Skip to main content

Resistance to Water Flow in the Roots of Cereals

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 19))

Abstract

Given access to soil water at high potential the root system can generally meet evaporative demand; but under adverse conditions with relatively dry soil and high evaporative demand, supply often falls below demand and yield suffers. To extract water from the soil at a rate sufficient to match demand, gradients in water potential have to develop to overcome resistances to flow located in the soil and in the plant itself. This chapter deals with the water transfer properties of plant roots and root systems and how these modify water supply in cereals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arisz, W. H., Helder, R. J., Nie, R. van: Analysis of the exudation process in tomato plants. J. Exp. Botany 2, 257–297 (1951).

    Article  CAS  Google Scholar 

  • Barley, K. P.: The configuration of the root system in relation to nutrient uptake. Advan. Agron. 22, 159–201 (1970).

    Article  Google Scholar 

  • Brouwer, R.: Water absorption by the roots of Vicia faba at various transpiration strengths. I, II. Proc. Kon. Ned. Akad. Wet. C56, 106–115, 129–136 (1953).

    Google Scholar 

  • Brouwer, R.: Water movement across the root. Symp. Soc. Exp. Biol. 19, 131–149 (1965).

    PubMed  CAS  Google Scholar 

  • Clarkson, D. T., Robards, A. W., Jackson, S. M.: The structure of barley roots in relation to the transport of ions into the stele. Agr. Res. Council, Letcombe Lab. Ann. Rep. 1972, 5–7 (1973).

    Google Scholar 

  • Cole, P. J., Alston, A. M.: Effect of transient dehydration on absorption of chloride by wheat roots. Plant Soil 40, 243–247 (1974).

    Article  CAS  Google Scholar 

  • Cox, E. F.: Resistance to flow of water through the plant. Ph. D. Thesis, Nottingham, U. K. 1966.

    Google Scholar 

  • Dainty, J.: The water relations of plants. In: Physiology of plant growth and development (ed. M. B. Wilkins), pp. 421–451. London: McGraw-Hill 1969.

    Google Scholar 

  • Emerson, W. W.: Water conduction by severed grass roots, J. Agr. Sci.6, 147–159 (1954).

    Google Scholar 

  • Gardner, W. R.: Relation of root distribution to water uptake and availability. Agron. J. 56, 41–45 (1964).

    Article  Google Scholar 

  • Ginsburg, H., Ginzberg, B. Z.: Radial water and solute flows in the roots of Zea mays. J. Exp. Botany 21, 580–592 (1970).

    Article  CAS  Google Scholar 

  • Graham, J., Clarkson, D. T., Sanderson, J.: Plant root systems and their relationship to the soil. Agr. Res. Council, Letcombe Lab. Ann. Rep. 1973, 9–12 (1974).

    Google Scholar 

  • Greacen, E. L.: Soil-plant mechanisms and models—Water. In: Soil factors in crop product in a semi-arid environment (eds. J. S. Russell, E. L. Greacen), Monograph Australian Soil Sci. Soc. Brisbane: Univ. Queensland Press (in press, 1976).

    Google Scholar 

  • Greacen, E. L., Hignett, C. T.: Water balance model and supply index for wheat in South Australia. CSIRO Div. of Soils Tech. Paper No. 27 (in press, 1976).

    Google Scholar 

  • Hackett, C., Rose, D. A.: A model of the extension and branching of a seminal root of barley, and its use in studying relations between root dimensions. Australian J. Biol. Sci.25, 669–679 (1972).

    Google Scholar 

  • Hansen, G. K.: Resistance to water transport in soil and young wheat plants. Acta Agr. Scand.24, 37–48 (1974).

    Article  Google Scholar 

  • Honert, T. H. van den: Water transport in plants as a catenary process. Faraday Soc. Discuss. 3, 146–153 (1948).

    Article  Google Scholar 

  • House, C. R., Findlay, N.: Water transport in isolated maize roots. J. Exp. Botany 17, 344–354 (1966).

    Article  CAS  Google Scholar 

  • Kirby, E. J. M.: Evapotranspiration from barley grown at different plant densities. J. Agr. Sci. Camb. 75, 445–450 (1970).

    Article  Google Scholar 

  • Kozinka, V., Luxova, M.: Specific conductivity of conducting and nonconducting tissues of Zea mays root. Biologia Plantarum (Praha) 13, 257–266 (1971).

    Article  Google Scholar 

  • Kramer, P. J.: Plant and soil water relationships: a modern synthesis. New York: McGraw-Hill 1969.

    Google Scholar 

  • Locher, J. Th., Brouwer, R.: Preliminary data on the transport of water, potassium and nitrate in intact and bleeding maize plants.Jb. Inst. Biol. Scheik. Onderz. LandbGewass, 41–49 (1964).

    Google Scholar 

  • Lundegårdh, H.: Bleeding and sap movement. Ark. Botan. 31A, 2 1–56 (1944).

    Google Scholar 

  • Lundegårdh, H.: The translocation of salts and water through wheat roots. Physiol. Plantarum 3, 103–151 (1950).

    Article  Google Scholar 

  • Lungley, D. R.: The growth of root systems. A numerical computer simulation model. Plant Soil 38, 145–159 (1973).

    Article  Google Scholar 

  • Newman, E. I.: Resistance to water flow in soil and plant. I. Soil resistance in relation to amounts of root: theoretical estimates. J. Appl. Ecol. 6, 1–12 (1969).

    Article  Google Scholar 

  • Newman, E. I.: Permeability to water of the roots of five herbaceous species. New Phytologist 72, 547–555 (1973).

    Article  Google Scholar 

  • Overbeek, J. van: Water uptake by excised root systems of tomato due to non-osmotic forces. Am. J. Botany 29, 677–683 (1942).

    Article  Google Scholar 

  • Passioura, J. B.: The effect of root geometry on the yield of wheat growing on stored water. Australian J. Agr. Res. 23, 745–752 (1972).

    Article  Google Scholar 

  • Ponsana, P.: Drainage and water uptake terms in the water balance. Ph. D. Thesis. Adelaide, Australia 1975.

    Google Scholar 

  • Preston, R. D.: The contents of the vessels of Fraxinus americana L., with respect to the ascent of sap. Ann. Botany (London) 2, 1–21 (1938).

    Google Scholar 

  • Slatyer, R. O.: Plant-water relationships. London: Academic Press 1967.

    Google Scholar 

  • Tanton, T. W., Crowdy, S. H.: Water pathways in higher plants. II. Water pathways in roots. J. Exp. Botany 23, 600–618 (1972).

    Article  Google Scholar 

  • Troughton, A.: The roots of temperate cereals (wheat, barley, oats and rye). Mim. Publ. Commonw. Bur. Past. Field Crops, No.2, 1–91 (1962).

    Google Scholar 

  • Walter, C. J., Barley, K. P.: The depletion of soil water by wheat at low, intermediate and high rates of seeding. Proc. 10th. Intern. Congr. Soil Sci. (Moscow) 1, 150–158 (1974).

    Google Scholar 

  • Wind, G. P.: Flow of water through plant roots. Neth. J. Agr. Sci. 3, 259–264 (1955).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Greacen, E.L., Ponsana, P., Barley, K.P. (1976). Resistance to Water Flow in the Roots of Cereals. In: Lange, O.L., Kappen, L., Schulze, ED. (eds) Water and Plant Life. Ecological Studies, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66429-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66429-8_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66431-1

  • Online ISBN: 978-3-642-66429-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics