Advertisement

Neuronal Architecture and Function in the Ocellar System of the Locust

  • J. A. Patterson
Conference paper
Part of the Proceedings in Life Sciences book series (LIFE SCIENCES)

Abstract

A full understanding of the peripheral visual process must depend on a knowledge of both the physiological properties of the cells involved and the functional connectivity of those cells. As this symposium shows, considerable effort has been devoted to the accomplishment of this task for organs such as the retina of vertebrates and cephalopods and the retina, lamina and medulla of the compound eye of arthropods. Many of these organs contain some hundreds of thousands or millions of neural elements and are capable of achieving a highly complex analysis of the visual information furnished by the photoreceptors. Such complexity would not be so amenable to experimental analysis were it not for the fact that the visual system, in these cases, is composed of an array formed by the repetition of groups of cells. There are relatively few cells in each group and each cell may be placed in one or another of a small number of classes of cell, each with distinctive anatomical and physiological properties. The array of cell groups is perhaps most clearly seen in the ommatidia and optic cartridges of the insect compound eye.

Keywords

Receptor Cell Ventral Nerve Cord Giant Axon Lateral Ocellus Median Ocellus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baumann, F.: Slow and spike potentials recorded from retinula cells of the honeybee drone in response to light. J. Gen. Physiol. 52, 855–875 (1968)PubMedCrossRefGoogle Scholar
  2. Boschek, C.B.: Synaptology in the lamina ganglionaris in the fly. In: Information Processing in the Visual Systems of Arthropods. Wehner, R. (ed.). Berlin-Heidelberg-New York: Springer 1972, pp. 17–22Google Scholar
  3. Burtt, E.T., Catton, W.T.: Visual perception of movement in the locust. J. Physiol. (London) 125, 566–580 (1954)Google Scholar
  4. Burtt, E.T., Catton, W.T.: Electrical response to visual stimulation in the optic lobes of the locust and certain other insects. J. Physiol. (London) 133, 68–88 (1956)Google Scholar
  5. Cajal, S.R.: Observaciones sobre la estructura de los ocelos y vias nerviosus ocelares de algunos insectos. Trab. Lab. Invest. Biol. Univ. Madrid 16, 109–139 (1918)Google Scholar
  6. Chappell, R.L., DeVoe, R.D.: Action spectra and chromatic mechanisms of cells in the median ocelli of dragonflies. J. Gen. Physiol. 65, 399–419 (1975)PubMedCrossRefGoogle Scholar
  7. Chappell, R.L., Dowling, J.E.: Neural organisation of the median ocellus of the dragonfly. I. Intracellular electrical activity. J. Gen. Physiol. 60, 121–147 (1972)Google Scholar
  8. Chappell, R.L., Klingman, A.D.: Synaptic feedback in the retina. A model from pharmacology of the dragonfly ocellus. Proceedings of the Intern. Union Physiol. Sci. New Delhi: 1974, Vol. XIGoogle Scholar
  9. Cooter, R.J.: Visual and multimodal interneurones in the ventral nerve cord of the cockroach, Periplaneta americana. J. Exp. Biol. 59, 675–696 (1973)Google Scholar
  10. Cooter, R.J.: Ocellus and ocellar nerves of Periplaneta americana L. (Orthoptera: Dictyoptera). Intern. J. Insect Morphol. Embryol. 4(3), 273–288 (1975)CrossRefGoogle Scholar
  11. Dowling, J.E., Boycott, B.B.: Organisation of the primate retina: Electron microscopy. Proc. R. Soc. London 166B, 80–111 (1966)CrossRefGoogle Scholar
  12. Dowling, J.E., Chappell, R.L.: Neural organisation of the median ocellus of the dragonfly. II. Synaptic structure. J. Gen. Physiol. 60, 148–165 (1972)PubMedCrossRefGoogle Scholar
  13. Eaton, J.L.: Electroretinogram components of the ocellus of the adult cabbage moth Trichoplusia ni. J. Insect. Physiol. 21, 1511–1515 (1975)CrossRefGoogle Scholar
  14. Goldsmith, T.H., Bernard, G.D.: The visual system of insects. In: The Physiology of Insecta. Rockstein, M. (ed.). New York-London: Academic 1974, Vol. II, pp. 165–272Google Scholar
  15. Goodman, C.: Anatomy of locust ocellar interneurons: Constancy and variability. J. Comp. Physiol. 95, 185–202 (1974)CrossRefGoogle Scholar
  16. Goodman, L.J.: The structure and function of the insect dorsal ocellus. In: Advances in Insect Physiology. Treherne, J.E., Beament, J.W.L., Wigglesworth, V.B. (eds.). London-New York: Academic 1970, Vol. VII, pp. 97–195Google Scholar
  17. Goodman, L.J.: The neural organisation and physiology of the insect dorsal ocellus. In: Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1974, pp. 515–548Google Scholar
  18. Goodman, L.J., Patterson, J.A., Mobbs, P.G.: The projection of ocellar neurons within the brain of the locust, Schistocerca gregaria. Cell. Tiss. Res. 157, 467–492 (1975)CrossRefGoogle Scholar
  19. Hoyle, G.: Functioning of the insect ocellar nerve. J. Exp. Biol. 32, 397–407 (1955)Google Scholar
  20. Järvilehto, M., Zettler, F.: Localised intracellular potentials from pre- and postsynaptic components in the external plexiform layer of an insect retina. Z. Vergl. Physiol. 75, 422–440 (1971)CrossRefGoogle Scholar
  21. Järvilehto, M., Zettler, F.: Electrophysiological-histological studies on some functional properties of visual cells and second-order neurons of an insect lamina. Z. Zellforsch. 136, 291–306 (1973)PubMedCrossRefGoogle Scholar
  22. Kenyon, F.C.: The brain of the bee. A preliminary contribution to the morphology of the nervous system of the Arthropoda. J. Comp. Neurol. 6, 133–210 (1896)CrossRefGoogle Scholar
  23. Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. I. Signal amplification in dark-adapted second-order neurons. J. Comp. Physiol. 84, 355 (1973)CrossRefGoogle Scholar
  24. Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. II. Receptor signal interactions in the lamina. J. Comp. Physiol. 92, 357–375 (1974a)CrossRefGoogle Scholar
  25. Laughlin, S.B.: Neural integration in the first optic neuropile of dragonflies. III. The transfer of angular information. J. Comp. Physiol. 92, 377–396 (1974b)CrossRefGoogle Scholar
  26. Laughlin, S.B.: The function of the lamina ganglionaris. In: The Compound Eye and Vision of Insects. Horridge, G.A. (ed.). Oxford: Clarendon 1974c, pp. 341–358Google Scholar
  27. Laughlin, S.B.: Receptor and interneuron light-adaptation in the dragonfly visual system. Z. Naturforsch. 30C, 306–308 (1975)Google Scholar
  28. Metschl, N.: Electrophysiologische Untersuchungen an den Ocellen von Calliphora. Z. Vergl. Physiol. 62, 382–394 (1963)Google Scholar
  29. Patterson, J.A., Goodman, L.J.: Intracellular responses of receptor cells and second-order cells in the ocelli of the desert locust. Schistocerca gregaria. J. Comp. Physiol. 95, 237–250 (1974a)CrossRefGoogle Scholar
  30. Patterson, J.A., Goodman, L.J.: Relationships between ocellar units in the ventral nerve cord and ocellar pathways in the brain of Schistocerca gregaria. J. Comp. Physiol. 95, 251–262 (1974b)CrossRefGoogle Scholar
