DNA-Specific Labelling by Deoxyribonucleoside 5′-Monophosphates in Saccharomyces cerevisiae

  • M. Brendel
  • W. W. Fäth
  • R. Toper
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)


DNA-specific labelling in Saccharomyces cerevisiae in vivo is possible with 5′-dTMP only (Jannsen et al., 1968; Brendel and Haynes, 1973; Fäth and Brendel, 1974). Thymine and thymidine cannot be used for DNA-specific labelling, because thymidine kinase apparently is absent in this organism (Grivell and Jackson, 1968). The introduction of a genetic (Fäth et al., 1974; Brendel and Fäth, 1974) or the use of a phenotypic block of thymidylate biosynthesis (Jannsen et al., 1973; Laskowski and Lehmann-Brauns, 1973) yielded a selective system for the isolation of 5′-dTMP low-requiring mutants, some of which show utilization (incorporation into DNA) of exogenously offered 5′-dTMP of between 25 and 50 per cent (Fäth and Brendel, 1975).


Saccharomyces Cerevisiae Thymidine Kinase Neurospora Crassa Specific Labelling Nucleic Acid Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brendel, M., Fäth, W.W.: Isolation and characterization of mutants of Saccharomyces cerevisiae auxotrophic and conditionally auxotrophic for 5′-dTMP. Z. Naturforsch. 29c, 733–738 (1974)Google Scholar
  2. Brendel, M., Haynes, R.H.: Exogenous thymidine-5′-monophosphate as a precursor for DNA synthesis in yeast. Molec. Gen. Genet. 126, 337–348 (1973)PubMedCrossRefGoogle Scholar
  3. Brendel, M., Langjahr, U.G.: “Thymineless death” in a strain of Saccharomyces cerevisiae auxotrophic for deoxythymidine-5′-monophosphate. Molec. Gen. Genet. 131, 351–358 (1974)PubMedCrossRefGoogle Scholar
  4. Fäth, W.W., Brendel, M.: Specific DNA-labelling by exogenous thymidines’-5′-monophosphate in Saccharomyces cerevisiae. Molec. Gen. Genet. 131, 57–67 (1974)PubMedCrossRefGoogle Scholar
  5. Fäth, W.W., Brendel, M.: An improved assay of UV-induced thymine-containing dimers in Saccharomyces cerevisiae. Z. Naturforsch. 30c, 804–810 (1975)Google Scholar
  6. Fäth, W.W., Brendel, M., Laskowski, W., Lehmann-Brauns, E.: Economizing DNA-specific labelling by deoxythymidine-5′-monophosphate in Saccharomyces cerevisiae. Molec. Gen. Genet. 132, 335–345 (1974)PubMedCrossRefGoogle Scholar
  7. Grivell, A.R., Jackson, J.F.: Thymidine kinase: evidence for its absence in Neurospova crassa and some other microorganisms, and the relevance of this to the specific labelling of deoxyribonucleic acid. J. Gen. Microbiol. 54, 307–317 (1968)PubMedGoogle Scholar
  8. Jannsen, S., Lochmann, E.-R., Laskowski, W.: DNS-Synthese nach Röntgenbestrahlung bei homozygoten Hefestämmen verschiedenen Ploidiegrades. Z. Naturforsch. 23b, 1500–1507 (1968)Google Scholar
  9. Jannsen, S., Witte, I., Megnet, R.: Mutants for the specific labelling of DNA in Saccharomyces cerevisiae. Biochim. Biophys. Acta (Amst.) 299, 681–685 (1973)Google Scholar
  10. Langjahr, U.G., Hartmann, E.-M., Brendel, M.: Nucleic acid metabolism in yeast. I. Inhibition of RNA and DNA synthesis by high concentrations of exogenous deoxythymidine 5’-monophosphate in 5′-dTMP low-requiring strains. Molec. Gen. Genet. 143, 113–118 (1975)PubMedCrossRefGoogle Scholar
  11. Laskowski, W., Lehmann-Brauns, E.: Mutants of Saccharomyces able to grow after inhibition of thymidine phosphate synthesis. Molec. Gen. Genet. 125, 275–277 (1973)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • M. Brendel
  • W. W. Fäth
  • R. Toper

There are no affiliations available

Personalised recommendations