Cell Permeability and Water Stress

  • O. Y. Lee-Stadelmann
  • E. J. Stadelmann
Part of the Ecological Studies book series (ECOLSTUD, volume 19)

Abstract

Deficit of water, which all higher land plants in nature may experience recurrently during their life span, often causes significant changes in their growth, development, morphology, physiology and biochemistry (cf. Hsiao, 1973). These alterations depend ultimately on the effect of water shortage on the living protoplasm. However, the effect of a given water shortage on protoplasm will vary from species to species and, in fact, will be less severe in plants possessing morphological and anatomical features which enable them to reduce water loss or increase water uptake (drought avoidance, cf. Levitt, 1972).

Keywords

Sugar Permeability Migration Ethyl Urea 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennet, H. S.: Introductory remarks. In: Intracellular membranous structure (eds. S. Seno, E. V. Cowdry), pp. 7–13. Okayama (Japan): Japan Soc. Cell. Biol. 1964.Google Scholar
  2. Cass, A., Finkelstein, A.: Water permeability of thin lipid membranes. J. Gen. Physiol. 50, 1765–1784 (1967).PubMedCrossRefGoogle Scholar
  3. Dainty, J.: The water relation of plants. In: Physiology of plant growth and development (ed. M.B. Wilkins), pp. 421–452. New York: McGraw-Hill 1969.Google Scholar
  4. Dawson, R. M. C., Hauser, H.: Binding of calcium to phospholipids. In: Calcium and cellular function (ed. A. W. Cuthbert), pp. 17–41. New York: St. Martin’s Press 1970.Google Scholar
  5. Diamond, J. M., Wright, E. M.: Molecular force governing nonelectrolyte permeation through cell membranes. Proc. Roy. Soc. 172 B, 273–316 (1969).Google Scholar
  6. Gutknecht, J.: Permeability of Valonia to water and solutes: apparent absence of aqueous membrane pores. Biochim. Biophys. Acta 163, 20–29 (1968).PubMedCrossRefGoogle Scholar
  7. Hanai, T., Haydon, D. A.: The permeability to water of bimolecular lipid membranes. J. Theoret. Biol. 11, 370–382 (1966).CrossRefGoogle Scholar
  8. Henckel, P. A.: Physiology of plants under drought. Ann. Rev. Plant Physiol. 15, 363–386 (1964).CrossRefGoogle Scholar
  9. Höfler, K.: Eine plasmolytisch-volumetrische Methode zur Bestimmung des osmotischen Wertes von Pflanzenzellen. Denkschr. Oesterr. Akad. Wien, Wiss. Math.-Naturwiss. Kl. 95, 99–170 (1918).Google Scholar
  10. Hölzl-Wallach, D. F.: The disposition of proteins in the plasma membranes of animal cells. Biochim. Biophys. Acta 255, 61–83 (1972).Google Scholar
  11. House, C. R.: Water transport in cells and tissues. London: E. Arnold Ltd. 1974.Google Scholar
  12. Hsiao, T. C.: Plant responses to water stress. Ann. Rev. Plant Physiol. 24, 519–570 (1973).CrossRefGoogle Scholar
  13. Huber, B., Höfler, K.: Die Wasserpermeabilität des Protoplasmas. Jb. Wiss. Bot. 73, 351–511 (1930).Google Scholar
  14. Klocke, R. A., Andersson, K. K., Rotman, H. H., Forster, R. E.: Permeability of human erythrocytes to ammonia and weak acids. Am. J. Physiol. 222, 1004–1013 (1972).PubMedGoogle Scholar
  15. Kuiper, P. J. C.: Water transport across membranes. Ann. Rev. Plant Physiol. 23, 157–172 (1972).CrossRefGoogle Scholar
  16. Lee, O. Y.: Studies on the effect of water stress on the protoplasm of Pisum sativum subepidermal stem cells. Ph. D. Thesis. St. Paul, Minnesota, U.S.A. 1975.Google Scholar
  17. Levitt, J.: A sulfhydryl-disulfide hypothesis of frost injury and resistance in plants. J. Theoret. Biol. 3, 355–391 (1962).CrossRefGoogle Scholar
  18. Levitt, J.: Responses of plants to environmental stresses. New York, London: Academic Press 1972.Google Scholar
  19. Levitt, J., Scarth, G. W.: Frost-hardening studies with living cells II. Permeability in relation to frost resistance and the seasonal cycle. Can. J. Res. 14C, 286–305 (1936).Google Scholar
  20. Maximov, N. A.: The plant in relation to water. A study of the physiological basis of drought resistance (ed. R. H. Yapp). London: Allen and Unwin 1929.Google Scholar
