    CAS  Google Scholar 

  • Jensen, E.V., Suzuki, T., Kawashima, T., Stumpf, W.E., Jungblut, P.W., de Sombre, E.R.: A two-steps mechanism for the interaction of estradiol with rat uterus. Proc. nat. Acad. Sci. (Wash.) 59, 632–638 (1968).

    Article  CAS  Google Scholar 

  • Karlin, A.: On the application of “a plausible model” of allosteric proteins to the receptor for acetylcholine. J. theor. Biol. 16, 306–320 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Katz, B., Thesleff, S.: A study of the desensitization produced by acetylcholine at the motor end-plate. J. Physiol. (Lond.) 138, 63–80 (1957).

    CAS  Google Scholar 

  • Knapp, D.E., Mejia, S.: Role of protein synthesis in recovery from local anesthetic-induced conduction blockade. Anesth. Anaig. Curr. Res. 48, 189–194 (1969).

    CAS  Google Scholar 

  • Liillmann, H., Ziegler, A.: Estimation of the cholinergic receptor occupation in guinea pig isolated atria by means of 14C-labelled arecaidine-derivatives. Europ. J. Pharmacol. 5, 71–78 (1968).

    Article  Google Scholar 

  • Mackay, D.: A flux-carrier hypothesis of drug action. Nature (Lond.) 197, 1171–1173 (1963).

    Article  CAS  Google Scholar 

  • Mackay, D.: A new method for the analysis of drug-receptor interactions. In: Harper, N.J., Simonds, A.B. (Eds.): Advances in drug research, Vol. 3, pp. 1–19. London: Academic Press 1966.

    Google Scholar 

  • Mackay, D.: A Critical Survey of Receptor Theories of Drug Action. Handbuch der Exper. Pharmakol., Vol. 47, pp. 255–321. Berlin-Heidelberg-New York: Springer 1977.

    CAS  Google Scholar 

  • Main, A.R.: Affinity and phosphorylation constants for the inhibition of esterases by organophosphates. Science 144, 992–993 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Monod, J., Changeux, J.P., Jacob, F.: Allosteric proteins and cellular control systems. J. molec. Biol. 6, 306–329 (1963).

    Article  PubMed  CAS  Google Scholar 

  • Monod, J., Wyman, J., Changeux, J.P.: On the nature of allosteric transitions: a plausible model. J. molec. Biol. 12, 88–118 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Nickerson, M.: Receptor occupancy and tissue response. Nature (Lond.) 178, 697–698 (1956).

    Article  CAS  Google Scholar 

  • Nickerson, M.: Non-equilibrium drug antagonism. Pharmacol. Rev. 9, 246–268 (1957).

    PubMed  CAS  Google Scholar 

  • Nickerson, M.: Blockade of the actions of adrenaline and noradrenaline. Pharmacol. Rev. 11, 443–461 (1959).

    PubMed  CAS  Google Scholar 

  • O’Brien, R.D.: Toxic Phosphorus Esters. New York: Academic Press 1960.

    Google Scholar 

  • Paton, W.D.M.: A theory of drug action based on the rate of drug-receptor combination. Proc. roy. Soc. B 154, 21–69 (1961).

    Article  Google Scholar 

  • Paton, W.D.M., Rang, H.P.: A kinetic approach to the mechanism of drug action. In: Harper, N.J., Simonds, A.B. (Eds.): Advances in drug research, Vol. 3, pp. 57–80. London: Academic Press 1966.

    Google Scholar 

  • Paton, W.D.M., Waud, D.R.: A quantitative investigation of the relationship between rate of access of a drug to receptor and the rate of onset or offset of action. Arch. exp. Path. Pharmak. 248, 124–143 (1964).

    Article  CAS  Google Scholar 

  • Rang, H.P., Ritter, J.M.: A new kind of drug antagonism: evidence that agonists cause a molecular change in acetylcholine receptors. Mol. Pharmacol. 5, 394–411 (1969).

    PubMed  CAS  Google Scholar 

  • Renqvist, Y.: Über den Geschmack. Skand. Arch. Physiol. 38, 97–201 (1919).

    Google Scholar 

  • Rocha e Silva, M.: Concerning the theory of receptors in pharmacology. A rational estimation of pA x . Arch. int. Pharmacodyn. 118, 74–94 (1959).

    PubMed  Google Scholar 

  • Rossum, J.M.van: Limitations of molecular pharmacology, some implications of the basic assumptions underlying calculations on drug receptor interactions and the significance of biological drug parameters. In: Harper, N.J., Simonds, A.B. (Eds.): Advances in drug research, Vol. 3, pp. 189–234. London: Academic Press 1966.

    Google Scholar 

  • Rossum, J.M.van: Drug receptor theories. In: Robson, J.M., Stacey, R.S. (Eds.): Recent advances in pharmacology, pp. 99–103. London: J. and A. Churchill 1968.

    Google Scholar 

  • Schild, H.O.: pA, a new scale for the measurement of drug antagonism. Brit. J. Pharmacol. 2, 189–206 (1947).

    PubMed  CAS  Google Scholar 

  • Schild, H.O.: Drug antagonism and pA. Pharm. Rev. 9, 242–246 (1957).

    PubMed  CAS  Google Scholar 

  • Stephenson, R.P.: A modification of receptor theory. Brit. J. Pharmacol. 11, 379–393 (1956).

    PubMed  CAS  Google Scholar 

  • Stibitz, G.: A model and computer program for biological networks. J. theor. Biol. 19,116–132 (1968).

    Article  PubMed  CAS  Google Scholar 

  • Taylor, D.B., Nedergaard, O. A.: Relation between structure and action of quaternary ammonium neuromuscular blocking agents. Physiol. Rev. 45, 523–554 (1965).

    PubMed  CAS  Google Scholar 

  • Thron, C.D., Waud, D.R.: The rate of action of atropine. J. Pharmacol. exp. Ther. 160, 91–105 (1968).

    PubMed  CAS  Google Scholar 

  • Waud, D.R.: Pharmacological receptors. Pharm. Rev. 20, 49–88 (1968).

    PubMed  CAS  Google Scholar 

  • Williams, R.J.P.: Enzymes and drug action. Ciba Foundation Symp., pp. 410–418. London: J.&A. Churchill Ltd. 1962.

    Google Scholar 

  • Wilson, I.B.: Conformation changes in acetylcholinesterase in cholinergic mechanism. Ann. N.Y. Acad. Sci. 144, 664–674 (1967).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Gosselin, R.E. (1977). Drug-Receptor Inactivation: A New Kinetic Model. In: van Rossum, J.M. (eds) Kinetics of Drug Action. Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology, vol 47. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66537-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66537-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66539-4

  • Online ISBN: 978-3-642-66537-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics