Skip to main content

Water Stress and Hormonal Response

  • Chapter

Part of the book series: Ecological Studies ((ECOLSTUD,volume 19))

Abstract

A transient water deficit is a frequent and recurrent phenomenon experienced by most plants. Hence it can be assumed that efficient adaptive mechanisms were developed in the course of evolution which enable plants to cope with water deficits of varying intensities. Evidence is accumulating that these adaptive mechanisms whether rapid, like stomatal movement, or slow, like developmental and morphological adaptation, may involve regulation through changes in the hormone balance of the plant (Hsiao, 1973; Livne and Vaadia, 1972). Plant response to environmental changes requires a complex control system. Even a very simple control system is necessarily made up of several components such as receptor, integrator, modulator, effector and amplifier, and growth regulators may logically be presumed to be part of such a system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arad, S., Mizrahi, Y., Richmond, A. E.: Leaf water content and hormone effects on RNAse activity. Plant Physiol. 52 510–512 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Back, A., Bittner, S., Richmond, A. E.: The effect of abscisic acid on the metabolism of kinetin in detached leaves of Rumex pulcher. J. Exp. Botany 23 744–750 (1972).

    Article  CAS  Google Scholar 

  • Ben-Yehoshua, S., Aloni, B.: Effects of water stress on ethylene production by detached leaves of Valencia orange Citrus sinensis osbeck. Plant Physiol.53 863–865 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Benzioni, A., Itai, C., Vaadia, Y.: Water and salt stresses, kinetin and protein synthesis in tobacco leaves. Plant Physiol.42 361–365 (1967).

    Article  CAS  Google Scholar 

  • Benzioni, A., Mizrahi, Y., Richmond, A. E.: Effect of kinetin on plant-response to salinity. New Phytologist 73 315–319 (1974).

    Article  CAS  Google Scholar 

  • Bernstein, L.: Osmotic adjustment of plants to saline media. II. Dynamic phase. Am. J. Botany 50 360–390 (1963).

    Article  CAS  Google Scholar 

  • Browning, G.: Flower bud dormancy in Coffea arabica L. II. Relation of cytokinins in xylem sap and flower buds to dormancy-release. J. Hort. Sci.48 297–310 (1973).

    CAS  Google Scholar 

  • Burrows, W. J., Carr, D. J.: Effects of flooding the root system of sun-flower plants on the cytokinin content in the xylem sap. Physiol. Plantarum 22 1105–1112 (1969).

    Article  CAS  Google Scholar 

  • Bussiba, S.: Involvement of ABA in the interrelationship between the response to various stresses and recovery from them. M. Sc. Thesis. Ben-Gurion University, Beer Sheva (Hebrew) (1975).

    Google Scholar 

  • Collins, J. C., Kerrigan, A. P.: Effect of kinetin and abscisic acid on water and ion transport in isolated maize roots. New Phytologist 73 309–314 (1974).

    Article  CAS  Google Scholar 

  • Cooper, M. J., Digby, J., Cooper, P. J.: Effects of plant hormones on stomata of barley. A study of the interaction between ABA and kinetin. Planta (Berl.) 105 43–49 (1972).

    Article  CAS  Google Scholar 

  • Cram, J. W., Pitman, M. A.: The action of abscisic acid on ion uptake and water flow in plant roots. Australian J. Biol. Sci. 25 1125–1132 (1972).

    CAS  Google Scholar 

  • Darbyshire, B.: Changes in IAA oxidase activity associated with plant water potentials. Physiol. Plantarum 25 82–87 (1971).

    Article  Google Scholar 

  • El-Beltagy, A. S., Hall, M. A.: Effect of water stress upon endogenous C2H4 levels in Vicia faba. New Phytologist 73 47–53 (1974).

    Article  CAS  Google Scholar 

  • Feng, K. A.: Effects of kinetin on the permeability of Allium cepa cells. Plant Physiol. 51 868–870 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Feng, K. A., Unger, J. W.: Influence of kinetin on the membrane permeability of Allium cepa epidermal cells. Experientia 28 1310–1311 (1972).

    Article  CAS  Google Scholar 

  • Fischer, R. A.: After-effect of water stress on stomatal opening potential. II. Possible causes. J. Exp. Botany 21 386–404 (1970).

    Article  CAS  Google Scholar 

  • Giles, K. L., Beardsell, M. F., Cohen, D.: Cellular and ultrastructural changes in mesophyll and bundle sheath cells of maize in response to water stress. Plant Physiol. 54 208–212 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Glinka, Z., Reinhold, L.: ABA raises the permeability of plant cells to water. Plant Physiol. 48 103–105 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Horton, F. R.: Stomatal opening, the role of abscisic acid. Can. J. Botany 49 583–587 (1971).

    Article  CAS  Google Scholar 

  • Horton, F. R., Moran, L.: ABA inhibition of K influx into stomatal guard cells. Z. Pflanzenphysiol. 66 193–196 (1972).

    Google Scholar 

  • Hsiao, T. C.: Plant responses to water stress. Ann. Rev. Plant Physiol. 24 519–570 (1973).

    Article  CAS  Google Scholar 

  • Ilan, I.: Evidence for hormonal regulation of the selectivity of ion uptake by plant cells. Physiol. Plantarum 25 230–233 (1971).

    Article  CAS  Google Scholar 

  • Imber, D., Tal, M.: Phenotypic reversion of flacca, a wilty mutant of tomato, by abscisic acid. Science 169 592–593 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Itai, C., Benzioni, A.: Regulation of plant response to high temperature treatments. In: Mechanisms of regulation of plant growth (eds. R. L. Bieleski, A. R. Ferguson, M. M. Cresswell). Bull. 12 477–482, Roy. Soc. New Zealand 1974.

    Google Scholar 

  • Itai, C., Richmond, A. E., Vaadia, Y.: The role of root cytokinins during water and salinity stress. Israel J. Botany 17 187–195 (1968).

    CAS  Google Scholar 

  • Itai, C., Vaadia, Y.: Kinetin-like activity in root exudate of water stressed sunflower plants. Physiol. Plantarum 18 941–945 (1965).

    Article  CAS  Google Scholar 

  • Itai, C., Vaadia, Y.: Cytokinin activity in water-stressed shoots. Plant Physiol.47 87–90 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Jacoby, B., Dagan, J.: Effects of 6-N-Benzyladenine on primary leaves of intact bean plants on their sodium absorption capacity. Physiol. Plantarum 23 397–403 (1970).

    Article  CAS  Google Scholar 

  • Kahane, I., Poljakoff-Mayber, A.: Effects of substrate salinity on the ability for protein synthesis in pea roots. Plant Physiol. 41 1115–1119 (1968).

    Article  Google Scholar 

  • Kaufmann, M. R., Ross, K. J.: Water potential temperature and kinetin effects on seed germination in soil and solute systems. Am. J. Botany 57 413–418 (1970).

    Article  CAS  Google Scholar 

  • Kirkham, M. B., Gardner, W. R., Gerloff, G. E.: Internal water status of kinetin treated salt stressed plants. Plant Physiol. 53 241–243 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Kriedemann, P. E., Loveys, B. R., Fuller, G. L., Leopold, A. C.: ABA and stomatal regulation. Plant Physiol. 48 842–847 (1972).

    Article  Google Scholar 

  • Kulaeva, O. N.: The Effect of roots on leaf metabolism in relation to the action of kinetin on leaves. Soviet Plant Physiol. (Eng. Trans.) 9 182–189 (1962).

    Google Scholar 

  • Larque-Saavedra, A., Wain, R. L.: ABA levels in relation to drought tolerance in varieties of Zea mays L. Nature 251 716–717 (1974).

    Article  CAS  Google Scholar 

  • Lejohn, H. B., Roselynn, M., Stevenson, K.: Cytokinins and magnesium ions may control the flow of metabolites and calcium ions through fungal cell membranes. Biochem. Biophys. Res. Commun. 34 1061–1066 (1973).

    Article  Google Scholar 

  • Levitt, J.: The mechanism of stomatal movement—once more. Protoplasma 82 1–17 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Livine, A., Vaadia, Y.: Water deficits and hormone relations. In: Water deficits and plant growth. Vol. 3 (ed. T. T. Kozlowski), pp. 255–271. London, New York: Academic Press 1972.

    Google Scholar 

  • Loveys, B. R., Kriedemann, P. E.: Rapid change in abscisic acid-like inhibitors following erasions in vine leaf water potential. Physiol. Plant. 28 476–479 (1973).

    Article  CAS  Google Scholar 

  • Loveys, B. R., Kriedemann, P. E.: Internal control of stomatal physiology and photosynthesis. I. Stomatal regulation and associated changes in endogenous levels of abscisic and phaseic acids. Australian J. Plant Physiol. 1 407–415 (1974).

    Article  CAS  Google Scholar 

  • Loveys, B. R., Kriedemann, P. E., Torokfalvy, E.: Is abscisic acid involved in stomatal response to carbon dioxide? Plant Sci. Letters 1 335–338 (1973).

    Article  CAS  Google Scholar 

  • McMichael, B. L., Jordan, W. R., Powell, R. D.: Effect of water stress on ethylene production by intact cotton petioles. Plant Physiol.49 658–662 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Meyer, R. E., Gingrich, J. R.: Osmotic stress effects of its application to a portion of wheat root system. Science 144 1463–1464 (1964).

    Article  PubMed  CAS  Google Scholar 

  • Milborrow, B. V., Noddle, R. C.: Conversion of 5-(1,2-epoxy-2,6,6-trimethylcyclohexyl)-3-methylpenta-cis-2-trans-4-dienoic acid into abscisic acid in plants. Biochem. J.119 727–734 (1970).

    PubMed  CAS  Google Scholar 

  • Miller, L. N., Kramer, P. J.: Effects of water stress on the growth of pine seedlings. Plant Physiol. 40 suppl. XXIV (1965).

    Article  Google Scholar 

  • Mills, V. M., Todd, G. W.: Effects of water stress on the IAA oxidase activity in wheat leaves. Plant Physiol. 51 1145–1149 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Mizrahi, Y., Blumenfeld, A., Bittner, S., Richmond, A. E.: Abscisic acid and cytokinin contents of leaves in relation to salinity and relative humidity. Plant Physiol. 48 752–755 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Mizrahi, Y., Blumenfeld, A., Richmond, A. E.: The role of abscisic acid and salination in the adaptive response of plants to reduced root aeration. Plant Cell Physiol. (Tokyo) 13 15–21 (1972).

    Google Scholar 

  • Mizrahi, Y., Scherings, S. G., Malis-Arad, S., Richmond, A. E.: Aspects of the effect of ABA on the water status of barley and wheat seedlings. Physiol. Plantarum 31 44–50 (1974).

    Article  CAS  Google Scholar 

  • Prisco, J. T., O’Leary, J. W.: The effects of humidity on growth and water relations of salt stressed bean plants. Plant Soil 39 263–276 (1973).

    Article  CAS  Google Scholar 

  • Raschke, K.: Interaction between stomatal response to CO2 and ABA “optimize” stomatal moderation of water loss in leaves of Xanthium strumarium. Int. Assoc. Plant Physiol. 1st Meet., Würzburg, Abstracts, 83 (1974).

    Google Scholar 

  • Reed, M. M., Bonner, B. A.: The effect of abscisic acid on the uptake of potassium and chloride into Avena coleoptile sections. Planta (Berl.) 116 173–185 (1974).

    Article  CAS  Google Scholar 

  • Shah, C. B., Loomis, R. S.: RNA and protein metabolism in sugar beet during drought. Physiol. Plantarum 18 240–254 (1967).

    Article  Google Scholar 

  • Skene, K. G. M.: Cytokinins in the xylem sap of a grape vine canes: changes in activity during cold-storage. Planta (Berl.) 104 89–92 (1972).

    Article  CAS  Google Scholar 

  • Skene, K. G. M., Kerridge, G. H.: Effect of root temperature on cytokinin activity in root exudate of Vitis vinifera L. Plant Physiol. 42 1131–1139 (1967).

    Article  PubMed  CAS  Google Scholar 

  • Slatyer, R. O.: Effects of several osmotic substrates on the water relationship of tomato. Australian J. Biol. Sci. 14 518–540 (1961).

    Google Scholar 

  • Stevenick, R. F. M. van: Abscisic acid stimulation of ion transport and alteration in K+/Na+ selectivity. Z. Pflanzenphysiol. 67 282–286 (1972).

    Google Scholar 

  • Tal, M., Imber, D.: Abnormal stomatal behavior and hormonal balance in flacca, a wilty mutant of tomato. II. Auxin and ABA-like activity. Plant Physiol.46 373–376 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Tal, M., Imber, O.: Abnormal stomatal behavior and hormonal imbalance in flacca, a wilty mutant of tomato. III. Hormonal effects on the water status in the plant. Plant Physiol. 47 840–850 (1971).

    Article  Google Scholar 

  • Tal, M., Nevo, Y.: Abnormal stomatal behavior and root resistance and hormonal imbalance in three wilty mutants of tomato. Biochem. Genet. 8 291–300 (1973).

    Article  PubMed  CAS  Google Scholar 

  • Zabadal, T. J.: A water potential threshold for the increase of abscisic acid in leaves. Plant Physiol. 53 125–127 (1974).

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Itai, C., Benzioni, A. (1976). Water Stress and Hormonal Response. In: Lange, O.L., Kappen, L., Schulze, ED. (eds) Water and Plant Life. Ecological Studies, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66429-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66429-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66431-1

  • Online ISBN: 978-3-642-66429-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics