Advertisement

Maternal Storage in the Mammalian Oocyte

  • W. Engel
  • W. Franke
Part of the Current Topics in Pathology book series (CT PATHOLOGY, volume 62)

Abstract

As early as 1896, Wilson stated that embryogenesis commences during oogenesis. Much evidence now exists suggesting that at least in invertebrates and lower vertebrates the information controlling early embryonic development is programmed during oogenesis (see reviews by Davidson, 1968; Davidson and Hough, 1972; Gross, 1972; Smith, 1972; Gross et al., 1973a).

Keywords

Germinal Vesicle Mouse Oocyte Lampbrush Chromosome Mammalian Oocyte Preimplantation Mouse Embryo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramczuk, J., Sawicki, W.: Pronuclear synthesis of DNA in fertilized and parthenogenetically activated mouse eggs. Exp. Cell Res. 92, 361–372 (1975).PubMedGoogle Scholar
  2. Adesnik, M., Darnell, J.E.: Biogenesis and characterization of histone messenger RNA in HeLa cells. J. mo1ec. Biol. 67, 397–406 (1972).Google Scholar
  3. Alfert, M.: A cytochemical study of oogenesis and cleavage in the mouse. J. cell. comp. Physiol. 36, 381–410 (1950).Google Scholar
  4. Anderson, E.: The localization of acid phosphatase and the uptake of horseradish peroxidase in the oocyte and follicle cells of mammals. In: Oogenesis. Baltimore: University Park Press 1972.Google Scholar
  5. Auerbach, S., Brinster, R.L.: Lactate dehydrogenase isozymes in early mouse embryo. Exp. Cell Res. 46, 89–92 (1967).PubMedGoogle Scholar
  6. Austin, C.R.: The mammalian egg. Illinois: Thomas Springfield 1961.Google Scholar
  7. Austin, C.R., Braden, W.H.: The distribution of nucleic acids in rat eggs in fertilization and early segmentation. I. Studies on living eggs by ultraviolet microscopy. Aust. J. biol. Sci. 6, 324–333 (1953).PubMedGoogle Scholar
  8. Bachmann, K.: Genome size in mammals. Chromosoma, 85–93 (1972).Google Scholar
  9. Bachvarova, R.: Incorporation of tritiated adenosine into mouse ovum RNA. Develop. Biol. 40, 52–58 (1974).PubMedGoogle Scholar
  10. Baker, T.G.: Electron microscopy of the primary and secondary oocyte. Advanc. Biosci. 6, 8–27 (1971).Google Scholar
  11. Baker, T. G., Beaumont, H.M., Franchi, L.L.: The uptake of tritiated uridine and phenylalanine by the ovaries of rats and monkeys. J. Cell Sci. 4, 655–675 (1969).PubMedGoogle Scholar
  12. Balhorn, R., Tanphaichitr, N., Chalkley, R., Granner, D.K.: The effect of inhibition of desoxyribonucleic acid synthesis on histone phosphorylation. Biochemistry 12, 5146–5150 (1973).PubMedGoogle Scholar
  13. Beatty, R.A.: Part henogenesis and heteroploidy in the mammalian egg. In: Oogenesis. Baltimore: University Park Press 1972.Google Scholar
  14. Beauregard, L.J., Ghosal, S.K., Lamarche, P.H.: R.N.A. synthetic activity of human oocyte. Lancet 1968 II, 1039.Google Scholar
  15. Benson, P.F.: Regulation of genetic expression. In: The Biochemistry of Development. Philadelphia: J.B. Lippincott Co. 1971.Google Scholar
  16. Bernstein, R.M., Mukherjee, B.B.: Cytoplasmic control of nuclear activity in preimplantation mouse embryos. Develop. Biol. 34, 47–65 (1973).PubMedGoogle Scholar
  17. Biggers, J.D.: Metabolism of the oocyte. In: Oogenesis. Baltimore: University Park Press 1972.Google Scholar
  18. Biggers, J.D., Whittingham, D.G., Donahue, R.P.: The pattern of energy metabolism in the mouse oocyte and zygote. Proc. nat. Acad. Sci. (Wash.) 58, 560–567 (1967).Google Scholar
  19. Blerkom, J. van, Brockway, G.A.: Qualitative patterns of protein synthesis in the preimplantation mouse embryo. I. Normal pregnancy. Develop. Biol. 44, 148–157 (1975).PubMedGoogle Scholar
  20. Blerkom, J. van, Manes, C.: Development of preimplantation rabbit embryos in vivo and in vitro. II. A comparison of qualitative aspects of protein synthesis. Develop. Biol. 40, 40–51 (1974).PubMedGoogle Scholar
  21. Bloom, A.M., Mukherjee, B.B.: RNA synthesis in maturing mouse oocytes. Exp. Cell Res. 74, 577–582 (1972).PubMedGoogle Scholar
  22. Bomsel-Helmreich, O.: Fate of heteroploid embryos. Advanc. Biosci. 6, 381–403 (1971).Google Scholar
  23. Brachet, J., Denis, H., de Vitry, F.: The effects of actinomycin D and puromycin on morphogenesis in amphibian eggs and Acetabularia mediterranea. Develop. Biol. 9, 398–434 (1964).Google Scholar
  24. Briggs, R. W., Green, E., King, T.J.: An investigation of the capacity for cleavage and differentiation in Rana pipiens eggs lacking “functional” chromosomes. J. exp. Zool. 116, 455–468 (1951).PubMedGoogle Scholar
  25. Briggs, R. W., Signoret, J., Humphrey, R.R.: Transplantation of nuclei of various cell types from neurulae of the mexican axolotl (Ambystoma mexicanum). Develop. Biol. 10, 233–246 (1964).PubMedGoogle Scholar
  26. Brinster, R.L.: Lactic dehydrogenase activity in the preimplanted mouse embryo. Biochim. biophys. Acta (Amst.) 110,439–441 (1965a).Google Scholar
  27. Brinster, R.L.: Studies on the development of mouse embryos in vitro. II. The effect of energy source. J. exp. Zool. 158, 59–68 (1965b).Google Scholar
  28. Brinster, R.L.: G1ucose-6-phosphate dehydrogenase activity in the preimplantation mouse embryo. Biochem. J. 101, 161–163 (1966a).Google Scholar
  29. Brinster, R.L.: Malic dehydrogenase activity in the preimplantation mouse embryo. Exp. Cell Res. 43, 131–135 (1966b).Google Scholar
