Soil Water Relations and Water Exchange of Forest Ecosystems

  • P. Benecke
Part of the Ecological Studies book series (ECOLSTUD, volume 19)

Abstract

Trying to determine the water exchange of ecosystems in quantitative terms requires the acceptance of basic principles which describe in mathematical statements the relationships that govern the water exchange between the ecosystem and its adjacent systems—the atmosphere, the underground and possibly the neighboring ecosystems—as well as between the internal “compartments” of the ecosystem (Fig. 1). Such a generally accepted basic principle is the equation of continuity, also known as the law of conservation of matter. Another fundamental principle is Darcy’s law. Both laws are explained in Sect. III. The combined form of these two laws allows in particular to determine the rates of water transfer within the soil and the corresponding rates of water storage or depletion. The application of the equation of continuity without sink or source terms implies that we have to deal with a constant total amount of recycling water.

Keywords

Clay Permeability Dura Kreis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benecke, P.: Die Ermittlung der Tiefensickerung aus Pseudogleyen. In: Pseudogley and gley (eds. E. Schlichting, U. Schwertmann), Trans. Com. V and VI, Intern. Soc. Soil Sci., pp. 443–452. Weinheim/Bergstr.: Verlag Chemie 1972.Google Scholar
  2. Benecke, P., Mayer, R.: Wasserhaushaltsuntersuchungen im Soiling. Mitt. Arb. Kreis “Wald und Wasser” 5, 71–78 (1970).Google Scholar
  3. Benecke, P., Mayer, R.: Aspects of soil water behavior as related to beech and spruce stands—some results of the water balance investigations. In: Integrated experimental ecology. Ecological Studies, vol. 2 (ed. H. Ellenberg), 153–163. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  4. Black, C. D.: Soil-plant relationships. 2nd Ed. London-Sidney: Wiley and Sons 1968.Google Scholar
  5. Bloemen, G. W.: On the evaluation of parameter values in water balance models. Tech. Bull. 92, Inst. Land Water Management Res., Wageningen (1974).Google Scholar
  6. Brechtel, H. M.: Schneeansammlung und Schneeschmelze im Wald und ihre wasserwirtschaftliche Bedeutung, “gwf”-wasser/abwasser 111, 377–379 (1970).Google Scholar
  7. Brechtel, H. M.: Einfluß des Waldes auf Hochwasserabflüsse bei Schneeschmelzen. Wasser und Boden 23, 60–63 (1971).Google Scholar
  8. Brechtel, H. M., Zahorka, H.: Beeinträchtigt die Umwandlung von Buchen- in Fichtenbestände die wasserwirtschaftliche Funktion des Waldes? Allgem. Forstz.26, 147–150 (1971).Google Scholar
  9. Cowan, I. R.: Transport of water in the soil-plant-atmosphere system. J. Appl. Ecol. 2, 221–239 (1965).CrossRefGoogle Scholar
  10. Delfs, J., Friedrich, W., Kiesekamp, H., Wagenhoff, A.: Der Einfluß des Waldes und des Kahlschlages auf den Abflußvorgang, den Wasserhaushalt und den Bodenabtrag.— Ergebnisse der ersten 5 Jahre der forstlich-hydrologischen Untersuchungen im Oberharz (1948–1953). “Aus dem Walde”, Mitt. Nds. Landesforstverw. (Hannover) 3 (1958).Google Scholar
  11. Denmead, O. P., Shaw, H. R.: Availability of soil water to plants as affected by soil moisture and meteorological conditions. Agron. J.54, 385–390 (1962).CrossRefGoogle Scholar
  12. Eidmann, F. E.: Die Interception in Buchen- und Fichtenbeständen. C. R. Ass. Int. Hydrol. Sci, Hannover Symp. 1, 5–25 (1959).Google Scholar
  13. Eschner, A. R.: Interception and soil moisture distribution. In: Intern. Symp. on Forest Hydrology (eds. W. E. Sopper, H. W. Lull), pp. 191–199. New York, London: Pergamon Press Ltd. 1967.Google Scholar
  14. Fazilat, M.: Der Wasserentzug der Pflanzen wurzeln und seine Modellierung. Diss. Göttingen 1975.Google Scholar
  15. Feddes, R. A., Rijtema, P. E.: Water withdrawal by plant roots. Tech. Bull.83, Inst. Land Water Management Res., Wageningen (1972).Google Scholar
  16. Finck, A.: Pflanzenernährung in Stichworten. Kiel: Ferd. Hirt-Verlag 1969.Google Scholar
  17. Freeze, R. A.: Three-dimensional, transient, saturated-unsaturated flow in a groundwater basin. Water Resourc. Res. 7, 347–364 (1971).CrossRefGoogle Scholar
  18. Friedrich, W., Liebscher, H., Rudolph, R., Wagenhoff, A.: Forstlich-hydrologische Untersuchungen in bewaldeten Versuchsgebieten im Oberharz.—Ergebnisse aus den Abflußjahren 1951–1965. “Aus dem Walde”, Mitt. Nds. Landesforstverw. (Hannover) 7 (1968).Google Scholar
  19. Gardner, W. R.: Dynamic aspects of water availability to plants. Soil Sci. 89, 63–73 (1960).CrossRefGoogle Scholar
  20. Gardner, W. R.: Dynamic aspects of soil water availability to plants. Ann. Rev. Plant Physiol. 16, 323–342 (1965 a).CrossRefGoogle Scholar
  21. Gardner, W. R.: Soil water movement and root absorption. In: Plant environment and efficient water use (ed. Pierre, Kirkham, Pesek, Shaw), pp. 127–149. Madison, Wisc.: Am. Soc. Agron. and Soil Sci. Soc. Am. Publisher 1965b.Google Scholar
  22. Garstka, W. U.: Snow and snow survey. In: Handbook of applied hydrology (ed. Ven Te Chow), pp. 10:1–10:57. New York, St. Louis, San Francisco: McGraw-Hill 1964.Google Scholar
  23. Heiseke, D.: Schneedecke und Wasserhaushalt der Steilen Bramke im Oberharz 1962/63. “Aus dem Walde”, Mitt. Nds. Landesforstverw. (Hannover) 22, 140–171 (1974).Google Scholar
  24. Hibbert, A. R.: Forest treatment effects on water yield. In: Intern. Symp. Forest Hydrology (ed. Scopper, Lull), 527–543. New York and London: Pergamon Press 1967.Google Scholar
  25. Hillel, D.: Soil and water. New York and London: Academic Press 1971.Google Scholar
  26. IBM: System/360 Continuous System Modeling Program, User’s Manual. Program Nr. 360A-CS-16X, 5th ed. New York: IBM Corp. Tech. Publ. Dep. (1972).Google Scholar
  27. Item, H.: A model for the water regime of a deciduous forest. J. Hydrology 21, 201–210 (1974).CrossRefGoogle Scholar
  28. Kirkham, D., Powers, W. L.: Advanced Soil Physics. New York: Wiley and Sons 1972.Google Scholar
  29. Kittredge, J.: Forest influences. New York: McGraw-Hill 1948.Google Scholar
  30. Kramer, P. J.: Plant and soil water relationships. New York: McGraw-Hill 1969.Google Scholar
  31. Lang, W.: Ökologische und hydrologische Untersuchungen in verschieden stark durchforsteten Fichten- und Lärchenbeständen des Schwarzwaldes. Dissertation Freiburg (W-Germany) 1970.Google Scholar
  32. Mitscherlich, G.: Wald, Wachstum und Umwelt. Vol. 2: Waldklima und Wasserhaushalt. Frankfurt: J. P. Sauerländer’s Verlag 1971.Google Scholar
  33. Nimah, M. N., Hanks, R. J.: Model for estimating soil water, plant, and atmospheric interrelations: I. Description and sensivity. Soil Sci. Soc. Am. Proc. 37, 522–527 (1973a).CrossRefGoogle Scholar
  34. Nimah, M. N., Hanks, R. J.: Model for estimating soil water, plant, and atmospheric interrelations: II. Field test of model. Soil Sci. Soc. Am. Proc. 37, 528–532 (1973b).CrossRefGoogle Scholar
  35. Penman, H. L.: Vegetation and hydrology. Techn. Column. 53. Harpenden, England: Commonwealth Agr. Bur. 1963.Google Scholar
  36. Philip, J. R.: Plant water relations: some physical aspects. Ann. Rev. Plant Physiol. 17, 245–268 (1966).CrossRefGoogle Scholar
  37. Ploeg, R. R. van der, Benecke, P.: Simulation of one dimensional moisture transfer in unsaturated, layered field soils. Göttinger Bodenk. Ber. 30, 150–169 (1974 a).Google Scholar
  38. Ploeg, R. R. van der, Benecke, P.: Unsteady, unsaturated, n-dimensional moisture flow in soil: A computer simulation program. Soil Sci. Soc. Am. Proc. 38, 881–885 (1974b).CrossRefGoogle Scholar
  39. Quervain, M. R. de, Gand, H. R. in der: Distribution of snow deposit in a test area for alpine reforestation. In: Forest hydrology (eds. W. E. Sopper, H. W. Lull), pp. 233–239. New York and London: Pergamon Press 1967.Google Scholar
  40. Richards, L. A., Wadleigh, C. H.: Soil water and plant growth. In: Soil physical conditions and plant growth (ed. B. T. Shaw). New York and London: Academic Press 1952.Google Scholar
  41. Rose, C. W.: Agricultural physics. London: Pergamon Press 1966.Google Scholar
  42. Rutter, A. J.: Water consumption by forests. In: Water deficits and plant growth. II. Plant water consumption and response (ed. T. T. Kozlowski), pp. 23–84. New York and London: Academic Press 1968.Google Scholar
  43. Shaw, R. H., Laing, D. R.: Moisture stress and plant response. In: Plant environment and efficient water use (ed. Pierre, Kirkham, Pesek, Shaw), pp. 73–94. Madison, Wisc.: Am. Soc. Agron. and Soil Sci. Soc. Am. Publisher 1965.Google Scholar
  44. Slatyer, R. O.: Plant-water relationships. London-New York: Academic Press 1967.Google Scholar
  45. Waggoner, P. E.: Decreasing transpiration and the effect upon growth. In: Plant environment and efficient water use (eds. Pierre, Kirkham, Pesek, Shaw), pp. 49–72. Madison, Wisc.: Am. Soc. Agron. and Soil Sci. Soc. Am. Publisher 1965.Google Scholar
  46. Weihe, J.: Zurückhaltung von Regenniederschlägen durch Buchen und Fichten. Allgem. Forstz.23, 86–90 (1968).Google Scholar
  47. Weihe, J.: Warum noch immer Interzeptionsuntersuchungen im Wald? Mitt. Arb. Kreis “Wald und Wasser” 5, 10–22 (1970).Google Scholar
  48. Wesseling, J., Wijk, W. R. van: Soil physical conditions in relation to drain depth. In: Drainage of agricultural lands (ed. J. N. Luthin), Agronomy, vol. 7, pp. 461–472. Madison, Wisc.: Soc. Agronomy Publ. 1957.Google Scholar
  49. Wit, C. T. de, Keulen, H. van: Simulation of transport processes in soils. Wageningen: Centre for Agr. Publ. Document. 1972.Google Scholar
  50. Ziemer, R. R.: Soil moisture depletion patterns around scattered trees. U.S. Forest Ser. Res. Note PSW-166., U.S. Dept. Agr. (1968).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • P. Benecke

There are no affiliations available

Personalised recommendations