Response Characteristics of K+-, Ca++-, and Other Liquid Membrane Electrodes

  • W. E. Morf
  • M. Oehme
  • W. Simon


During the past decade, considerable effort was concentrated on the understanding and improvement of ion-selective electrodes which finally led to a respectable series of new ion sensors (2). In these systems, a permselective membrane is usually interposed between two aqueous solutions that are both in contact with reference electrodes. Ideally, such a cell gives a Nernst response to the activity of one given ion in the sample solution. In practice, however, the possible influence of interfering species has to be considered. This is usually done by applying an extended equation of the type:
$$ {\text{EMF = E}}_i^0 + s \cdot \log \,[{a_i} + \sum\limits_j {K_{{ij}}^{\text{Pot}}{{({a_j})}^{{{z_i}/{z_j}}}}} ] $$
  • E i o : reference potential

  • s: slope of the Nernst response function (59 mV/zi at 25°C)

  • ai: activity of primary ions I (charge zi) in the sample solution

  • aj: activity of interfering ions J (charge zj) in the sample solution

  • K ij Pot : selectivity coefficient

The weighting factors K ij Pot introduced here are a measure for the relative selectivity of one given membrane towards an interfering species J as compared to the primary ion I. Thus, the selectivity behavior of membrane electrodes may be characterized by these selectivity factors. For an ideally selective electrode that responds specifically to the ion I, the K ij Pot values approximate zero.


Membrane Electrode Approximate Zero Selectivity Behavior Nernst Response Neutral Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    KESSLER, M. (Ed.): Ion Selective Electrodes and Enzyme Electrodes in Biology and in Medicine. Munich-Berlin-Vienna: Urban & Schwarzenberg 1975.Google Scholar
  2. 2.
    KORYTA, J.: Ion-Selective Electrodes. Cambridge-London-New York-Melbourne: Cambridge University Press 1975.Google Scholar
  3. 3.
    MORF, W.E., SIMON, W.: Abschätzung der Alkali- und Erdalkali-Ionenselektivität von elektrisch neutralen Träger-Antibiotika (“Carrier-Antibiotika”) und Modellverbindungen. Helv. Chim. Acta 54, 2683 (1971).PubMedCrossRefGoogle Scholar
  4. 4.
    MORF, W.E., LINDNER, E., SIMON, W.: Theoretical treatment of the dynamic response of ion-selective membrane electrodes. Analyt. Chem. 47, 1596 (1975).CrossRefGoogle Scholar
  5. 5.
    OEHME, M., KESSLER, M., SIMON, W.: Neutral carrier Ca++-microelectrode. Chimia (Switzerland) 30, 204 (1976).Google Scholar
  6. 6.
    SIMON, W., PRETSCH, E., AMMANN, D., MORF, W.E., GÜGGI, M., BISSIG, R., KESSLER, M.: Recent developments in the field of ion selective electrodes. Pure Appl. Chem. 44, 613 (1975).CrossRefGoogle Scholar
  7. 7.
    STEFANAC, Z., SIMON, W.: In-vitro Verhalten von Makrotetroliden in Membranen als Grundlage für hochselektive kationenspezifische Elektrodensysteme. Chimia (Switzerland) 20, 436 (1966).Google Scholar
  8. 8.
    THOMAS, R.C., SIMON, W., OEHME, M.: Lithium accumulation by snail neurones measured by a new Li+-sensitive microelectrode. Nature (Lond.) 258, 754 (1975).CrossRefGoogle Scholar
  9. 9.
    WALKER, J.L.: Liquid ion-exchanger microelectrodes for Ca++, Cl- and K+. In: Ion Specific Microelectrodes. HEBERT, N.C., and KHURI, R.N. (Eds.) New York: Marcel Dekker, in press.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • W. E. Morf
  • M. Oehme
  • W. Simon

There are no affiliations available

Personalised recommendations