  30. Brinster, R.L.: Lactate dehydrogenase activity in human, squirrel monkeys and Rhesus monkey oocytes. Exp. Cell Res. 48, 643–646 (1967a).Google Scholar
  31. Brinster, R.L.: Lactate dehydrogenase activity in the preimplantation rabbit embryo. Biochim. biophys. Acta (Amst.) 148, 298–300 (1967b).Google Scholar
  32. Brinster, R.L.: Lactic dehydrogenase activity in preimplantation rat embryo. Nature (Lond.) 214, 1246–1247 (1967c).Google Scholar
  33. Brinster, R.L.: Protein content of the mouse embryo during the first five days of development. J. Reprod. Fertil. 13, 413–420 (1967d).Google Scholar
  34. Brinster, R.L.: Hexokinase activity in the preimplantation mouse embryo. Enzymologia 34, 304–308 (1968a).Google Scholar
  35. Brinster, R.L.: Lactate dehydrogenase activity in the oocyte of mammals. J. Reprod. Fertil. 17, 139–146 (1968b).Google Scholar
  36. Brinster, R.L.: Glucose-6-phosphate dehydrogenase activity in the early rabbit and mouse embryo. Biochem. Genet. 4, 669–676 (1970a).Google Scholar
  37. Brinster, R.L.: Metabolism of the ovum between conception and nidation. In: Mammalian Reproduction. Berlin-Heidelberg-New York: Springer 1970b.Google Scholar
  38. Brinster, R.L.: Activity of 6-phosphogluconate dehydrogenase in the preimplantation mouse and rabbit embryo. Experientia (Basel) 27, 371–372 (1971a).Google Scholar
  39. Brinster, R.L.: Phosphofructokinase activity in the preimplantation mouse embryo. Wilhelm Roux’ Arch. Entwickl.-Mech. Org. 166,300–302 (1971b).Google Scholar
  40. Brinster, R.L.: Uptake and incorporation of amino acids by the preimplantation mouse embryo. J. Reprod. Fertil. 27, 329–338 (1971c).Google Scholar
  41. Brinster, R.L.: Lactate dehydrogenase isozymes in the preimplantation rabbit embryo. Biochem. Genet. 9, 229–234 (1973a).Google Scholar
  42. Brinster, R.L.: Parental glucose phosphate isomerase activity in three-day mouse embryos. Biochem. Genet. 9, 187–191 (1973b).Google Scholar
  43. Brown, D.D.: The genes for ribosomal RNA and their transcription during amphibian development. Curr. Top. develop. Biol. 2, 47–64 (1967).Google Scholar
  44. Brown, D.D., Dawid, I.B.: Specific gene amplification in oocytes. Science 160, 272–280 (1968).PubMedGoogle Scholar
  45. Brown, D.D., Dawid, I.B.: Developmental genetics. Ann. Rev. Genet. 3, 127–154 (1969).Google Scholar
  46. Brown, D.D., Gurdon, J.B.: Absence of ribosomal RNA synthesis in annucleolate mutant of Xenopus laevis. Proc. nat. Acad. Sci. (Wash.) 51, 139–146 (1964).Google Scholar
  47. Brown, D., Littna, E.: RNA synthesis during the development of Xenopus laevis, the South African clawed toad. J. molec. Biol. 8, 669–687 (1964).PubMedGoogle Scholar
  48. Burkholder, G.D., Comings, D.E., Okada, T.A.: A storage form of ribosomes in mouse oocytes. Exp. Cell Res. 69, 361–371 (1971).PubMedGoogle Scholar
  49. Burr, H., Lingrel, J.B.: Poly A sequences at the 3′-Termini of rabbit globin mRNAs. Nature New Biol. (Lond.) 233, 41–43 (1971).Google Scholar
  50. Calarco, P., Donahue, R.P., Szöllosi, D.: Germinal vesicle breakdown in the mouse oocyte. J. Cell Sci. 10, 369–385 (1972).PubMedGoogle Scholar
  51. Callan, H.G.: Chromosomes and nucleoli of the axolotl, Ambystoma mexicanum. J. Cell Sci. 1, 85–108 (1966).PubMedGoogle Scholar
  52. Chapman, V.M., Whitten, W.K., Ruddle, F.H.: Expression of paternal glucose phosphate isomerase-1 (Gpi-1) in preimplantation stages of mouse embryos. Develop. Biol. 26, 153–158 (1971).PubMedGoogle Scholar
  53. Chouinard, L.A.: A light-and electron-microscope study of the nucleolus during growth of the oocyte in the prepubertal mouse. J. Cell Sci. 9, 637–663 (1971).PubMedGoogle Scholar
  54. Church, R.B., Schultz, G.A.: Differential gene activity in the pre-and postimplantation mammalian embryo. Curr. Top. develop. Biol. 8, 179–202 (1974).Google Scholar
  55. Clegg, K.B., Denny, P.C.: Synthesis of rabbit globin in a cell-free protein synthesis system utilizing sea urchin egg and zygote ribosomes. Develop. Biol. 37, 263–272 (1974).PubMedGoogle Scholar
  56. Cornette, J.C., Pharris, B.B., Duncan, G. W.: Lactic dehydrogenase isozymes in the ovum and embryo of the rat. Physiologist 10, 146 (1967).Google Scholar
  57. Crane, C.M., Villee, C.: The synthesis of nuclear histones in early embryogenesis. J. biol. Chem. 246, 719–723 (1971).PubMedGoogle Scholar
  58. Crippa, M.: Regulatory factor for the transcription of the ribosomal genes in amphibian oocytes. Nature (Lond.) 227, 1138–1140 (1970).Google Scholar
  59. Crippa, M., Davidson, E.H., Mirsky, A.E.: Persistence in early amphibian embryos of informational RNA’s from the lampbrush chromosome stage of oogenesis. Proc. nat. Acad. Sci. (Wash.) 21, 885–892 (1967).Google Scholar
  60. Crippa, M., Gross, P.R.: Maternal and embryonic contributions to the functional messenger RNA of early development. Proc. nat. Acad. Sci. (Wash.) 62, 120–127 (1969).Google Scholar
  61. Crippa, M., Tocchini-Valentini, G.P., Andronico, F.: Regulation of ribosomal RNA synthesis during oogenesis of Xenopus laevis. In: Oogenesis. Baltimore: University Park Press 1972.Google Scholar
  62. Cross, P.C., Brinster, R.L.: The sensitivity of one cell mouse embryo to pyruvate and lactate. Exp. Cell Res. 77, 57–62 (1973).PubMedGoogle Scholar
  63. Cross, P.C., Brinster, R.L.: Leucine uptake and incorporation at three stages of mouse oocyte maturation. Exp. Cell Res. 86, 43–46 (1974).PubMedGoogle Scholar
  64. Daentl., D.L., Epstein, C.J.: Developmental interrelationships of uridine uptake, nucleotide formation and incorporation into RNA by early mammalian embryos. Develop. Biol. 24, 428–442 (1971).PubMedGoogle Scholar
  65. Darnell, J.E., Jelinek, W.R., Molloy, G.R.: Biogenesis of mRNA: Genetic regulation in mammalian cells. Science 181, 1215–1221 (1973).PubMedGoogle Scholar
  66. Darnell, J.E., Philipson, L., Wall, R., Adesnik, M.: Polyadenylic acid sequences: Role in conversion of nuclear RNA into messenger RNA. Science 174, 507–510 (1971).PubMedGoogle Scholar
  67. Davidson, E.H.: Gene Activity in Early Development. New York-London: Academic Press 1968.Google Scholar
  68. Davidson, E.H., Hough, B.R.: Genetic information in oocyte RNA. J. molec. Biol. 56, 491–506 (1971).PubMedGoogle Scholar
  69. Davidson, E.H., Hough, B.R.: Utilization of genetic information during oogenesis. In: Oogenesis. Baltimore: University Park Press 1972.Google Scholar
  70. Davidson, E.H., Mirsky, A.E.: Gene activity in oogenesis. Brookhaven Symp. Biol. 18, 77–98 (1965).Google Scholar
  71. Deane, H. W.: Histochemical observations on the ovary and oviduct of the albino rat during the oestrus cycle. Amer. J. Anat. 91, 363–413 (1952).PubMedGoogle Scholar
  72. Denny, P.C., Tyler, A.: Activation of protein biosynthesis in non-nucleate fragments of sea urchin eggs. Biochem. biophys. Res. Commun. 14, 245–249 (1964).PubMedGoogle Scholar
  73. Donahue, R.P.: The relation of oocyte maturation to ovulation in mammals. In: Oogenesis. Baltimore: University Park Press 1972.Google Scholar
  74. Donahue, R.P., Stern, S.: Isocitrate dehydrogenase in mouse embryos: activity and electrophoretic variation. J. Reprod. Fertil. 22, 575–577 (1970).Google Scholar
  75. Ecker, R.E., Smith, L.D.: Protein synthesis in amphibian oocytes and early embryos. Develop. Biol. 18, 232–249 (1968).PubMedGoogle Scholar
  76. Edmonds, M., Vaughan, M.H., Nakazoto, H.: Polyadenylic sequences in the heterogenous nuclear RNA and rapidly labeled polyribosomal RNA of HeLa cells. Possible evidence for a precursor. Proc. nat. Acad. Sci. (Wash.) 68, 1336–1340 (1971).Google Scholar
  77. Edwards, R.G., Gates, A.H.: Timing of the stages of the maturation divisions, ovulation, fertilization and the first cleavage of eggs of adult mice. J. Endocr. 18, 292–304 (1959).PubMedGoogle Scholar
  78. Engel, W.: Onset of synthesis of mitochondrial enzymes during mouse development. Humangenetik 20, 133–140 (1973).PubMedGoogle Scholar
  79. Engel, W., Franke, W., Petzoldt, U.: Isozymes as genetic markers in early mammalian development. In: Isozymes III. Developmental Biology. New York: Academic Press 1975.Google Scholar
  80. Engel, W., Kreutz, R.: Lactate dehydrogenase isoenzymes in the mammalian egg: investigations by micro-disc-electrophoresis in 15 species of the orders Rodentia, Lagomorpha, Artiodactyla and in man. Humangenetik 19, 253–260 (1973).PubMedGoogle Scholar
  81. Engel, W., Petzoldt, U.: Early developmentaIChanges of the lactate dehydrogenase isoenzyme pattern in mouse, rat, Guinea-pig, Syrian hamster and rabbit. Humangenetik 20, 125–131 (1973).PubMedGoogle Scholar
  82. Engel, W., Wolf, U.: Synchronous activation of the alleles coding for the S-form of the NADP-dependent malate dehydrogenase during mouse embryogenesis. Humangenetik 12, 162–166 (1971).PubMedGoogle Scholar
  83. Epel, D.: Protein synthesis in sea urchin eggs: A “late” response to fertilization. Proc. nat. Acad. Sci. (Wash.) 57, 899–906 (1967).Google Scholar
  84. Epstein, C.J.: Mammalian oocytes: X-chromosome activity. Science 163, 1078–1079 (1969).PubMedGoogle Scholar
  85. Epstein, C.J.: Phosphoribosyltransferase activity during early mammalian development. J. biol. Chem. 245, 3289–3294 (1970).PubMedGoogle Scholar
  86. Epstein, C.J.: Expression of the mammalian X-chromosome before and after fertilization. Science 175, 1467–1468 (1972).PubMedGoogle Scholar
  87. Epstein, C.J., Daentl., D.L., Smith, S.A., Kwok, L. W.: Guanine metabolism in preimplantation mouse embryos. Biol. Reprod. 5, 308–313 (1971).PubMedGoogle Scholar
  88. Epstein, C.J., Smith, S.A.: Electrophoretic analysis of proteins synthesized by preimplantation mouse embryos. Develop. Biol. 40, 233–244 (1974).PubMedGoogle Scholar
  89. Epstein, C.J., Wagienka, E.A., Smith, C. W.: Biochemical development of preimplantation mouse embryos: in vivo activities of fructose 1,6-diphosphate aldolase, glucose-6-phosphate dehydrogenase, malate dehydrogenase, and lactate dehydrogenase. Biochem. Genet. 3, 271–281 (1969).Google Scholar
  90. Evans, D., Birnstiel, M.L.: Localization of amplified ribosomal DNA in the oocyte of Xenopus laevis. Biochim. biophys. Acta (Amst.) 166, 274–276 (1968).Google Scholar
  91. Farquhar, M.N., McCarthy, B.J.: Histone m-RNA in eggs and embryo of Strongylocentrotus purpuratus. Biochem. biophys. Res. Commun. 53, 515–522 (1973).PubMedGoogle Scholar
  92. Flax, M.H.: Ribose nucleic acid and protein during oogenesis and early embryonic development in the mouse. Ph.D. Thesis, Columbia University (1953).Google Scholar
  93. Ford, C.E.: Gross Genome unbalance in mouse spermatozoa: does it influence the capacity to fertilize? Proc. Int. Symp. Genet. Spermatozoon, Edinburgh, 16-20 Aug. 1971.Google Scholar
  94. Ford, P.J.: Ribonucleic acid synthesis during oogenesis in Xenopus laevis. In: Oogenesis. Baltimore: University Park Press 1972.Google Scholar
  95. Fry, B.J., Gross, P.R.: Patterns and rates of protein synthesis in sea urchin embryos. Develop. Biol. 21, 105–124 (1970).PubMedGoogle Scholar
  96. Gall, J.G.: Differential synthesis of the genes for ribosomal RNA during amphibian oogenesis. Proc. nat. Acad. Sci. (Wash.) 60, 553–560 (1968).Google Scholar
  97. Gall, J.G.: The genes for ribosomal RNA during oogenesis. Genetics 61, 121–132 (1969).PubMedGoogle Scholar
  98. Gambino, R., Metafora, S., Felicetti, L., Raisman, J.: Properties of ribosomal salt wash from unfertilized and fertilized sea urchin eggs and its effect on maternal m-RNA translation. Biochim. biophys. Acta (Amst.) 312, 377–391 (1973).Google Scholar
  99. Gartler, S.M., Liskay, R.M., Campbell, B.K., Sparkes, R., Gant, N.: Evidence for two functional X-chromosomes in human oocytes. Cell Differ. 1, 215–218 (1972).PubMedGoogle Scholar
  100. Gartler, S.M., Liskay, R.M., Gant, N.: Two functional X-chromosomes in human fetal oocytes. Exp. Cell Res. 82, 464–466 (1973).PubMedGoogle Scholar
  101. Gates, A.H.: Maximizing yield and developmental uniformity of eggs. In: Methods in Mammalian embryology. San Francisco: Freeman and Co. 1971.Google Scholar
  102. Glass, L.E.: Transmission of maternal proteins into oocytes. Advanc. Biosci. 6, 29–61 (1971).Google Scholar
  103. Glisin, V.R., Glisin, M. V.: Ribonucleic acid and metabolism following fertilization in sea urchin eggs. Proc. nat. Acad. Sci. (Wash.) 52, 1548–1553 (1964).Google Scholar
  104. Golbus, M.S., Calarco, P.G., Epstein, C.J.: The effects of inhibitors of RNA synthesis (α-amanitin and actinomycin D) on preimplantation mouse embryogenesis. J. exp. Zool. 186, 207–216 (1973).PubMedGoogle Scholar
  105. Graham, C.F.: Parthenogenetic mouse blastocysts. Nature (Lond.) 226, 165–167 (1970).Google Scholar
  106. Graham, C.F.: The production of parthenogenetic mammalian embryos and their use in biological research. Biol. Rev. 49, 399–422 (1974).PubMedGoogle Scholar
  107. Graham, C.F., Deussen, Z.A.: In vitro activation of mouse eggs. J. Embryol. exp. Morph. 31, 497–512 (1974).PubMedGoogle Scholar
  108. Greenberg, J.R., Perry, R.P.: Relative occurrence of polyadenylic acid sequences in messenger and heterogeneous nuclear RNA of L-cells as determined by poly (U) hydroxylapatite chromatographie. J. molec. Biol. 72, 91–98 (1972).PubMedGoogle Scholar
  109. Greenwald, G.S., Everett, N.B.: The incorporation of S3 5 methionine by the uterus and ova of the mouse. Anat. Rec. 134, 171–184 (1959).PubMedGoogle Scholar
  110. Gropp, A.: Reproductive failure due to fetal aneuploidy in mice. In: Fertility and Sterility, Proceedings of the VIII World Congress. Amsterdam: Excerpta Medica 1973.Google Scholar
  111. Gross, K. W., Jacobs-Lorena, J., Baglioni, C., Gross, P.R.: Cell-free translation of maternal messenger RNA from sea urchin egg. Proc. nat. Acad. Sci. (Wash.) 70, 2614–2618 (l973b).Google Scholar
  112. Gross, P.R.: The control of protein synthesis in embryonic development and differentiation. Curr. Top. develop. Biol. 2, 1–43 (1967a).Google Scholar
  113. Gross, P.R.: RNA metabolism in embryonic development and differentiation. II. Biosynthetic patterns and their regulation. New Engl. Med. 276, 1297–1305 (l967b).Google Scholar
  114. Gross, P.R.: Biochemistry of differentiation. Ann. Rev. Biochem. 37, 631–660 (1968).PubMedGoogle Scholar
  115. Gross, P.R.: Protein synthesis during cleavage. In: Molecular Genetics and Developmental Biology. Englewood Cliffs: Prentice-Hall, Inc. 1972.Google Scholar
  116. Gross, P.R., Cousineau, G.: Effects of actinomycin D on macromolecule synthesis and early development in sea urchin eggs. Biochem. biophys. Res. Commun. 10, 321–326 (1963).PubMedGoogle Scholar
  117. Gross, P.R., Cousineau, G.: Macromolecule synthesis and the influence of actinomycin D on early development. Exp.Cell Res. 33, 368–395 (1964).PubMedGoogle Scholar
  118. Gross, P.R., Fry, B.J.: Continuity of protein synthesis through cleavage metaphase. Science 153, 749–751 (1966).PubMedGoogle Scholar
  119. Gross, P.R., Gross, K. W., Skoultchi, A.I., Ruderman, J. V.: Maternal mRNA and protein synthesis in the embryo. In: Protein Synthesis in Reproductive Tissue. Stockholm: Karolinska Institutet 1973.Google Scholar
  120. Gurley, L.R., Walters, R.A., Tobey, R.A.: Histone phosphorylation in late interphase and mitosis. Biochem. biophys. Res. Commun. 50, 744–750 (1973).PubMedGoogle Scholar
  121. Gwatkin, R.B.L., Williams, D. T.: Heat sensitivity of the cortical granule protease from hamster eggs. J. Reprod. Fertil. 39, 153–155 (1974).PubMedGoogle Scholar
  122. Gwatkin, R.B., Williams, D. T., Hartmann, J.F., Kniazuk, M.: The zona reaction of hamster and mouse eggs: Production in vitro by a trypsin-like protease from cortical granules. J. Reprod. Fertil. 32, 259–265 (1973).PubMedGoogle Scholar
  123. Halberg, R.L., Smith, D.C.: Ribosomal protein synthesis in Xenopus laevis oocytes. Develop. Biol. 42, 40–52 (1975).Google Scholar
  124. Hansmann, I., Röhrborn, G.: Chromosome aberrations in preimplantation stages of mice after treatment with Triazoquinone. Humangenetik 18, 101–109 (1973).PubMedGoogle Scholar
  125. Hedberg, E.: The chemical composition of the human ovarian oocyte. Acta endocr. (Kbh.) 14 (Suppl. 15) 1–89 (1953).Google Scholar
  126. Hennen, S.: Chromosomal and embryological analyses of nuclear changes occurring in embryos derived from transfers of nuclei between Rana pipiens and Rana sylvatica. Develop. Biol. 6, 133–183 (1963).PubMedGoogle Scholar
  127. Hille, M.B.: Inhibitor of protein synthesis isolated from ribosomes of unfertilised eggs and embryos of sea urchins. Nature (Lond.) 249, 556–558 (1974).Google Scholar
  128. Hitzeroth, H., Klose, J., Ohno, S., Wolf, U.: Asynchronous activation of parental alleles at the tissue specific gene loci observed on hybrid trouts during early embryonic development. Biochem. Genet. 1, 287–300 (1968).PubMedGoogle Scholar
  129. Hogan, B., Gross, P.R.: The effect of protein synthesis inhibition on the entry of messenger RNA into the cytoplasm of sea urchin embryos. J. Cell Biol. 49, 692–701 (1971).PubMedGoogle Scholar
  130. Honig, G.R., Rabinowitz, M.: Actinomycin D inhibition of protein synthesis unrelated to effect on template RNA synthesis. Science 149, 1504–1506 (1965).PubMedGoogle Scholar
  131. Huitin, T.: The effect of puromycin on protein metabolism and cell division in fertilized sea urchin eggs. Experientia (Basel) 17, 410–411 (1961).Google Scholar
  132. Humphreys, T.: Efficiency of translation of messenger RNA before and after fertilization on sea urchins. Develop. Biol. 20, 435–458 (1969).PubMedGoogle Scholar
  133. Humphreys, T.: Mesurements of messenger RNA entering polysomes upon fertilization of sea urchin. Develop. Biol. 26, 201–208 (1971).PubMedGoogle Scholar
  134. Hynes, R.O., Gross, P.R.: Informational RNA sequences in early sea urchin embryos. Biochim. biophys. Acta (Amst.) 259, 104–111 (1972).Google Scholar
  135. Jacob, S.E., Sajdel, W., Muecke, W., Munro, H.: Soluble RNA polymerases of rat liver nuclei: Properties, template specificity, and α-amanitin responses in vitro and in vivo. Cold Spr. Harbor Symp. quant. Biol. 35, 681–691 (1970).Google Scholar
  136. Johnson, A. W., Hnilica, L.S.: Cytoplasmic and nuclear basic protein synthesis during early sea urchin development. Biochim. biophys. Acta (Amst.) 246, 141–154 (1971).Google Scholar
  137. Kedes, L., Gross, P.R.: Synthesis and function of messenger RNA during early embryonic development. J. molec. Biol. 42, 559–575 (1969).PubMedGoogle Scholar
  138. de Kerckhove, D. van: Content of deoxyribonucleic acid of the germinal vesicle of the primary oocyte in the rabbit. Nature (Lond.) 183, 329 (1959).Google Scholar
  139. Kuwahara, M., Chaykin, S.: Biosynthesis of pyridine nucleotides in early embryos of the mouse (Mus musculus). J. biol. Chem. 248, 5095–5099 (1973).PubMedGoogle Scholar
  140. LaMarca, M.J., Smith, L.D., Strobel, M.C.: Quantitative and qualitative analysis of RNA synthesis in stage 6 and stage 4 oocytes of Xenopus laevis. Develop. Biol. 34, 106–118 (1973).PubMedGoogle Scholar
  141. Laszlo, J., Miller, D.S., McCarty, K.S., Hochstein, P.: Actinomycin D: Inhibition of respiration and glycolysis. Science 151, 1007–1010 (1966).PubMedGoogle Scholar
  142. Lee, S. Y., Mendecki, J., Brawerman, G.: A polynucleotide sigment rich in adenylic acid in the rapidly labeled polyribosomal RNA component of mouse sarcoma 180 ascites cells. Proc. nat. Acad. Sci. (Wash.) 68, 1331–1335 (1971).Google Scholar
  143. Lewin, B.: Gene expression — 2. Eucaryotic chromosomes. London-New York-Sydney-Toronto: Wiley and Sons 1974.Google Scholar
  144. Lim, L., Canellakis, E.S.: Adenine-rich polymer associated with rabbit reticulocytes messenger RNA. Nature (Lond.) 227, 710–712 (1970).Google Scholar
  145. Lin, T.P.: DL-methionine (sulphur −3 5) for labelling unfertilized mouse eggs in transplantation. Nature (Lond.) 178, 1175–1176 (1956).Google Scholar
  146. Lindell, T.J., Weinberg, F., Morris, P. W., Roeder, R.G., Rutter, W.J.: Specific inhibition of nuclear RNA polymerase II by α-amanitin. Science 170, 447–449 (1970).PubMedGoogle Scholar
  147. Lintern-Moore, S., Peters, H., Moore, G.P.M., Faber, M.: Follicular development in the infant human ovary. J. Reprod. Fertil. 39, 53–64 (1974).PubMedGoogle Scholar
  148. Loewenstein, J.E., Cohen, A.I.: Dry mass, lipid content and protein content of the intact and zona-free mouse ovum. J. Embryol. exp. Morph. 12, 113–121 (1964).PubMedGoogle Scholar
  149. Lutwak-Mann, C.: Some physiological and biochemical properties of the mammalian blastocyst. Bull. schweiz. Akad. med. Wiss. 22, 101–122 (1966).PubMedGoogle Scholar
  150. MacGregor, H.C.: The role of lampbrush chromosomes in the formation of nucleoli in amphibian oocytes. Quart. J. micro Sci. 106, 215–228 (1965).Google Scholar
  151. MacGregor, H.C.: Nucleolar DNA in oocytes of Xenopus laevis. J. Cell Sci. 3, 437–444 (1968).Google Scholar
  152. Maggio, R., Catalano, C.: Activation of amino-acids during sea urchin development. Arch. Biochem. Biophys. 103, 164–168 (1963).PubMedGoogle Scholar
  153. Mairy, M., Denis, H.: Recherches biochimiques sur l’oogenèse. I. Synthese et accumulation du RNA pendant l’oogenèse du crapaud sudafricain Xenopus laevis. Develop. Biol. 24, 143–165 (1971).PubMedGoogle Scholar
  154. Manes, C.: Nucleic acid synthesis in preimplantation rabbit embryos. I. Quantitative aspects, relationship to early morphogenesis and protein synthesis. J. exp. Zool. 172, 303–310 (1969).PubMedGoogle Scholar
  155. Manes, C.: Nucleic acid synthesis in preimplantation rabbit embryos. II. Delayed synthesis of ribosomal RNA. J. exp. Zool. 176, 87–95 (1971).PubMedGoogle Scholar
  156. Manes, C.: The participation of the embryonic genome during early cleavage in the rabbit. Develop. Biol. 32, 453–459 (1973).PubMedGoogle Scholar
  157. Manes, C., Daniel, J.C., Jr.: Quantitative and qualitative aspects of protein synthesis in the preimplantation rabbit embryo. Exp. Cell Res. 55, 261–268 (1969).PubMedGoogle Scholar
  158. Mangia, F., Epstein, C.J.: Biochemical studies of growing mouse oocytes: Preparation of oocytes and analysis of glucose-6-phosphate dehydrogenase and lactate dehydrogenase activities. Develop. Biol. 45, 211–220 (1975).PubMedGoogle Scholar
  159. Mescher, A., Humphreys, T.: Activation of maternal mRNA in the absence of poly (A) formation in fertilized sea urchin eggs. Nature (Lond.) 249, 138–139 (1974).Google Scholar
  160. Metafora, S., Felicetti, L., Gambino, R.: The mechanism of protein synthesis activation after fertilization of sea urchin eggs. Proc. nat. Acad. Sci. (Wash.) 68, 600–604 (1971).Google Scholar
  161. Milcarek, C., Price, P., Penman, S.: The metabolism of a poly (A) minus fraction in HeLa cells. Cell 3, 1–10 (1974).PubMedGoogle Scholar
  162. Mintz, B.: Synthetic processes and early development in the mammalian egg. J. exp. Zool. 157, 85–100 (1964).PubMedGoogle Scholar
  163. Monesi, V., Molinaro, M., Spalletta, E., Davoli, C.: Effect of metabolic inhibitors on macromolecular synthesis and early development in the mouse embryo. Exp. Cell Res. 59, 197–206 (1970).PubMedGoogle Scholar
  164. Monroy, A., Maggio, R., Rinaldi, A.M.: Experimentally induced activation of the ribosomes of the unfertilized sea urchin egg. Proc. nat. Acad. Sci. (Wash.) 54, 107–111 (1965).Google Scholar
  165. Monroy, A., Vittorelli, M.: Utilization of C1 4-glucose for amino acids and protein synthesis by the sea urchin embryo. J. cell. comp. Physiol. 60, 285–287 (1962).PubMedGoogle Scholar
  166. Moore, G.P.M., Lintern-Moore, S.: A correlation between growth and RNA synthesis with mouse oocyte. J. Reprod. Fertil. 39, 163–166 (1974).PubMedGoogle Scholar
  167. Moore, G.P.M., Lintern-Moore, S., Peters, H., Faber, M.: RNA synthesis in the mouse oocyte. J. cell Biol. 60, 416–422 (1974).PubMedGoogle Scholar
  168. Moore, R. W., Brinster, R.L.: Transamination and deamination in mouse preimplantation embryos. Proc. Soc. Study Reprod. Columbus, Ohio (1970).Google Scholar
  169. Morris, T.: The XO and YO chromosome constitutions in the mouse. Genet. Res. 12, 125–137 (1968).PubMedGoogle Scholar
  170. Noronha, J.M., Sheys, G.H., Buchanan, J.M.: Induction of a reductive pathway for deoxyribonucleotide synthesis during early embryogenesis of the sea urchin. Proc. nat. Acad. Sci. (Wash.) 69, 2006–2010 (1972).Google Scholar
  171. Oakberg, E.F.: 3H-uridine labeling of mouse oocytes. Arch. Anat. micro Morph. exp. 56 (Suppl. 3-4), 171–184 (1967).Google Scholar
  172. Oakberg, E.F.: Relationship between stage of follicle development and RNA synthesis in the mouse oocyte. Mutation Res. 6, 155–165 (1968).PubMedGoogle Scholar
  173. Odeblad, E., Magnusson, G.: An autoradiographic study on the intracellular accumulation of radioactive phosphate in the egg cell of the mouse. Acta endocr. (Kbh.) 17, 290–293 (1954).Google Scholar
  174. Ohno, S.: Sex chromosomes and sex-linked genes. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  175. Ohno, S.: The preferential activation of maternally derived alleles in development of interspecific hybrids. In: Heterospecific genome interaction. Philadelphia: The Wistar Institute Press 1969.Google Scholar
  176. Ohno, S.: Ancient linkage groups and frozen accidents. Nature (Lond.) 244, 259–262 (1973).Google Scholar
  177. Olds, P.J., Stern, S., Biggers, J.D.: Chemical estimates of the RNA and DNA contents of the early mouse embryo. J. exp. Zool. 186, 39–46 (1973).PubMedGoogle Scholar
  178. Panje, W.R., Kessel, R.G.: Soluble proteins and quantitative analysis of protein and RNA during oogenesis in Necturus maculosus. Exp. Cell Res. 51, 313–322 (1968).PubMedGoogle Scholar
  179. Pastan, I., Friedman, R.M.: Actinomycin D: Inhibition of phospholipid synthesis in chick embryo cells. Science 160, 316–317 (1968).PubMedGoogle Scholar
  180. Pedersen, T., Peters, H.: Proposal for a classification of oocytes and follicles in the mouse ovary. J. Reprod. Fertil. 17, 555–557 (1968).PubMedGoogle Scholar
  181. Perkowska, E., MacGregor, H.C., Birnstiel, M.L.: Gene amplification in the oocyte nucleus of mutant and wild-type Xenopus laevis. Nature (Lond.) 217, 649–650 (1968).Google Scholar
  182. Petzoldt, U., Dames, W., Gottschewski, G.H.M., Neuhoff, V.: Das Protein muster in frühen Entwicklungsstadien des Kaninchens. Cytobiologie 5, 272–280 (1972).Google Scholar
  183. Piatigorsky, J.: Ribonuclease and trypsin treatment of ribosomes and polyribosomes of sea urchin eggs. Biochim. biophys. Acta (Amst.) 166, 142–155 (1968).Google Scholar
  184. Piatigorsky, J., Tyler, A.: Changes upon fertilization in the distribution of RNA containing particles in sea urchin eggs. Develop. Biol. 21, 13–28 (1970).PubMedGoogle Scholar
  185. Poznakhirkina, N.A., Serov, O.L., Korochkin, L.I.: A study on lactate dehydrogenase isozymes in rat ova. Biochem. Genet. 13, 65–72 (1975).PubMedGoogle Scholar
  186. Quinn, P., Kozak, L.P.: Activity of certain glycolytic enzymes in developing mouse embryos. J. Reprod. Fertil. 43, 388–389 (1975).PubMedGoogle Scholar
  187. Quinn, P., Wales, R.G.: Fixation of carbon dioxide by pre implantation mouse embryos in vitro and the activities of enzymes involved in the process. Aust. J. biol. Sci. 24, 1277–1290 (1971).PubMedGoogle Scholar
  188. Raff, R.A., Colot, H. U., Selwig, S.E., Gross, P.R.: Oogenetic origin of messenger RNA for embryonic synthesis of microtubule proteins. Nature (Lond.) 235, 211–214 (1972).Google Scholar
  189. Raff, R.A., Greenhouse, G.A., Gross, K. W., Gross, P.R.: Synthesis and storage of microtubule proteins by sea urchin embryos. J. Cell Biol. 50, 516–527 (1971).PubMedGoogle Scholar
  190. Rapola, J., Koskimies, O.: Embryonic enzyme patterns: Characterization of the single lactate dehydrogenase isozyme in preimplanted mouse ova. Science 157, 1311–1312 (1967).PubMedGoogle Scholar
  191. Reamer, G.R.: The quantity and distribution of nucleic acids in the early cleavage stages of the mouse embryo. Ph.D. Thesis. Boston University 1963.Google Scholar
  192. Revel, M., Hiatt, H.H., Revel, J.P.: Actinomycin D: An effect on rat liver homogenates unrelated to its action on RNA synthesis. Science 146, 1311–1313 (1964).PubMedGoogle Scholar
  193. Rinaldi, A.M., Monroy, A.: Polyribosome formation and RNA synthesis in early postfertilization stages of sea urchin egg. Develop. Biol. 19, 73–86 (1969).PubMedGoogle Scholar
  194. Roeder, R.G., Chou, S., Jaehning, J.A., Schwarz, L.B., Sklar, V.E.F., Weinmann, R.: Structure, function and regulation of RNA polymerases in animal cells. In: Isozymes III: Developmental Biology. New York: Academic Press 1975.Google Scholar
  195. Rosbash, M., Ford, P.J.: Polyadenylic acid containing RNA in Xenopus laevis oocytes. J. molec. Biol. 85, 87–101 (1974).PubMedGoogle Scholar
  196. Roversi, G.D., Silvestrini, R.: Study on the protein metabolism of the evolutional ovarian follicle. Autoradiographic research with 3H-phenylalanine. Exp. Cell Res. 31, 484–489 (1963).PubMedGoogle Scholar
  197. Ruderman, J.V., Gross, P.R.: Histones and histone synthesis in sea urchin development. Develop. Biol. 36, 286–298 (1974).PubMedGoogle Scholar
  198. Samarina, O.P., Lukanidin, E.M., Georgiev, G.P.: Ribonucleoprotein particles containing mRNA and pre-mRNA. In: Protein synthesis in reproductive tissue. Stockholm: Karolinska Institutet 1973.Google Scholar
  199. Scherrer, K.: Messenger RNA in eukaryotic cells: The life history of duck globin messenger RNA. In: Protein Synthesis in Reproductive Tissue. Stockholm: Karolinska Institutet 1973.Google Scholar
  200. Schlafke, S., Enders, A.C.: Cytological changes during cleavage and blastocyst formation in the rat. J. Anat. 102, 13–32 (1967).PubMedGoogle Scholar
  201. Schuel, H., Wilson, W.L., Chen, K., Lorand, L.: A trypsin-like proteinase localized in cortical granules isolated from unfertilized sea urchin eggs by zonal centrifugation. Role of the enzyme in fertilization. Develop. Biol. 34, 175–186 (1973).PubMedGoogle Scholar
  202. Schultz, G.A.: Characterization of polyribosomes containing newly-synthesized messenger RNA in preimplantation rabbit embryos. Exp. Cell Res. 82, 168–174 (1973).PubMedGoogle Scholar
  203. Schultz, G.A.: The stability of messenger RNA containing polyadenylic acid sequences in rabbit blastocysts. Exp. Cell Res. 86, 190–193 (1974).PubMedGoogle Scholar
  204. Schultz, G.A.: Polyadenylic acid-containing RNA in unfertilized and fertilized eggs of the rabbit. Develop. Biol. 44, 270–277 (1975).PubMedGoogle Scholar
  205. Schultz, G.A., Manes, C., Hahn, W.E.: Synthesis of RNA containing polyadenylic acid sequences in preimplantation rabbit embryos. Develop. Biol. 30, 418–426 (1973).PubMedGoogle Scholar
  206. Sheldon, R., Jurale, C., Kates, J.: Detection of polyadenylic acid sequences in viral and eucaryotic RNA. Proc. nat. Acad. Sci. (Wash.) 69, 417–421 (1972).Google Scholar
  207. Siracusa, G.: RNA polymerase during early development in mouse embryo. Exp. Cell Res. 78, 460–462 (1973).PubMedGoogle Scholar
  208. Siracusa, G., Vivarelli, E.: Low-salt and high-salt RNA polymerase activity during preimplantation development in the mouse. J. Reprod. Fertil. 43, 567–569 (1975).PubMedGoogle Scholar
  209. Sirlin, J.L.: Biology of RNA. New York-London: Academic Press 1972.Google Scholar
  210. Skalko, R. G., Morse, J.M.: The differential response of the early mouse embryo to Actinomycin D treatment in vitro. Teratology 2, 47–54 (1969).PubMedGoogle Scholar
  211. Skoultchi, A., Gross, P.R.: Maternal histone messenger RNA: detection by molecular hybridization. Proc. nat. Acad. Sci. (Wash.) 70, 2840–2844 (1973).Google Scholar
  212. Slater, I., Gillespie, D., Slater, D. W.: Cytoplasmic adenylation and processing of maternal RNA. Proc. nat. Acad. Sci. (Wash.) 70, 406–411 (1973).Google Scholar
  213. Slater, I., Slater, D. W.: Polyadenylation and transcription following fertilization. Proc. nat. Acad. Sci. (Wash.) 71, 1103–1107 (1974).Google Scholar
  214. Smith, L.D.: Protein synthesis during oocyte maturation. In: Oogensis. Baltimore: University Park Press 1972.Google Scholar
  215. Smith, L.D., Ecker, R.E.: Protein synthesis in enucleated eggs of Rana pipiens. Science 150, 777–779 (1965).PubMedGoogle Scholar
  216. Soeiro, R., Amos, H.: mRNA half-life measured by the use of Actinomycin D in animal cells—a caution. Biochim. biophys. Acta (Amst.) 129, 406–409 (1966).Google Scholar
  217. Sorensen, R.A.: Problems in oocyte maturation and early development in the mouse. Ph.D. Thesis, Yale University 1972.Google Scholar
  218. Spielmann, H.: Different patterns of energy metabolism in the rat and mouse zygote. J. Reprod. Fertil. 42, 391–394 (1975).PubMedGoogle Scholar
  219. Spielmann, H., Erickson, R.P., Epstein, C.J.: Immunological studies of lactate dehydrogenase and glucose-6-phosphate dehydrogenase in preimplantation mouse embryo. J. Reprod. Fertil. 40, 367–373 (1974).PubMedGoogle Scholar
  220. Spirin, A.S.: Informosomes. Europ. J. Biochem. 10, 20–35 (1969).PubMedGoogle Scholar
  221. Spirin, A.S.: Nonribosomal RNP particles (informosomes) of animal cells. In: The Mechanism of Protein Synthesis and its Regulation. Amsterdam: North Holland 1972.Google Scholar
  222. Stahl, A., Luciani, J.M., Devictor, M., Capordano, A.M., Gagné, R.: Constitutive heterochromatin and micronucleoli in the human oocyte at the diplotene stage. Humangenetik 26, 315–327 (1975).PubMedGoogle Scholar
  223. Stambaugh, R., Buckley, B.S.: Histochemical subcellular localization of the acrosomal proteinase effecting dissolution of the zona pellucida using fluorescein-labeled inhibitors. Fertil and Steril. 23, 348–352 (1972).Google Scholar
  224. Steinberg, R.A., Levinson, B.B., Tomkins, G.M.: “Superinduction” of tyrosine aminotransferase by actinomycin D: a reevaluation. Cell 5, 29–39 (1975).PubMedGoogle Scholar
  225. Stern, S.: The activity of glycogen synthetase in the cleaving mouse embryo. Proc. Soc. Study Reprod. Columbus, Ohio (1970).Google Scholar
  226. Stern, S., Raygis, A., Kennedy, J.F.: Incorporation of amino acids during maturation in vitro by mouse oocytes: effect of puromycin on protein synthesis. Biol. Reprod. 7, 341–346 (1972).PubMedGoogle Scholar
  227. Streffer, C., Beuningen, D. van: The content of pyridine dinucleotides in the mouse embryo before implantation. Develop. Biol. 38, 401–403 (1974).Google Scholar
  228. Tarkowski, A.K., Witkowska, A., Nowicka, J.: Experimental parthenogenesis in the mouse. Nature (Lond.) 226, 162–165 (1970).Google Scholar
  229. Tasca, R.J., Hillman, N.: Effects of Actinomycin D and cykloheximide on RNA and protein synthesis in cleavage stage mouse embryos. Nature (Lond.) 225, 1022–1025 (1970).Google Scholar
  230. Terman, S., Gross, P.: Translation — level control of protein synthesis during early development. Biochem. biophys. Res. Commun. 21, 595–600 (1966).Google Scholar
  231. Thomson, J.L., Biggers, J.D.: Effect of inhibitors of protein synthesis on the development of preimplantation mouse embryos. Exp. Cell Res. 41, 411–427 (1966).PubMedGoogle Scholar
  232. Tyler, A.: Masked messenger RNA and cytoplasmic DNA in relation to protein synthesis and processes of fertilization and determination in embryonic development. Develop. Biol., Suppl. 1, 170–226 (1967).Google Scholar
  233. Vacquier, V.D., Epel, D., Douglas, L.: Sea urchin eggs release protease activity at fertilization. Nature (Lond.) 237, 34–36 (1972).Google Scholar
  234. Wallace, R.A., Jared, D. W.: Studies on amphibian yolk. VIII. The estrogen — induced hepatic synthesis of a serum lipophosphoprotein and its selective uptake by the ovary and transformation into yolk platelet protein in Xenopus laevis. Develop. Biol. 19, 498–526 (1969).PubMedGoogle Scholar
  235. Weakley, B.S.: Electron microscopy of the oocyte and granulosa cells in the developing ovarian follicle of the Golden hamster (Mesocricetus auratus). J. Anat. 100, 503–534 (1966).PubMedGoogle Scholar
  236. Weakley, B.S.: Comparison of cytoplasmatic and membraneous elements in the oocyte of five mammalian species. Z. Zellforsch. 85, 109–123 (1968).PubMedGoogle Scholar
  237. Whiteley, A.H., McCarthy, B.J., Whiteley, B.R.: Changing populations of messenger RNA during sea urchin development. Proc. nat. Acad. Sci. (Wash.) 55, 519–525 (1966).Google Scholar
  238. Whitt, G.S., Childers, W.F., Cho, P.L.: Allelic expression at enzyme loci in an intertribal hybrid sunfish. J. Hered. 64, 55–61 (1973).Google Scholar
  239. Whitten, W.K.: Culture of tubal ova. Nature (Lond.) 179, 1081–1082 (1957).Google Scholar
  240. Whittingham, D.G.: The failure of lactate and phosphoenolpyruvate to support development of the mouse zygote in vitro. Biol. Reprod. 1, 381–386 (1969).PubMedGoogle Scholar
  241. Wilson, E.B.: On cleavage and mosaic work. Arch. Entwickl.-Mech. Org. 3, 19–30 (1896).Google Scholar
  242. Wilt, F.B.: Polyadenylation of maternal RNA of sea urchin eggs after fertilization. Proc. nat. Acad. Sci. (Wash.) 70, 2345–2349 (1973).Google Scholar
  243. Wolf, U., Engel, W.: Gene activation during early development of mammals. Humangenetik 15, 99–118 (1972).PubMedGoogle Scholar
  244. Young, R.J., Stull, G.B., Brinster, R.L.: RNA in mouse ovulated oocytes. J. Cell Biol. 59, 372a (1973).Google Scholar
  245. Zamboni, L., Mastroianni, L.: Electron microscopic studies on rabbit ova. J. Ultrastruct. Res. 14, 95–117 (1966).Google Scholar
  246. Zeilmaker, G.B., Hulsman, W.C., Wensinck, P., Verhamme, C.: Oxygen-triggered mouse oocyte maturation in vitro and lactate utilization by mouse oocytes and zygotes. J. Reprod. Fertil. 29, 151–152 (1972).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin-Heidelberg 1976

Authors and Affiliations

  • W. Engel
  • W. Franke

There are no affiliations available

Personalised recommendations