Applications to Approximation Theory

  • Jöran Bergh
  • Jörgen Löfström
Part of the Grundlehren der mathematischen Wissenschaften book series (GL, volume 223)


There is a close connection between the classical approximation theory and the theory of interpolation spaces. We indicated this in 1.5. We discuss the link in more detail in the first two sections. In the first section, the main result is that every “approximation space” is a real interpolation space. The theorem makes the K-method (Chapter 3) available in approximation theory. This is then utilized in Section 2 to obtain, i. a., a classical theorem (of Jackson and Bernstein type; see 1.5) concerning the best approximation of functions in L p (ℝ n ) (1 ≤ p ≤ ∞) by entire functions of exponential type. In the following sections, 3 and 4, we prove other approximation theorems, using interpolation techniques developed in Chapter 3, 5 and 6. In particular, we treat approximation of operators by operators of finite rank, and approximation of differential operators by difference operators. Additional applications are indicated in Section 7.5 and 7.6, e.g., approximation by spline functions.


Entire Function Difference Operator Approximation Theory Besov Space Spline Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Jöran Bergh
    • 1
  • Jörgen Löfström
    • 2
  1. 1.Department of MathematicsUniversity of LundLund 7Sweden
  2. 2.Department of MathematicsUniversity of GöteborgGöteborg 5Sweden

Personalised recommendations