Repair Processes in Mutation Induction
  • Hans-J. Rhaese
Part of the Progress in Botany / Fortschritte der Botanik book series (BOTANY, volume 38)


The first proposal for a mechanism of mutation induction in molecular terms was possible when WATSON and CRICK in 1953 elucidated the structure of DNA. Basing on this structure the authors not only proposed a mechanism for the transfer of genetic information from a parent to its offspring, but also a mechanism of mutation induction. It was suggested that mutations arise when rare tautomeric forms of the nucleobases cause illegitimate pairing during the process of replication leading to base-pair substitutions. Other causes of base-pair substitutions were soon found in chemical alterations of DNA components. FREESE explained the mutagenic effect of base analogs and hydroxylamine in a “direct” mutagenesis model (FREESE, 1). According to this model, base-pair substitutions of the transition and transversion type can occur, when — as a consequence of chemical alterations — pairing of the complementary bases adenine-thymine and guanine-cytpsine is no longer possible (FREESE, 2). For example, instead of pairing with thymine, adenine now pairs with cytosine (transition) or guanine (transversion). Other types of mutations, i.e. frameshift mutations, were explained in this direct mutagenesis model by BRENNER et al. who found that additions or deletions of bases in the DNA can be caused by dyes, such as acridine orange and others by intercalation between nucleobases.


Alkylating Agent Mutation Induction Chemical Alteration Pyrimidine Dimer Chemical Mutagenesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. BOWERSOCK, D., MOSES, R.E.: J. Biol. Chem. 248, 7449–7455 (1973).PubMedGoogle Scholar
  2. BOYCE, R.P., HOWARD-FLANDERS, P.: (1) Z. Vererbungslehre 95, 345–350 (1964)CrossRefGoogle Scholar
  3. BOYCE, R.P., HOWARD-FLANDERS, P.: (2) Proc. Nat. Acad. Sci. 51, 293–300 (1964).PubMedCrossRefGoogle Scholar
  4. BOYLE, J.M., PATTERSON, M.C., SETLOW, R.B.: Nature 226, 708–710 (1970).PubMedCrossRefGoogle Scholar
  5. BRENNER, S., BARNETT, L., CRICK, F.H.C., ORGEL, A.: J. Mol. Biol. 3, 121–124 (1961).CrossRefGoogle Scholar
  6. BRIDGES, B.A., MUNSON, R.J.: Biochim. Biophys. Res. Commun. 22, 268–273 (1966).CrossRefGoogle Scholar
  7. COOPER, P.K., HANAWALT, P.C.: J. Mol. Biol. 67, 1–10 (1972).PubMedCrossRefGoogle Scholar
  8. DEVORET, R.: C.R.H. Acad. Sci. 260, 1510–1513 (1965).Google Scholar
  9. FREESE, E.: (1) Proc. Nat. Acad. Sci. 45, 622–627 (1959)PubMedCrossRefGoogle Scholar
  10. FREESE, E.: (2) Radiation Res. Suppl. 6, 97–140 (1966).CrossRefGoogle Scholar
  11. GELLERT, M.: Proc. Nat. Acad. Sci. 57, 148–155 (1967).PubMedCrossRefGoogle Scholar
  12. GOODGAL, S., RUPERT, C.S.: In: The Chemical Basis of Heredity, MC ELROY, W.D., GLASS, B. (eds.). Baltimore: John Hopkins Press 1957, pp. 848–900.Google Scholar
  13. HARM, W., HILLEBRANDT, B.: Photochem. Photobiol. 1, 271–272 (1962).CrossRefGoogle Scholar
  14. HOWARD-FLANDERS, P.: Advan. Biol. Med. Phys. 12, 299–317 (1968).Google Scholar
  15. HOWARD-FLANDERS, P., BOYCE, R.P.: Radiation Res., Suppl. 6, 156–184 (1966).CrossRefGoogle Scholar
  16. ICHIKAWA-RYO, H., KONDO, S.: J. Mol. Biol. 97, 77–92 (1975).PubMedCrossRefGoogle Scholar
  17. KELLNER, A.: (1) Proc. Nat. Acad. Sci. 35, 73–79 (1949)CrossRefGoogle Scholar
  18. KELLNER, A.: (2) J. Bacteriol. 58, 511–522 (1949).Google Scholar
  19. KONDO, S., ICHIKAWA, H.: Mol. Genet. 126, 319–324 (1973).CrossRefGoogle Scholar
  20. LAWLEY, P.D., ORR, D.H.: Chem. Biol. Interact. 2, 154–159 (1970).PubMedCrossRefGoogle Scholar
  21. LITMAN, R.M., PARDEE, A.B.: Nature 178, 529–531 (1956).PubMedCrossRefGoogle Scholar
  22. LOVELESS, A.: Genetic and Allied Effects of Alkylating Agents. University Park, Pa: Pennsylvania State Univ. 1966.Google Scholar
  23. NISHIOKA, M., DOUDNEY, C.O.: Mutation Res. 8, 215–228 (1969).PubMedGoogle Scholar
  24. NOVICK, A., SZILARD, L.: Proc. Nat. Acad. Sci. 35, 591–600 (1949).PubMedCrossRefGoogle Scholar
  25. PETTIJOHN, A.R., HANAWALT, R.L.: J. Mol. Biol. 9, 395–410 (1964).PubMedCrossRefGoogle Scholar
  26. PODDAR, R.K., SINSHEIMER, R.L.: Biophys. J. 11, 355–369 (1971).PubMedCrossRefGoogle Scholar
  27. RADMAN, M.: (1) In: HANAWALT, P., SETLOW, R.B. (eds.) Molecular Mechanisms for the Repair of DNA, pp. 355–367, 1975Google Scholar
  28. RADMAN, M.: (2) Nature (New Biol.) 230, 277–278 (1971)Google Scholar
  29. RADMAN, M.: (3) In: PROKASH, L., SHERMAN, F., MILLER, M.W., LAWRENCE, C.W., TABER, H.W. (eds.). Springfield, Ill.: C.C.Thomas Publ. 1974, pp. 128–142.Google Scholar
  30. RHAESE, H.J.: Fortschr. Botan. 34, 269–284 (1972).Google Scholar
  31. RHAESE, H.J., BOETKER, K.: Europ. J. Biochem. 32, 166–172 (1973).PubMedCrossRefGoogle Scholar
  32. RHAESE, H.J., FREESE, E.: Biochim. Biophys. Acta 190, 418–433 (1969).PubMedGoogle Scholar
  33. ROBERTS, J.J., STURROCK, J.E., WARD, K.N.: Mutation Res. 26, 129–143 (1974).PubMedGoogle Scholar
  34. RUPERT, C.S.: (1) J. Gen. Physiol. 45, 703–724 (1962)PubMedCrossRefGoogle Scholar
  35. RUPERT, C.S.: (2) J. Gen. Physiol. 45, 725–741 (1962).PubMedCrossRefGoogle Scholar
  36. RUPP, W.D., HOWARD-FLANDERS, P.: J. Mol. Biol. 31, 291–304 (1968).PubMedCrossRefGoogle Scholar
  37. RUPP, W.D., WILDE, C.E., RENO, D.L., HOWARD-FLANDERS, P.: J. Mol. Biol. 61, 25–44 (1971).PubMedCrossRefGoogle Scholar
  38. SETLOW, R.B.: Brookhaven Symp. Biol. 20, 1–20 (1967).Google Scholar
  39. SETLOW, R.B., CARRIER, W.L.: Proc. Nat. Acad. Sci. 51, 226–231 (1964).PubMedCrossRefGoogle Scholar
  40. SETLOW, R. B., SWENSON, P.A., CARRIER, W.L.: Science 142, 1464–1466 (1963).PubMedCrossRefGoogle Scholar
  41. SMITH, K.C., MENN, D.H.C.: J. Mol. Biol. 51, 459–472 (1970).PubMedCrossRefGoogle Scholar
  42. WATSON, J.D., CRICK, F.H.: (1) Nature (London) 171, 964–967 (1953)CrossRefGoogle Scholar
  43. WATSON, J.D., CRICK, F.H.: (2) Cold Spring Harbor Symp. Quant. Biol. 18, 123–131 (1953).PubMedGoogle Scholar
  44. WITKIN, E.M.: (1) Ann. Rev. Genet. 3, 525–552 (1969)CrossRefGoogle Scholar
  45. WITKIN, E.M.: (2) Radiation Res., Suppl. 6, 30–53 (1966)CrossRefGoogle Scholar
  46. WITKIN, E.M.: (3) Science 152, 1345–1353 (1966)PubMedCrossRefGoogle Scholar
  47. WITKIN, E.M.: (4) Mutation Res. 8, 9–14 (1969)PubMedGoogle Scholar
  48. WITKIN, E.M.: (5) Brookhaven Symp. Biol. 20, 17–55 (1967)Google Scholar
  49. WITKIN, E.M.:(6) In: HANAWALT, P.C., SETLOW, R.B. (eds.) Molecular Mechanisms for Repair of DNA, pp. 369–378. New York-London: Plenum Press 1975.Google Scholar
  50. WITKIN, E.M., GEORGE, D.L.: Genetics 73, 91–108 (1973).PubMedGoogle Scholar
  51. WITKIN, E.M., SICURELLA, N.A., BENNETT, G.M.: Proc. Nat. Acad. Sci. 50, 1055–1059 (1963).PubMedCrossRefGoogle Scholar
  52. WULFF, D.L., RUPERT, C.S.: Biochim. Biophys. Res. Commun. 7, 237–240 (1962).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • Hans-J. Rhaese
    • 1
  1. 1.Arbeitsgruppe Molekulare Genetik im Fachbereich Biologie der J. W. Goethe-UniversitätFrankfurt a.M. 1Germany

Personalised recommendations