  21. Palta, J., Stadelmann, E. J.: The effect of turgor pressure on water permeability of Allium cepa epidermis cell membranes. Plant Physiol. 57, Ann. Meeting Suppl. p. 79 (1976).Google Scholar
  22. Parker, J.: Protoplasmic resistance to water deficits. In: Water deficits and plant growth, Vol. III (ed. T. T. Kozlowski), pp. 125–176. New York, London: Academic Press 1972.Google Scholar
  23. Ratner, E. I.: Interaction between roots and soil colloids as one of the problems of the physiology of mineral nutrition of plants. III. Age variation in the desorbing ability of the plants. Influence of wilting in the case of moisture deficiency. Compt. Rend. (Doklady) Acad. Sci. URSS 44, 37–40 (1944).Google Scholar
  24. Ross, H.: Viscosität und Permeabilität des Plasmas von Lamium maculatum bei Dürre-, Temperatur- und Schütteleffekten. Planta 56, 125–149 (1961).CrossRefGoogle Scholar
  25. Schmidt, H.: Plasmazustand und Wasserhaushalt bei Lamium maculatum. Protoplasma 33, 25–43 (1939).CrossRefGoogle Scholar
  26. Schmidt, H., Diwald, D., Stocker, O.: Plasmatische Untersuchungen an dürreempfindlichen und dürreresistenten Sorten landwirtschaftlicher Kulturpflanzen. Planta (Berl.) 31, 559–596 (1940).CrossRefGoogle Scholar
  27. Singer, S. J.: Lipid-protein interactions in membranes. In: Comparative biochemistry and physiology of transport (eds. K. Bloch, L. Bolis, S. E. Luria, F. Lynen), pp. 95–101. Amsterdam: North Holland Publ. Co. 1974.Google Scholar
  28. Singer, S. J., Nicolson, G. L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972).PubMedCrossRefGoogle Scholar
  29. Stadelmann, E. J.: Zur Messung der Stoffpermeabilität pflanzlicher Protoplasten. I. Die mathematische Ableitung eines Permeabilitätsmasses für Anelektrolyte. Sitzgsber. Oesterr. Akad. Wiss. Mathem.-naturwiss. Kl., Abt. I, 160, 761–787 (1951).Google Scholar
  30. Stadelmann, E. J.: Vergleich und Umrechnung von Permeabilitätskonstanten für Wasser. Protoplasma 57, 660–718 (1963).CrossRefGoogle Scholar
  31. Stadelmann, E. J.: Evaluation of turgidity, plasmolysis, and deplasmolysis of plant cells. In: Methods in cell physiology (ed. D. M. Prescott), Vol. II, pp. 143–216. New York, London: Academic Press 1966.Google Scholar
  32. Stadelmann, E. J., Lee, O. Y.: Inverse changes of water and non-electrolyte permeability. In: Comparative biochemistry and physiology of transport (eds. K. Bloch, L. Bolis, S. E. Luria, F. Lynen), pp. 434–441. Amsterdam: North Holland Publ. Co. 1974.Google Scholar
  33. Steudle, E., Lüttge, U., Zimmermann, U.: Water relations of the epidermal bladder cells of the halophytic species Mesembryanthemum crystallinum: Direct measurements of hydrostatic pressure and hydraulic conductivity. Planta 126, 229–246 (1975).CrossRefGoogle Scholar
  34. Tumanov, I. I., Trunova, T. I.: Hardening tissues of winter plants with sugar absorbed from the external solution. Sov. Plant Physiol. 4, 379–388 (1957).Google Scholar
  35. Umrath, K.: Über Plasmalemmabildung nach plasmatischen Versuchen. Protoplasma 46, 762–767 (1956).CrossRefGoogle Scholar
  36. Url, W.: The site of penetration resistance to water in plant protoplasts. Protoplasma 72, 427–447 (1971).CrossRefGoogle Scholar
  37. Wartiovaara, V.: Zur Erklärung der Ultrafilterwirkung der Plasmahaut. Physiol. Plant. 3, 462–478 (1950).CrossRefGoogle Scholar
  38. Webb, S. J.: Bound water in biological integrity. Springfield, Ill.: Thomas 1965.Google Scholar
  39. Whiteside, A. G. O.: Effect of soil drought on wheat plants. Sci. Agr. 21, 320–334 (1941).Google Scholar
  40. Zimmermann, U., Steudle, E.: Hydraulic conductivity and volumetric elastic modulus in giant algal cells: Pressure- and volume-dependence. In: Membrane transport in plants (eds. U. Zimmermann, J. Dainty), pp. 64–71. Berlin-Heidelberg-New York: Springer, 1974.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • O. Y. Lee-Stadelmann
  • E. J. Stadelmann

There are no affiliations available

Personalised recommendations