  31. Patterson, J.A., Goodman, L.J.: Componental analysis of the ocellar electro-retinogram of the locust, Schistocerca gregaria. J. Insect Physiol. 21, 287–298 (1975)PubMedCrossRefGoogle Scholar
  32. Pitman, R.M., Tweedle, C.D., Cohen, M.J.: Branching of central neurons: Intracellular cobalt injection for light and electron microscopy. Science 176, 412–414 (1972)PubMedCrossRefGoogle Scholar
  33. Rosser, B.L.: Electrophysiological studies on the ocelli of Aeschna cyanea and their implications for ocellar functions. Ph.D. thesis. Univ. Bristol 1972Google Scholar
  34. Rosser, B.L.: A study of afferent pathways of the dragonfly larval ocellus from extracellularly recorded spike discharges. J. Exp. Biol. 60, 135–160 (1974)Google Scholar
  35. Ruck, P.: Electrophysiology of the insect dorsal ocellus. I. Origin of the components of the electroretinogram. J. Gen. Physiol. 44, 605–627 (1961a)PubMedCrossRefGoogle Scholar
  36. Ruck, P.: Electrophysiology of the insect dorsal ocellus. II. Mechanisms of generation and inhibition of impulses in the ocellar nerve of dragonflies. J. Gen. Physiol. 44, 629–639 (1961b)PubMedCrossRefGoogle Scholar
  37. Ruck, P.: Electrophysiology of the insect dorsal ocellus. III. Responses to flickering light of the dragonfly ocellus. J. Gen. Physiol. 44, 641–657 (1961c)PubMedCrossRefGoogle Scholar
  38. Ruck, P.: Extracellular aspects of receptor excitation in the dorsal ocellus. In: The Functional Organisation of the Compound Eye. Bernhard, C.G. (ed.). Oxford: Pergamon 1966, pp. 195–206Google Scholar
  39. Ruck, P., Edwards, G.A.: The structure of the insect dorsal ocellus. I. General organisation of the ocellus in dragonflies. J. Morphol. 115, 1–26 (1964)CrossRefGoogle Scholar
  40. Shaw, S.R.: Organisation of the locust retina. Symp. Zool. Soc. London 23, 135–163 (1968)Google Scholar
  41. Toh, Y., Kuwabara, M.: Fine structure of the dorsal ocellus of the worker honeybee. J. Morphol. 143, 285–306 (1974)CrossRefGoogle Scholar
  42. Toh, Y., Kuwabara, M.: Synaptic organisation of the fleshfly ocellus. J. Neurocytol. 4, 271–287 (1975)PubMedCrossRefGoogle Scholar
  43. Williams, J.L.D.: Anatomical studies of the insect central nervous system: A ground-plan of the midbrain and an introduction to the central complex in the locust, Schistocerca gregaria. (Orthoptera). J. Zool. London 176, 67–86 (1975)CrossRefGoogle Scholar
  44. Zenkin, G.M., Pigarev, I.N.: Optically determined activity in the cervical nerve chain of the dragonfly. Biofizika 16, 299–306 (1971)PubMedGoogle Scholar
  45. Zettler, F., Järvilehto, M.: Decrement-free conduction of graded potentials along the axon of a monopolar neuron. Z. Vergl. Physiol. 75, 402–421 (1971)CrossRefGoogle Scholar
  46. Zettler, F., Järvilehto, M.: Lateral inhibition in an insect eye. Z. Vergl. Physiol. 76, 233–244 (1972a)CrossRefGoogle Scholar
  47. Zettler, F., Järvilehto, M.: Intraaxonal visual responses from visual cells and second-order neurons in an insect retina. In: Information Processing in the Visual Systems of Arthropods. Wehner, R. (ed.). Berlin-Heidelberg-New York: Springer 1972b, pp. 217–222Google Scholar
  48. Zettler, F., Järvilehto, M.: Active and passive axonal propagation of non-spike signals in the retina of Calliphora. J. Comp. Physiol. 85, 89–104 (1973)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • J. A. Patterson

There are no affiliations available

Personalised recommendations