Skip to main content

Chemical Foundation of the Development of Resistance against Insecticides

  • Chapter
  • 98 Accesses

Part of the book series: Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel ((PFLANZENSCHUTZ,volume 3))

Abstract

Resistance against insecticides may develop in an insect population as a result of the selection pressure from chemical-control agents so changing its genetic composition that the bulk of the population comes to consist of resistant genotypes. Such developed resistance, to one or more insecticide types, has now been proven in more than 270 species of insects and acarines. It is the chemical and physiological basis of such gene-determined resistance that is the subject of this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

Reviews

  • Brooks, G. T.: Progress in metabolic studies of the cyclodiene insecticides and its relevance to structure-activity correlations. World Rev. Pest Control 5, 62–84 (1966).

    CAS  Google Scholar 

  • Brown, A. W. A.: Mechanisms of resistance against insecticides. Annu. Rev. Entomol. 5, 301–326 (1960).

    CAS  Google Scholar 

  • Brown, A. W. A.: Animals in toxic environments: resistance of insects to insecticides. In: Handbook of Physiology—Environment, Am. Physiol. Soc. pp. 773–793 Baltimore: Williams and Wilkins 1964.

    Google Scholar 

  • Brown, A. W. A.: Pest resistance to pesticides. In: Pesticides in the Environment, Ed. R. White-Stevens. Vol. 1, Pt. 1, pp. 457–552. New York: Marcel Dekker 1971.

    Google Scholar 

  • Brown, A. W. A., Pal, R.: Insecticide resistance in arthropods. World Health Organization, Geneva, Monograph Series No 38, 491 pp. (1971).

    Google Scholar 

  • Chadwick, L. E.: Progress in physiological studies of insecticide resistance. Bull. Wld. Hlth. Org. 16, 1203–1218 (1957).

    CAS  Google Scholar 

  • Dahm, P. A.: The mode of action of insecticides exclusive of organophosphorus compounds. Annu. Rev. Entomol. 2, 247–260 (1957).

    CAS  Google Scholar 

  • Georghiou, G. P.: The evolution of resistance to pesticides. Annu. Rev. Ecol. Systematics 3, 133–168 (1972).

    CAS  Google Scholar 

  • Hoskins, W. M.: Resistance to insecticides. Internat. Rev. Trop. Med. 2, 119–174 (1963).

    CAS  Google Scholar 

  • Hoskins, W. M., Gordon, H. T.: Arthropod resistance to chemicals. Annu. Rev. Entomol. 1, 89–122 (1956).

    CAS  Google Scholar 

  • Kearns, C. W.: The enzymatic detoxication of DDT. In: Origins of Resistance to Toxic Agents. Ed. M. G. Sevag, R. D. Reid, O. E. Reynolds, pp. 148–159. New York: Academic Press 1955.

    Google Scholar 

  • Lipke, H., Kearns, C. W.: DDT-Dehydrochlorinase. Adv. Pest Control Res. 3, 253–287 (1960).

    CAS  Google Scholar 

  • Metcalf, R. L.: Physiological basis for insect resistance to insecticides. Physiol. Rev. 35, 197–232 (1955).

    CAS  Google Scholar 

  • Metcalf, R. L.: Mode of action of insecticide synergists. Annu. Rev. Entomol. 12, 229–256 (1967).

    CAS  Google Scholar 

  • O’Brien, R. D.: Mode of action of insecticides. Annu. Rev. Entomol. 11, 369–402 (1966).

    Google Scholar 

  • Oppenoorth, F. J.: Biochemical genetics of insecticide resistance. Annu. Rev. Entomol. 10, 185–206 (1965).

    CAS  Google Scholar 

  • Perry, A. S.: Biochemical aspects of insect resistance to the chlorinated hydrocarbon insecticides. Misc. Publ. Entomol. Soc. Amer. 2, 119–137 (1960).

    CAS  Google Scholar 

  • Perry, A. S.: The physiology of insecticide resistance by insects. In: The Physiology of Insecta. Ed. M. Rockstein. Vol. III, pp. 286–378. New York: Academic Press 1964.

    Google Scholar 

  • Plapp, F. W.: Biochemical genetics of insecticide resistance. Annu. Rev. Entomol. 21, 179–197 (1976).

    CAS  Google Scholar 

  • Smith, J. N.: Detoxication mechanisms. Annu. Rev. Entomol. 7, 465–480 (1962).

    CAS  Google Scholar 

  • Wharton, R. H., Roulston, W. J.: Resistance of ticks to chemicals. Annu. Rev. Entomol. 15, 381–404 (1970).

    CAS  Google Scholar 

  • Winteringham, F. P. W.: Mechanisms of selective insecticidal action. Annu. Rev. Entomol. 14, 409–442 (1969).

    CAS  Google Scholar 

  • Winteringham, F. P. W., Barnes, J. M.: Comparative response of insects and mammals to certain halogenated hydrocarbons used as insecticides. Physiol. Rev. 35, 701–739 (1955).

    CAS  Google Scholar 

References Cited

  1. Abedi, Z. H., Duffy, J. R., Brown, A. W. A.: Dehydrochlorination and DDT-resistance in Aedes aegypti. J. Econ. Entomol. 56, 511–517 (1963).

    Google Scholar 

  2. Agosin, M., Michaeli, D., Miskus, R., Nagasawa, S., Hoskins, W. M.: A new DDT-metabolizing enzyme in the German cockroach. J. Econ. Entomol. 54, 340–342 (1961).

    Google Scholar 

  3. Anderson, A. D., March, R. B., Metcalf, R. L.: Inhibition of the succinoxidase system of susceptible and resistant houseflies by DDT and related compounds. Ann. Entomol. Soc. Amer. 47, 595–602 (1954).

    CAS  Google Scholar 

  4. Apperson, C. S., Georghiou, G. P.: Mechanisms of resistance to organophosphorus insecticides in Culex tarsalis. J. Econ. Entomol. 68, 153–157 (1975).

    CAS  Google Scholar 

  5. Asperen, K. van: Biochemistry and genetics of esterases in houseflies (Musca domestica). Ent. Exp. Applic. 7, 205–214 (1964).

    Google Scholar 

  6. Asperen, K. van, Oppenoorth, F. J.: Organophosphate resistance and esterase activity in houseflies. Ent. Exp. Applic. 2, 48–57 (1959).

    Google Scholar 

  7. Atallah, Y. H., Nettles, W. C: DDT-metabolism and excretion in Coleomegilla maculata DeGeer. J. Econ. Entomol. 59, 560–564 (1966).

    CAS  Google Scholar 

  8. Ayad, H., Georghiou, G. P.: Resistance to organophosphates and carbamates in Anopheles albimanus based on reduced sensitivity of acetylcholinesterase. J. Econ. Entomol. 68, 295–297 (1975).

    CAS  Google Scholar 

  9. Bell, J. D., Busvine, J. R.: Synergism of organophosphates in Musca domestica and Chrysomya putoria. Ent. Exp. Applic. 10, 263–269 (1967).

    CAS  Google Scholar 

  10. Bettini, S., Boccacci, M.: Azione tosica degli acidi cloroacetico sugli insetti: inibizone della triosofosfate deidrogenasi. Riv. Parassit. 16, 13–29 (1955).

    CAS  Google Scholar 

  11. Bigley, W.S., Plapp, F. W.: Metabolism of malathion and malaoxon by the mosquito Culex tarsalis. J. Insect Physiol. 8, 545–548 (1962).

    CAS  Google Scholar 

  12. Blum, M. S., Earle, N. W., Roussel, J. S.: Absorption and metabolism of DDT in the boll weevil. J. Econ. Entomol. 52, 17–20 (1959).

    CAS  Google Scholar 

  13. Bradbury, F. R.: Absorption and metabolism of BHC in susceptible and resistant house flies. J. Sci. Food Agr. 8, 90–96 (1957).

    CAS  Google Scholar 

  14. Bradbury, F. R., Standen, H.: Benzene hexachloride metabolism in Anopheles gambiae. Nature 178, 1053–1054(1956).

    CAS  Google Scholar 

  15. Bradbury, F. R., Standen, H.: The fate of y-benzene hexachloride in resistant and susceptible houseflies III. J. Sci. Food Agr. 9, 203–212 (1958).

    CAS  Google Scholar 

  16. Bradbury, F.R., Standen, H.: Metabolism of benzene hexachloride by resistant houseflies. Nature 183, 983–984 (1959).

    CAS  Google Scholar 

  17. Bridges, R. G.: Pentachlorocyclohexene as a possible intermediate metabolite of benzene hexachloride in houseflies. Nature 184, 1537 (1959).

    Google Scholar 

  18. Bridges, R. G., Cox, J. T.: Resistance of houseflies toy-benzene hexachloride and dieldrin. Nature 184, 1740–1741 (1959).

    Google Scholar 

  19. Brooks, G. T.: Mechanisms of resistance of the adult housefly to cyclodiene insecticides. Nature 186, 96–98 (1960).

    CAS  Google Scholar 

  20. Brooks, G. T., Harrison, A.: The metabolism of some cyclodiene insecticides in relation to dieldrin-resistance in the adult housefly. J. Insect Physiol. 10, 633–641 (1964).

    CAS  Google Scholar 

  21. Brown, A. W.A., Perry, A. S.: Dehydrochlorination of DDT by resistant houseflies and mosquitoes. Nature 178, 368–369 (1956).

    CAS  Google Scholar 

  22. Bull, D. L., Adkisson, P. L.: Absorption and metabolism of C14-labelled DDT by DDT-susceptible and DDT-resistant pink bollworm adults. J. Econ. Entomol. 56, 641–643 (1956).

    Google Scholar 

  23. Bull, D. L., Whitten, C. J.: Factors influencing organophosphorus insecticide resistance in tobacco budworms. J. Agr. Food Chem. 20, 561–564 (1972).

    CAS  Google Scholar 

  24. Campbell, W. R., Cochran, D. G.: Untitled abstract, Bull. Entomol. Soc. Amer. 11, 157 (1965).

    Google Scholar 

  25. Chattoraj, A. N., Kearns, C. W.: DDT-dehydrochlorinase activity in the Mexican bean beetle. Bull. Entomol. Soc. Amer. 4, 95 (1958).

    Google Scholar 

  26. Cole, M. M., Clark, P. H.: Development of resistance to synergized Pyrethrins in body lice, and cross resistance to DDT. J. Econ. Entomol. 54, 649–651 (1961).

    Google Scholar 

  27. Collins, W. J., Forgash, A. J.: Mechanisms of insecticide resistance in Musca domestica: carboxyl-esterase and degradative enzymes. J. Econ. Entomol. 63, 394–400 (1970).

    CAS  Google Scholar 

  28. Dahm, P. A.: Some aspects of the metabolism of parathion and diazinon. In: Biochemical Toxicology of Insecticides, Ed. R. D. O’Brien and I. Yamamoto, pp. 51–63. New York: Academic Press 1970.

    Google Scholar 

  29. Davies, M, Keiding, J., von Hofsten, C. G.: Resistance to Pyrethrins and to pyrethrins-piperonyl butoxide in a wild strain of Musca domestica L. Nature 182, 1816–1817 (1958).

    CAS  Google Scholar 

  30. Dinamarca, M. L., Agosin, M., Neghme, A.: The metabolic fate of C14-DDT in Triatoma infestans. Exp. Parasitol. 12, 61–72 (1962).

    CAS  Google Scholar 

  31. Dorval, C., Brown, A. W. A.: Inheritance of resistance to fenthion in Culex pipiens fatigans. Bull. Wld. Hlth. Org. 43, 727–734 (1970).

    CAS  Google Scholar 

  32. Dyte, C. E., Rowlands, D. G.: The metabolism and synergism of malathion in resistant and susceptible strains of Tribolium castaneum. J. Stored Products Res. 4, 157–173 (1968).

    CAS  Google Scholar 

  33. Earle, N. W.: The fate of cyclodiene insecticides administered to susceptible and resistant house flies. J. Agr. Food Chem. 11, 281–285 (1963).

    CAS  Google Scholar 

  34. El-Basheir, S.: Cause of resistance to DDT in a diazinon-selected and a DDT-selected strain of houseflies. Ent. Exp. Appl. 10, 111–126 (1967).

    CAS  Google Scholar 

  35. El-Basheir, S., Oppenoorth, F. J.: Microsomal oxidations of some organophosphate insecticides in some resistant strains of houseflies. Nature 223, 210–211 (1969).

    CAS  Google Scholar 

  36. Eldefrawi, M. E., Hoskins, W. M.: Relation of the rate of penetration and metabolism to the toxicity of Sevin to three species. J. Econ. Entomol. 54, 401–405 (1961).

    CAS  Google Scholar 

  37. Farnham, A. W.: Changes in cross-resistance patterns of houseflies selected with natural Pyrethrins or resmethrin. Pesticide Sci. 2, 138–143 (1971).

    CAS  Google Scholar 

  38. Farnham, A. W., Lord, K. A., Sawicki, R. M.: Study of some of the mechanisms connected with resistance to diazinon and diazoxon in a diazinon-resistant strain of houseflies. J. Insect Physiol. 11, 1475–1488 (1965).

    CAS  Google Scholar 

  39. Ferguson, W. C., Kearns, C. W.: The metabolism of DDT in the large milkweed bug. J. Econ. Entomol. 42, 810–817 (1949).

    CAS  Google Scholar 

  40. Fine, B. C., Godin, P. J., Thain, E. M.: Penetration of Pyrethrin I labelled with carbon-14 into susceptible and pyrethroid-resistant houseflies. Nature 199, 927–928 (1963).

    CAS  Google Scholar 

  41. Forgash, A. J.: The effect of insecticides and other toxic substances upon the reduced glutathione of Periplaneta americana. J. Econ. Entomol. 44, 870–878 (1951).

    CAS  Google Scholar 

  42. Forgas, A.J., Cook, B.J., Riley, R.C: Mechanisms of resistance in diazinon-selected multiresistant Musca domestica. J. Econ. Entomol. 55, 544–551 (1962).

    Google Scholar 

  43. Franco, M. G., Oppenoorth, F. J.: Genetical experiments on the gene for low aliesterase activity and organophosphate resistance in Musca domestica. L. Ent. Exp. Applic. 5, 119–123 (1962).

    Google Scholar 

  44. Gatterdam, P. E., De, R. K., Guthrie, F. E., Bowery, T. G.: The absorption, metabolism and excretion of C 14-labelled TDE in certain insects. J. Econ. Entomol. 57, 258–264 (1964).

    CAS  Google Scholar 

  45. Georghiou, G. P.: Isolation, characterization and re-synthesis of insecticide resistance factors in the housefly, Musca domestica. Proc. 2nd Internat. Congr. Pesticide Chem. 2, 77–94 (1971).

    CAS  Google Scholar 

  46. Georghiou, G. P., Metcalf, R. L.: The absorption and metabolism of 3-isopropylphenyl N-methyl-carbamate by susceptible and carbamate-selected strains of houseflies. J. Econ. Entomol. 54, 231–233 (1961).

    CAS  Google Scholar 

  47. Gerolt, P.: The fate of dieldrin in insects. J. Econ. Entomol. 58, 849–857 (1965).

    CAS  Google Scholar 

  48. Gerolt, P.: Mechanism of resistance to dichlorvos in adult houseflies. Pesticide Biochem. Physiol. 4, 275–288 (1974).

    CAS  Google Scholar 

  49. Grigolo, A., Oppenoorth, F. J.: The importance of DDT-dehydrochlorinase for the effect of the resistance gene kdr in the housefly. Genetica 37, 159–170 (1966).

    CAS  Google Scholar 

  50. Hanna, M. A., Atallah, Y. H.: Penetration and biodegradation of carbaryl in susceptible and resistant strains of the Egyptian cotton leafworm. J. Econ. Entomol. 64, 1391–1394 (1971).

    CAS  Google Scholar 

  51. Harington, J. S.: Contents of cystine-cysteine, glutathione and total free sulphydryl in arsenic-resistant and sensitive strains of the blue tick. Nature 184, 1739–1740 (1959).

    CAS  Google Scholar 

  52. Harington, J. S.: A suggested role for copper in the arsenic-resistance of the blue tick. J. So. Afr. Vet. Med. Assoc. 32, 373–379 (1961).

    CAS  Google Scholar 

  53. Hartgrove, R. W., Webb, R. E.: The development of benzpyrene hydroxylase activity in endrin susceptible and resistant pine mice. Pesticide Biochem. Physiol. 3, 61–65 (1973).

    CAS  Google Scholar 

  54. Haseman, L., Meffert, R. L.: Are we developing strains of codling moths resistant to arsenic? Missouri Univ. Agr. Exp. Sta. Res. Bull. 202, 11 pp. (1933).

    Google Scholar 

  55. Herne, D. H. C., Brown, A. W. A.: Inheritance and biochemistry of OP-resistance in a New York strain of the two-spotted spider mite. J. Econ. Entomol. 62, 205–209 (1969).

    CAS  Google Scholar 

  56. Hollingworth, R. M.: The dealkylation of organophosphorus triesters by liver enzymes. In: Biochemical Toxicology of Insecticides. Ed. R. D. O’Brien and I. Yamamoto, pp. 75–92. New York: Academic Press 1970.

    Google Scholar 

  57. Hollingworth, R. M., Metcalf, R. L., Fukuto, T. R.: The selectivity of Sumithion compared with methyl parathion: metabolism in resistant and susceptible houseflies. J. Agr. Food. Chem. 15, 250–255 (1967).

    CAS  Google Scholar 

  58. Hooper, G. H. S.: Metabolism of insecticides by Culex pipiens quinquefasciatus: in vivo metabolism of DDT by larvae. J. Econ. Entomol. 61, 490–493 (1968).

    CAS  Google Scholar 

  59. Hooper, G. H. S.: Gas-liquid chromatography analysis of DDT metabolism in Aedes aegypti. J. Econ. Entomol. 61, 858–859 (1968).

    CAS  Google Scholar 

  60. Hoskins, W. M., Witt, J. M.: Types of DDT metabolism as illustrated in several insect species. Proc. 10th Internat. Congr. Entomol. 2, 151–156 (1958).

    CAS  Google Scholar 

  61. Hough, W. S.: Colorado and Virginia strains of codling moth in relation to their ability to enter sprayed and unsprayed apples. J. Agric. Res. 48, 433–453 (1934).

    Google Scholar 

  62. Hoyer, R. F., Plapp, F. W.: Insecticidal resistance in the house fly: identification of a gene that confers resistance to organotin insecticides and acts as an intensifier of parathion-resistance. J. Econ. Entomol. 61, 1269–1276 (1968).

    CAS  Google Scholar 

  63. Ishida, M., Dahm, P. A.: Metabolism of benzene hexachloride isomers and related compounds in vitro. I, II. J. Econ. Entomol. 58, 383–391, 602–607 (1965).

    CAS  Google Scholar 

  64. Kalra, R. L., Perry, A. S., Miles, J. W.: Studies on the mechanism of DDT resistance in Culex pipiensfatigans. Bull. Wld. Hlth. Org. 37, 651–656 (1967).

    CAS  Google Scholar 

  65. Kasai, T., Ogita, Z.: Studies on malathion-resistance and esterase activity in green rice leaf-hoppers. SABCO Journal 1, 130–140 (1965).

    Google Scholar 

  66. Keiding, J.: Annual Report of the Danish Pest Infestation Laboratory (Skadedyrlaboratorium), Lyngby, p. 46 (1970).

    Google Scholar 

  67. Khan, M. A. Q.: Some biochemical characteristics of the microsomal cyclodiene epoxidase system and its inheritance in the house fly. J. Econ. Entomol. 62, 388–392 (1969).

    CAS  Google Scholar 

  68. Khan, M. A. Q., Brown, A. W. A.: Lipids and dieldrin resistance in Aedes aegypti. J. Econ. Entomol. 59, 1512–1514 (1966).

    CAS  Google Scholar 

  69. Khan, M. A. Q., Terriere, L. C.: DDT-dehydrochlorinase activity in house fly strains resistant to various groups of insecticides. J. Econ. Entomol. 61, 732–736 (1968).

    CAS  Google Scholar 

  70. Kimura, T., Brown, A. W. A.: DDT-dehydrochlorinase in Aedes aegypti. J. Econ. Entomol. 57, 710–716 (1964).

    CAS  Google Scholar 

  71. Kimura, T., Duffy, J. R., Brown, A. W. A.: Dehydrochlorination and DDT-resistance in Culex mosquitoes. Bull. Wld. Hlth. Org. 32, 557–561 (1965).

    CAS  Google Scholar 

  72. Kojima, K., Ishizuka, T., Kitakata, S.: Metabolic fate of parathion and paraoxon in parathion susceptible and resistant larvae of the rice stem borer. Botyu-Kagaku 28, 55–63 (1963).

    CAS  Google Scholar 

  73. Kojima, K., Ishizuka, T., Kitakata, S.: Mechanism of resistance to malathion in the green rice leafhopper, Nephotettix cincticeps. Botyu-Kagaku 28, 17–25 (1963).

    CAS  Google Scholar 

  74. Kojima, K., Ishizuka, T., Shiino, A., Kitakata, S.: Studies on metabolism of parathion in parathion susceptible and resistant larvae of the rice stem borer. Japan J. Appl. Ent. Zool. 7, 63–69 (1963).

    Google Scholar 

  75. Korte, F., Arent, H.: Isolation and identification of dieldrin metabolites from urine of rabbits after oral administration of dieldrin-14C. Life Sciences 4, 2017–2026 (1965).

    CAS  Google Scholar 

  76. Korte, F., Ludwig, G., Vogel, J.: Umwandlung von Aldrin-(14C) und Dieldrin-(14C) durch Mikroorganismen, Leberhomogenate und Moskito-larven. Justus Liebig’s Annal. Chem. 656, 135–140 (1962).

    CAS  Google Scholar 

  77. Krueger, H. R., O’Brien, R. D., Dauterman, W. C.: Relationship between metabolism and differential toxicity in insects and mice of diazinon, dimethoate, parathion and acethion. J. Econ. Entomol. 53, 25–31 (1960).

    CAS  Google Scholar 

  78. Ku, T., Bishop, J. L.: Penetration, excretion and metabolism of carbaryl in susceptible and resistant German cockroaches. J. Econ. Entomol. 60, 1328–1332 (1967).

    CAS  Google Scholar 

  79. Kuhr, R. J.: Possible role of tyrosinase and cytochrome P-450 in the metabolism of carbaryl and phenyl methyl carbamate by houseflies. J. Agr. Food Chem. 17, 112–115 (1969).

    CAS  Google Scholar 

  80. Kuhr, R. J.: Comparative metabolism of carbaryl by resistant and susceptible strains of the cabbage looper. J. Econ. Entomol. 64, 1377–1378 (1971).

    Google Scholar 

  81. Kuhr, R. J., Schohn, J. L., Tashiro, H., Fiori, B. J.: Dieldrin-resistance in the European chafer grub. J. Econ. Entomol. 65, 1555–1560 (1972).

    CAS  Google Scholar 

  82. Lee, R. M., Batham, P.: The activity and organophosphate inhibition of cholinesterases from susceptible and resistant ticks. Ent. Exp. Applic. 9, 13–24 (1966).

    CAS  Google Scholar 

  83. Lewis, J. B.: Detoxification of diazinon by subcellular fractions of diazinon-resistant and susceptible houseflies. Nature 224, 917–918 (1969).

    CAS  Google Scholar 

  84. Lewis, J. B., Sawicki, R. M.: Characterization of the resistance mechanisms to diazinon, parathion and diazoxon in the organophosphorus-resistant SKA strain of house flies. Pesticide Biochem. Physiol. 1, 275–285 (1971).

    CAS  Google Scholar 

  85. Lipke, H., Chalkley, J.: The conversion of DDT to DDE by some anophelines. Bull. Wld. Hlth. Org. 30, 57–64 (1964).

    CAS  Google Scholar 

  86. Lipke, H., Keams, C. W.: DDT-dehydrochlorinase. I. Isolation, chemical properties, and spectro-photometric assay. J. Biol. Chem. 234, 2123–2125 (1959).

    CAS  Google Scholar 

  87. Lipke, H., Kearns, C. W.: DDT-dehydrochlorinase. II. Substrate and co-factor specificity. J. Biol. Chem. 234, 2129–2132 (1959).

    CAS  Google Scholar 

  88. Lord, K. A., Molloy, F. M., Potter, C.: Penetration of diazoxon and acetylcholine into the thoracic ganglia in susceptible and resistant houseflies. Bull. Ent. Res. 54, 189–197 (1963).

    CAS  Google Scholar 

  89. Lovell, J. B., Kearns, C. W.: Inheritance of DDT-dehydrochlorinase in the house fly. J. Econ. Entomol. 52, 931–935 (1959).

    CAS  Google Scholar 

  90. March, R. B.: Resistance to organophosphorus insecticides. Misc. Publ. Entomol. Soc. Amer. 1, 13–19 (1959).

    CAS  Google Scholar 

  91. Matsumura, F., Brown, A. W. A.: Biochemistry of malathion resistance in Culex tarsalis. J. Econ. Entomol. 54, 1176–1185 (1961).

    Google Scholar 

  92. Matsumura, F., Brown, A. W. A.: Studies on carboxyesterase in malathion-resistant Culex tarsalis. J. Econ. Entomol. 56, 381–388 (1963).

    CAS  Google Scholar 

  93. Matsumura, F., Hayashi, M.: Interaction of dieldrin with the subcellular components of both resistant and susceptible strains of Aedes aegypti. Mosquito News 26, 190–194 (1966).

    CAS  Google Scholar 

  94. Matsumura, F., Hayashi, M.: Dieldrin: interaction with nerve components of cockroaches. Science 153, 757–759 (1966).

    CAS  Google Scholar 

  95. Matsumura, F., Hayashi, M.: Dieldrin resistance: biochemical mechanisms in the German cockroach. J. Agr. Food Chem. 17, 231–235 (1969).

    CAS  Google Scholar 

  96. Matsumura, F., Hogendijk, C. J.: The enzymatic degradation of parathion in organophosphate-susceptible and -resistant houseflies. J. Agr. Food Chem. 12, 447–453 (1964).

    CAS  Google Scholar 

  97. Matsumura, F., Hogendijk, C. J.: The enzymatic degradation of malathion in organophosphate resistant and susceptible strains of Musca domestica. Ent. Exp. Applic. 7, 179–193 (1964).

    CAS  Google Scholar 

  98. Matsumura, F., Telford, J. N., Hayashi, M.: Effect of sesamex upon dieldrin resistance in the German cockroach. J. Econ. Entomol. 60, 942–944 (1967).

    CAS  Google Scholar 

  99. Matsumura, F., Voss, G.: Mechanism of malathion and parathion resistance in the two-spotted spider mite, Tetranychus urticae. J. Econ. Entomol. 57, 911–917 (1964).

    CAS  Google Scholar 

  100. Matsumura, F., Voss, G.: Properties of partially purified malathion carboxyesterase of the two-spotted spider mite. J. Insect Physiol. 11, 147–160 (1965).

    CAS  Google Scholar 

  101. Mengle, D. C., Casida, J. E.: Biochemical factors in the acquired resistance of houseflies to organo-phosphate insecticides. J. Agr. Food Chem. 8, 431–437 (1960).

    CAS  Google Scholar 

  102. Mengle, D. C., Lewallen, L. L.: Metabolism of malathion by a resistant and a susceptible strain of Culex tarsalis. Mosquito News 23, 226–233 (1963).

    CAS  Google Scholar 

  103. Menale, D. C., Lewallen, L. L.: Biochemical-radiological determinations of parathion resistance in Aedes nigromaculis. J. Econ. Entomol. 59, 743–744 (1966).

    Google Scholar 

  104. Metcalf, R. L., Fukuto, T. R., Winton, M. Y.: Chemical and biological behaviour of fenthion residues. Bull. Wld. Hlth. Org. 29, 219–236 (1963).

    CAS  Google Scholar 

  105. Micks, D. W., Singh, K. R. P.: Infra-red spectra of acetone extracts of susceptible and insecticide resistant strains of houseflies. Texas Repts. Biol. Med. 16, 355–362 (1958).

    CAS  Google Scholar 

  106. Milani, R., Travaglino, A.: Concatenazione dei gene kdr (knockdown resistance) con due mutanti morphologici. Riv. Parassit. 18, 199–202 (1957).

    Google Scholar 

  107. Miller, S., Perry, A. S.: Separation and purification of DDT-degrading enzymes from the human body louse. J. Agr. Food Chem. 12, 167–169 (1964).

    CAS  Google Scholar 

  108. Miyake, S. S., Kearns, C. W., Lipke, H.: Distribution of DDT-dehydrochlorinase in various tissues of DDT-resistant house flies. J. Econ. Entomol. 50, 359–360 (1957).

    Google Scholar 

  109. Moorefleld, H. H., Kearns, C. W.: Mechanism of action of certain synergists for DDT against resistant house flies. J. Econ. Entomol. 48, 403–406 (1955).

    Google Scholar 

  110. Moss, J. A., Hathaway, D. E.: Partition of dieldrin and telodrin between the cellular components and soluble proteins of blood. Biochem. J. 91, 384–393 (1964).

    CAS  Google Scholar 

  111. Motoyama, N., Dauterman, W. C.: In vitro metabolism of azinphosmethyl in susceptible and resistant houseflies. Pesticide Biochem. Physiol. 2, 113–122 (1972).

    CAS  Google Scholar 

  112. Motoyama, N., Rock, G. C., Dauterman, W. C.: Studies on the mechanism of azinphosmethyl resistance in the predaceous mite, Neoseiulus fallacis. Pesticide Biochem. Physiol. 1, 205–215 (1972).

    Google Scholar 

  113. Nakatsugawa, T., Tolman, N. M., Dahm, P. A.: Degradation and activation of parathion analogs by microsomal enzymes. Biochem. Pharmacol. 17, 1517–1528 (1968).

    CAS  Google Scholar 

  114. Nakatsugawa, T., Tolman, N. M., Dahm, P. A.: Metabolism of S35-parathion in the house fly. J. Econ. Entomol. 62, 408–411 (1969).

    CAS  Google Scholar 

  115. Nolan, J., Schnitzerling, H. J., Schuntner, C. A.: Multiple forms of acetylcholinesterase from resistant and susceptible strains of the cattle tick. Pesticide Biochem. Physiol. 2, 85–94 (1972).

    CAS  Google Scholar 

  116. Oonnithan, E. S., Miskus, R.: Metabolism of C14-dieldrin by dieldrin-resistant Culex pipiens quinquefasciatus mosquitoes. J. Econ. Entomol. 57, 425–426 (1964).

    CAS  Google Scholar 

  117. Oppenoorth, F. J.: Metabolism of gamma-benzene hexachloride in susceptible and resistant houseflies. Nature 173, 1000–1001 (1954).

    CAS  Google Scholar 

  118. Oppenoorth, F. J.: Resistance to gamma-hexachlorocyclohexane in Musca domestica L. Arch. Neerl. Zool. 12, 1–62 (1956).

    Google Scholar 

  119. Oppenoorth, F. J.: A mechanism of resistance to parathion in Musca domestica (L.) Nature 181, 425–426 (1958).

    CAS  Google Scholar 

  120. Oppenoorth, F. J.: Two types of sesamex-suppressible resistance in the housefly. Ent. Exp. Applic. 10, 75–86 (1967).

    Google Scholar 

  121. Oppenoorth, F. J.: Resistance in insects: the role of metabolism and the possible use of synergists. Bull. Wld. Hlth. Org. 44, 195–202 (1971).

    CAS  Google Scholar 

  122. Oppenoorth, F. J., van Asperen, K.: The detoxication enzymes causing organophosphate resistance in the housefly. Ent. Exp. Applic. 4, 311–333 (1961).

    CAS  Google Scholar 

  123. Oppenoorth, F. J., Houx, N. W. H.: DDT resistance in the housefly caused by microsomal degradation. Ent. Exp. Applic. 11, 81–93 (1968).

    CAS  Google Scholar 

  124. Oppenoorth, F. J., Rupes, V., El-Basheir, S., Houx, N. W. H., Voerman, S.: Glutathione-dependent degradation of parathion and its significance for resistance in the housefly. Pesticide Biochem. Physiol. 2, 262–269 (1972).

    CAS  Google Scholar 

  125. Pate, T. L., Vinson, S. B.: Evidence of a non-specific type resistance to insecticides by a resistant strain of the tobacco budworm. J. Econ. Entomol. 61, 1135–1137 (1968).

    CAS  Google Scholar 

  126. Perry, A. S.: Investigations on the mechanism of DDT-resistance in certain anopheline mosquitoes. Bull. Wld. Hlth. Org. 22, 743–756 (1960).

    CAS  Google Scholar 

  127. Perry, A. S., Buckner, A. J.: Biochemical investigations on DDT-resistance in the human body louse. Amer. J. Trop. Med. Hyg. 7, 620–626 (1958).

    CAS  Google Scholar 

  128. Perry, A. S., Dale, W. E., Buckner, A. J.: Induction and repression of microsomal mixed-function oxidases and cytochrome P-450 in resistant and susceptible houseflies. Pesticide Biochem. Physiol. 1, 131–142 (1972).

    Google Scholar 

  129. Perry, A. S., Hoskins, W. M.: The detoxification of DDT by resistant house flies and inhibition of this process by piperonyl cyclonene. Science 111, 600–601 (1950).

    CAS  Google Scholar 

  130. Perry, A. S., Jensen, J. A., Pearce, G. W.: Colorimetric and radiometric determinations of DDT and its metabolites in resistant houseflies. J. Agr. Food Chem. 3, 1008–1010 (1955).

    CAS  Google Scholar 

  131. Perry, A. S., Mattson, A. M., Buckner, A. J.: The metabolism of heptachlor by resistant and susceptible houseflies. J. Econ. Entomol. 51, 346–351 (1958).

    CAS  Google Scholar 

  132. Perry, A. S., Miller, S., Buckner, A. J.: The enzymatic in vitro degradation of DDT by susceptible and DDT-resistant body lice. J. Agr. Food Chem. 11, 457–462 (1963).

    CAS  Google Scholar 

  133. Perry, A. S., Pearce, G. W., Buckner, A. J.: The absorption, distribution, and fate of C14-aldrin and C14-dieldrin by susceptible and resistant house flies. J. Econ. Entomol. 57, 867–872 (1964).

    CAS  Google Scholar 

  134. Perry, A. S., Sacktor, B.: Detoxification of DDT in relation to cytochrome oxidase activity in resistant and susceptible house flies. Ann. Entomol. Soc. Amer. 48, 329–333 (1955).

    CAS  Google Scholar 

  135. Plapp, F. W.: On the molecular biology of insecticide resistance. In: Biochemical Toxicology of Insecticides, Ed. R. D. O’Brien and J. Yamamoto, pp. 179–192. New York: Academic Press 1970.

    Google Scholar 

  136. Plapp, F. W.: Insecticide resistance in Heliothis: tolerance in larvae of H. virescens as compared with H. zea to organophosphate insecticides. J. Econ. Entomol. 64, 999–1002 (1971).

    CAS  Google Scholar 

  137. Plapp, F. W.: Comparison of insecticide absorption and detoxification in larvae of the bollworm Heliothis zea and the tobacco budworm H. virescens. Pesticide Biochem. Physiol. 2, 447–455 (1973).

    CAS  Google Scholar 

  138. Plapp, F. W., Bigley, W. S., Darrow, D. I., Eddy, G. W.: Studies on parathion metabolism in normal and parathion-resistant house flies. J. Econ. Entomol. 54, 389–392 (1961).

    CAS  Google Scholar 

  139. Plapp, F. W., Casida, J. E.: Genetic control of house fly NADPH-dependent oxidases: relation to insecticide chemical metabolism and resistance. J. Econ. Entomol. 62, 1174–1179 (1969).

    CAS  Google Scholar 

  140. Plapp, F. W., Chapman, G. A., Bigley, W. S.: A mechanism of resistance to Isolan in the house fly. J. Econ. Entomol. 57, 692–695 (1964).

    CAS  Google Scholar 

  141. Plapp, F. W., Chapman, G. A., Morgan, J. W.: DDT resistance in Culex tarsalis: cross resistance to related compounds and metabolic fate of a C14-labeled DDT analog. J. Econ. Entomol. 58, 1064–1069 (1965).

    CAS  Google Scholar 

  142. Plapp, F. W., Hoyer, R. F.: Possible pleiotropism of a gene conferring resistance to DDT, DDT analogs and Pyrethrins in the house fly and Culex tarsalis. J. Econ. Entomol. 61, 761–765 (1968).

    CAS  Google Scholar 

  143. Plapp, F. W., Hoyer, R. F.: Insecticide resistance in the house fly: decreased rate of absorption as the mechanism of action of a gene that acts as an intensifier of resistance. J. Econ. Entomol. 61, 1298–1303 (1968).

    CAS  Google Scholar 

  144. Polles, S. G., Vinson, S. B.: Penetration, distribution and metabolism of 14C-endrin in resistant and susceptible tobacco budworm larvae. J. Agr. Food Chem. 20, 38–41 (1972).

    Google Scholar 

  145. Pratt, J. J., Babers, F. H.: The resistance of insects to insecticides: some differences between strains of house flies. J. Econ. Entomol. 46, 864–869 (1953).

    Google Scholar 

  146. Ray, J. W.: Insecticide absorbed by the central nervous system of susceptible and resistant cockroaches exposed to dieldrin. Nature 197, 1226–1227 (1963).

    CAS  Google Scholar 

  147. Reiff, M.: Einige Befunde über die Selektionsprozesse bei der Entwicklung der Insektizid-resistenz. Rev. Suisse Zool. 63, 317–329 (1956).

    Google Scholar 

  148. Roulston, W. J., Schuntner, C. A.: Sulphydryl content of the embryos of the Australian cattle tick. Nature 186, 1069–1070 (1960).

    CAS  Google Scholar 

  149. Roulston, W. J., Schunter, C. A., Schnitzerling, H. J., Wilson, J. T.: Detoxification as a mechanism of resistance in a strain of the cattle tick resistant to organophosphorus and carbamate compounds. Austral. J. Biol. Sci. 22, 1585–1589 (1969).

    CAS  Google Scholar 

  150. Saito, T., Kojima, K., Morikawa, O.: 11th Pacific Science Congress, Tokyo Symposium 44 (1966).

    Google Scholar 

  151. Sawicki, R. M.: Interaction between the factor delaying penetration of insecticides and the desethylation mechanism of resistance in organophosphorus-resistant houseflies. Pesticide Sci. 1, 84–87 (1970).

    CAS  Google Scholar 

  152. Sawicki, R. M., Farnham, A. W.: Genetics of resistance to insecticides of the SKA strain of Musca domestica. II. Isolation of the dominant factors of resistance to diazinon. Ent. Exp. Applic. 10, 253–262 (1967).

    CAS  Google Scholar 

  153. Sawicki, R. M., Farnham, A. W.: Ibid. III. Location and isolation of the factors of resistance to dieldrin. Ent. Exp. Applic. 11, 132–142 (1968).

    Google Scholar 

  154. Sceicz, F. M., Plapp, F. W., Vinson, S. B.: Tobacco budworm: penetration of several insecticides into the larva. J. Econ. Entomol. 66, 9–15 (1973).

    Google Scholar 

  155. Schaeffer, C. H., Sun, Y. P.: A study of dieldrin in the house fly central nervous system in relation to dieldrin resistance. J. Econ. Entomol. 60, 1580–1583 (1967).

    Google Scholar 

  156. Schnitzerling, H. J., Roulston, W. J., Schuntner, C. A.: The absorption and metabolism of 14C-DDT in DDT-resistant and susceptible strains of the cattle tick. Austral. J. Biol. Sci. 23, 219–230 (1970).

    CAS  Google Scholar 

  157. Schonbrod, R. D., Khan, M. A. Q., Terriere, L. C., Plapp, F. W.: Microsomal oxidases in the housefly: a survey of fourteen strains. Life Sci. 7, 681–688 (1968).

    CAS  Google Scholar 

  158. Schunter, C. A., Roulston, W. J.: A resistance mechanism in organophosphorus-resistant strains of sheep blowfly (Lucilia caprina). Austral. J. Biol. Sci. 21, 173–176 (1968).

    Google Scholar 

  159. Schuntner, C. A., Roulston, W. J., Schneitzerling, J. H.: A mechanism of resistance to organophos-phorus insecticides in a strain of the cattle tick. Austral. J. Biol. Sci. 21, 97–109 (1968).

    CAS  Google Scholar 

  160. Schuntner, C. A., Schnitzerling, H. J., Roulston, W. J.: Carbaryl metabolism in larvae of organo-phosphorus and carbamate-susceptible and -resistant strains of cattle tick Boophilus microplus. Pesticide Biochem. Physiol. 2, 424–433 (1971).

    Google Scholar 

  161. Shono, T.: Studies on the mechanism of resistance in diazinon resistant Hokota strain of houseflies: in vitro degradation of diazoxon. Botyu-Kagaku, 39, 54–59 (1974).

    CAS  Google Scholar 

  162. Shrivastava, S. P., Georghiou, G. P., Fukuto, T. R.: Metabolism of N-methylcarbamate insecticides by mosquito larval enzyme system requiring NADPH2. Ent. Exp. Applic. 14, 333–348 (1971).

    CAS  Google Scholar 

  163. Shrivastava, S. P., Georghiou, G. P., Metcalf, R. L., Fukuto, T. R.: The metabolism of propoxur by susceptible and resistant larvae of Culex pipiens fatigans. Bull. Wld. Hlth. Org. 42, 931–942 (1970).

    CAS  Google Scholar 

  164. Shrivastava, S. P., Tsukamoto, M., Casida, J. E.: Oxidative metabolism of C14-labelled Baygon by living house flies and by housefly enzymes. J. Econ. Entomol. 62, 483–498 (1969).

    CAS  Google Scholar 

  165. Smissaert, H. R.: Cholinesterase inhibition in spider mites susceptible and resistant to organo-phosphate. Science 143, 129–131 (1964).

    CAS  Google Scholar 

  166. Sternburg, J., Kearns, C. W.: Degradation of DDT by resistant and susceptible strains of house flies. Ann. Entomol. Soc. Amer. 43, 444–458 (1950).

    CAS  Google Scholar 

  167. Sternburg, J., Kearns, C. W.: Metabolic fate of DDT when applied to certain naturally tolerant insects. J. Econ. Entomol. 45, 497–505 (1952).

    CAS  Google Scholar 

  168. Sternburg, J., Kearns, C. W.: Pentachlorocyclohexene, intermediate in the metabolism of lindane by house flies. J. Econ. Entomol. 49, 548–552 (1956).

    CAS  Google Scholar 

  169. Sternburg, J., Kearns, C. W., Moorefield, H. H.: DDT-dehydrochlorinase, an enzyme found in DDT-resistant flies. J. Agr. Food Chem. 2, 1125–1130 (1954).

    CAS  Google Scholar 

  170. Sternburg, J., Vinson, E. B., Kearns, C. W.: Enzymatic dehydrochlorination of DDT-resistant house flies. J. Econ. Entomol. 46, 513–515 (1953).

    CAS  Google Scholar 

  171. Stone, B. F., Brown, A. W. A.: Mechanisms of resistance to fenthion in Culex pipiens fatigans Wied. Bull. Wld. Hlth. Org. 40, 401–408 (1969).

    CAS  Google Scholar 

  172. Sun, Y. P., Johnson, E. R.: Synergistic and antagonistic action of insecticide-synergist combinations and their mode of action. J. Agr. Food Chem. 8, 261–266 (1960).

    CAS  Google Scholar 

  173. Suplicy, N., Guthrie, F. E., Dauterman, W. C.: Toxicity of a series of dimethoate analogues to resistant and susceptible house flies. J. Econ. Entomol. 65, 1585–1587 (1972).

    CAS  Google Scholar 

  174. Tahori, A. S., Hoskins, W. M.: The absorption, distribution, and metabolism of DDT in DDT-resistant house flies. J. Econ. Entomol. 46, 302–306 (1953).

    CAS  Google Scholar 

  175. Terriere, L. C., Schonbrod, R. D.: The excretion of a radioactive metabolite by house flies treated with carbon 14 labeled DDT. J. Econ. Entomol. 48, 736–739 (1955).

    CAS  Google Scholar 

  176. Thompson, M. E., Johnston, A. M.: Total sulfhydryl content of embryos of arsenic-resistant and sensitive strains of the blue tick. Nature 181, 647–648 (1958).

    CAS  Google Scholar 

  177. Tombes, A. S., Forgash, A. J.: DDT-dehydrochlorinase in the Mexican bean beetle, Epilachna varivestis Muls. J. Insect Physiol. 7, 216–223 (1961).

    CAS  Google Scholar 

  178. Tomlin, A. D.: Trans-aldrin glycol as a metabolite of dieldrin in larvae of the southern house mosquito. J. Econ. Entomol. 61, 855–857 (1968).

    CAS  Google Scholar 

  179. Townsend, M. G., Busvine, J. R.: The mechanism of malathion-resistance in the blowfly Chrysomya putoria. Ent. Exp. Applic. 12, 243–267 (1969).

    CAS  Google Scholar 

  180. Tripathi, R. K.: Relation of acetylcholinesterase sensitivity to cross-resistance of a resistant housefly strain. Pesticide Biochem. Physiol. 6, 30–34 (1976).

    CAS  Google Scholar 

  181. Tsukamoto, M.: Metabolic fate of DDT in Drosophila melanogaster, I, II, III. Botyu-Kagaku 24, 141–151 (1959)

    CAS  Google Scholar 

  182. Tsukamoto, M.: Metabolic fate of DDT in Drosophila melanogaster, I, II, III. Botyu-Kagaku 25, 156–162 (1960)

    Google Scholar 

  183. Tsukamoto, M.: Metabolic fate of DDT in Drosophila melanogaster, I, II, III. Botyu-Kagaku 26, 74–87 (1961).

    Google Scholar 

  184. Tsukamoto, M., Narahashi, T., Yamasaki, T.: Genetic control of low nerve sensitivity to DDT in insecticide-resistant houseflies. Botyu-Kagaku 30, 128–132 (1965).

    Google Scholar 

  185. Tsukamoto, M., Shrivastava, S. P., Casida, J. E.: Biochemical genetics of house fly resistance to carbamate insecticide chemicals. J. Econ. Entomol. 61, 50–55 (1968).

    CAS  Google Scholar 

  186. Tsukamoto, M., Suzuki, R.: Genetic analysis of DDT-resistance in two strains of the housefly, Musca domestica. Botyu-Kagaku 29, 76–89 (1964).

    Google Scholar 

  187. Vinson, S. B., Brazzel, J. R.: The penetration and metabolism of C14-labeled DDT in resistant and susceptible tobacco budworm larvae. J. Econ. Entomol. 59, 600–604 (1966).

    CAS  Google Scholar 

  188. Voss, G., Matsumura, F.: Resistance to organophosphorus compounds in the two-spotted spider mite: Two different mechanisms of resistance. Nature 202, 319–320 (1964).

    CAS  Google Scholar 

  189. Voss, G., Matsumura, F.: Biochemical studies on a modified and normal Cholinesterase found in the Leverkusen strains of the two-spotted spider mite. Canad. J. Biochem. 43, 63–72 (1965).

    CAS  Google Scholar 

  190. Weiant, E. A.: Electrophysiological and behavioral studies on DDT-sensitive and DDT-resistant house flies. Ann. Entomol. Soc. Amer. 48, 489–492 (1955).

    CAS  Google Scholar 

  191. Welling, W., Blaakmeer, P. T.: Metabolism of malathion in a resistant and a susceptible strain of houseflies. Proc. 2nd. Internat. IUPAC Congr. Pest. Chem. (A.S.Tahori, Ed. Gordon & Breach, N. Y.) 2, 61 (1971).

    CAS  Google Scholar 

  192. Welling, W., Blaakmeer, P., Vink, G. J., Voerman, S.: In vitro hydrolysis of paraoxon by parathion-resistant houseflies. Pesticide Biochem. Physiol. 1, 61–70 (1971).

    CAS  Google Scholar 

  193. Welling, W., de Vries, A. W., Voerman, S.: Oxidative cleavage of a carboxyester bond as a mechanism of resistance to malaoxon in houseflies. Pesticide Biochem. Physiol. 4, 31–43 (1974).

    CAS  Google Scholar 

  194. Wells, M. R., Ludke, J. L., Yarbrough, J. D.: Epoxidation and fate of [14C] aldrin in insecticide resistant and susceptible populations of mosquito fish (Gambusia affìnis). J. Agr. Food Chem. 21, 428–429 (1973).

    CAS  Google Scholar 

  195. Wharton, R. H., Roulston, W. J.: Resistance of ticks to chemicals. Ann. Rev. Entomol. 15, 381–404 (1970).

    CAS  Google Scholar 

  196. Whitehead, G. B.: Pyrethrum resistance conferred by resistance to DDT in the blue tick. Nature 284, 378–379 (1959).

    Google Scholar 

  197. Whitehead, G. B.: Investigation of the mechanism of resistance to sodium arsenite in the blue tick. J. Insect Physiol. 7, 177–185 (1961).

    CAS  Google Scholar 

  198. Whitten, C. J., Bull, D. L.: Resistance to organophosphorus insecticides in tobacco budworms. J. Econ. Entomol. 63, 1492–1495 (1970).

    CAS  Google Scholar 

  199. Whitte, C. J., Bull, D. L.: Comparative toxicity, absorption and metabolism of chlorpyrifos and its dimethyl homologue in methyl parathion-resistant and -susceptible tobacco budworms. Pesticide Biochem. Physiol. 4, 266–214 (1974).

    Google Scholar 

  200. Wiesmann, R.: Untersuchungen über das physiologische Verhalten von Musca domestica verschiedener Provenienzen. Mitt. Schweiz. Entomol. Ges. 20, 484–504 (1947).

    Google Scholar 

  201. Wiesmann, R.: Vergleichende histologische Untersuchungen an normalsensiblen und gegen DDT resistenten Stammen von Musca domestica. J. Insect Physiol. 1, 187–197 (1957).

    CAS  Google Scholar 

  202. Wilkinson, C. F.: Effects of synergists on the metabolism and toxicity of anticholinesterases. Bull. Wld. Hlth. Org. 44, 171–190 (1971).

    CAS  Google Scholar 

  203. Winteringham, F. P. W., Harrison, A.: Mechanisms of resistance of adult houseflies to the insecticide dieldrin. Nature 184, 608–610 (1959).

    CAS  Google Scholar 

  204. Yamamoto, I., Casida, J. E.: O-Demethyl pyrethrin II analogs from oxidation of pyrethrin I, allethrin, dimethrin and phthalthrin by a house fly enzyme system. J. Econ. Entomol. 59, 1542–1544 (1966).

    CAS  Google Scholar 

  205. Yamamoto, I., Kimmel, E. C., Casida, J. E.: Oxidative metabolism of pyrethroids in house flies. J. Agr. Food Chem. 17, 1227–1236 (1969).

    CAS  Google Scholar 

  206. Yamasaki, T., Narahashi, T.: Resistance of houseflies to insecticides and the susceptibility of nerve to insecticides. Botyu-Kagaku 23, 146–157 (1958).

    Google Scholar 

  207. Yamasaki, T., Narahashi, T.: Nerve sensitivity and resistance to DDT in houseflies. Japan J. Appl. Ent. Zool. 6, 293–297 (1962).

    CAS  Google Scholar 

  208. Yang, R. S. H., Hodgson, E., Dauterman, W. C.: Metabolism in vitro of diazinon and diazoxon in susceptible and resistant houseflies. J. Agr. Food Chem. 19, 14–19 (1971).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

R. Wegler

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brown, A.W.A. (1976). Chemical Foundation of the Development of Resistance against Insecticides. In: Wegler, R. (eds) Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel. Chemie der Pflanzenschutz- und Schädlingsbekämpfungsmittel, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66415-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66415-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66416-8

  • Online ISBN: 978-3-642-66415-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics