Organization of Locomotion

  • G. Székely
  • G. Czéh

Abstract

Although this book deals primarily with the biology of the frog, the problems of locomotion cannot be discussed separately from other amphibian species. The two main classes, urodeles and anurans, occupying an intermediate position between aquatic and terrestrial life, share a number of common features in their structural and behavioral patterns. They have been equally used in a variety of experiments studying the problems of locomotion common to both classes. There are, on the other hand, distinct differences which make one class more advantageous than the other for certain types of experiments. Thus experimental data obtained either from urodeles, or from anurans, or from both classes, corroborate and supplement each other. Another reason why we cannot confine our discussion merely to the frog is that several aspects of the problems of locomotion have been investigated on vertebrate classes other than amphibians, and the results obtained throw light upon the same problem from a different angle.

Keywords

Fatigue Sulfide Mercury Cobalt Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbie, A.A., Adey, W.R.: Motor mechanisms of the anuran brain. J. comp. Neurol. 92, 241–291 (1950).PubMedCrossRefGoogle Scholar
  2. Ádám, A.: Simulation of rhythmic nervous activities II. Mathe-matic models for the function of networks with cyclic inhibition. Kybernetik 5, 103–109 (1968).PubMedCrossRefGoogle Scholar
  3. Araki, T.: Effects of electrotonus on the electrical activities of spinal motoneurones of the toad. Jap. J. Physiol. 10, 518–532 (1960).CrossRefGoogle Scholar
  4. Araki, T., Otani, T., Furukawa, T.: The electrical activities of single motoneurons in toad’s spinal cord recorded with intracellular electrodes. Jap. J. Physiol. 3, 254–267 (1953).CrossRefGoogle Scholar
  5. Ariëns-Kappers, C.U., Huber, G.C., Crosby, Elizabeth C.: The Comparative Anatomy of the Nervous System of Vertebrates, Including Man, vol. I—III. New York: Hafner Publ. Co. 1960.Google Scholar
  6. Barclay, O.R.: The mechanism of amphibian locomotion. J. exp. Biol. 23, 177–203 (1946).PubMedGoogle Scholar
  7. Battye, C.K., Joseph, J.: An investigation by telemetering of the activity of some muscles in walking. Med. and Biol. Eng. 4, 125–135 (1966).CrossRefGoogle Scholar
  8. Bickel, A.: Über den Einfluss der sensiblen Nerven und der Labyrinthe auf die Bewegung der Tiere. Pflügers Arch. ges. Physiol. 67, 299–344 (1897).CrossRefGoogle Scholar
  9. Brändle, K.: Die Bewegungsweise sechsbeiniger Axolotl mit verlängertem Rückenmark. Verh. Dtsch. zool. Ges., Zool. Anz. 32, Suppl., 448–453 (1969).Google Scholar
  10. Brändle, K., Székely, G.: The control of alternating coordination of limb pairs in the newt (Triturus vulgaris) Brain, Behav. Evol. 8, 366–385 (1973).CrossRefGoogle Scholar
  11. Bremer, F., Bonnet, V.: Contributions a l’étude de la physiologie générale des centres nerveux. II. L’inhibition réflexe. Arch, intern. Physiol. 52, 153–194 (1942).CrossRefGoogle Scholar
  12. Brookhart, J.M., Kubota, K.: Studies of the integrative function of the motor neurone. In: Progress in Brain Research (G. Moruzzi, ed.), vol. I, p. 38–61. Amsterdam: Elsevier Publ. Co. 1963.CrossRefGoogle Scholar
  13. Brookhart, J.M., Machne, X., Fadiga, E.: Patterns of motor neuron discharge in the frog. Arch. ital. Biol. 97, 53–67 (1959).Google Scholar
  14. Brown, T., Graham: On the nature of fundamental activity of the nervous center; together with an analysis of rhythmic activity. J. Physiol. (Lond.) 48, 18–46 (1914).Google Scholar
  15. Chase, P.E.: An experimental study of the relations of sensory control to motor function in amphibian limbs. J. exp. Zool. 83, 61–87 (1940).CrossRefGoogle Scholar
  16. Coers, C.: Structure and organization of the myoneural junction. Int. Rev. Cytol. 22, 239–267 (1967).PubMedCrossRefGoogle Scholar
  17. Corvaja, N., Grofová, I., Pompeiano, O.: The origin, course and termination of vestibulospinal fibers in the toad. An experimental anatomical study, with comments on other descending supraspinal fiber systems to the spinal cord. Brain, Behav. Evol. 7, 401–423 (1973).CrossRefGoogle Scholar
  18. Creed, R.S., Denny-Brown, D., Eccles, J.C., Lidell, E.G.T., Sherrington, C.S.: Reflex Activity of the Spinal Cord. Oxford: Clarendon Press 1932.Google Scholar
  19. Cruce, W.L.R.: The anatomical organization of hindlimb motoneurons in the lumbar spinal cord of the frog, Rana catesbeiana J. comp. Neurol. 153, 59–76 (1974 a).PubMedCrossRefGoogle Scholar
  20. Cruce, W.L.R.: A supraspinal monosynaptic input to hindlimb motoneurons in lumbar spinal cord at the frog, Rana catesbeiana J. Neurophysiol. 37, 691–704 (1974b).PubMedGoogle Scholar
  21. Csillik, B.: Functional Structure of the Postsynaptic Membrane in the Myoneural Junction. Budapest: Hung. Acad. Sci. 1965.Google Scholar
  22. Csillik, B., Schneider, L, Kálmán, G.: Über die histochemische Struktur tetanischer und tonischer myoneuraler Synapsen. Acta neuroveg. (Wien) 22, 212–224 (1961).CrossRefGoogle Scholar
  23. Czéh, G.: The role of dendritic events in the initiation of monosynaptic spikes in the frog motoneurons. Brain Res. 39, 505–509 (1972).PubMedCrossRefGoogle Scholar
  24. Czéh, G., Székely, G.: Monosynaptic spike discharges initiated by dorsal root activation of spinal motoneurones of the frog. Acta physiol. Acad. Sci. hung. 39, 401–106 (1971).PubMedGoogle Scholar
  25. Czéh, G., Székely, G.: Muscle activities recorded simultaneously from normal and supernumerary forelimbs in Ambystoma. Acta physiol. Acad. Sci. hung. 40, 287–301 (1971).PubMedGoogle Scholar
  26. Denny-Brown, D.: Motor mechanisms—introduction: the general principles of motor integration. In: Handbook of Physiology: Neurophysiology (H.W. Magoun, ed.), vol. II, p. 781–796. Washington D.C.: Am. Physiol. Soc. 1960.Google Scholar
  27. Desmedt, J.E.: Paroxystic activity of deplanted nerve centres in amphibia, as influenced by the ionic environment. Proc. Soc. exp. Biol. (N.Y.) 85, 491–494 (1954).Google Scholar
  28. Detwiler, S.R.: Neuroembryology: An experimental study. New York: Macmillan 1936.Google Scholar
  29. Eldred, E.: Posture and locomotion. In: Handbook of Physiology: Neurophysiology (H.W. Magoun, ed.), vol. II, p. 1067–1088. Washington D.C.: Am. Physiol. Soc. 1960.Google Scholar
  30. Engberg, I.: Reflexes to foot muscles in the cat. Acta physiol. scand. 62, Suppl. 235, 1–64 (1964).Google Scholar
  31. Evans, F.G.: The anatomy and function of the fore-leg in Salamander locomotion. Anat. Rec. 95, 257–281 (1946).PubMedCrossRefGoogle Scholar
  32. Eyzaguirre, C.: Motor regulation of the vertebrate spindle. In: Symposium on Muscle Receptors (D. Barker, ed.), p. 155–167. Hong Kong: Hong-Kong Univ. Press 1962.Google Scholar
  33. Fukami, Y.: Postsynaptic potentials in toad’s spinal motoneurons due to muscle afferent volleys. Jap. J. Physiol. 11, 596–604 (1961).CrossRefGoogle Scholar
  34. Gesell, R., Brassfield, Ch.R., Lillie, R.H.: Implementation of electrical energy by paired half-centers as revealed by structure and function. J. comp. Neurol. 101, 331–404 (1954).PubMedCrossRefGoogle Scholar
  35. Granit, R., Kernell, D., Smith, R.S.: Delayed depolarization and the repetitive response to intracellular stimulation of mammalian motoneurones. J. Physiol. (Lond.) 168, 890–910 (1963).Google Scholar
  36. Gray, J.: Aspects of animal locomotion. Proc. roy. Soc. B 128, 28–61 (1939).CrossRefGoogle Scholar
  37. Gray, J.: The role of peripheral sense organs during locomotion in the vertebrates. In: Physiological Mechanisms in Animal Behaviour (J.F. Danielli, R. Brown, eds.), p. 112–126. Cambridge: Univ. Press 1950.Google Scholar
  38. Gray, J.: Animal Locomotion. London: Weidenfeld and Ni-colson 1968.Google Scholar
  39. Gray, J., Lissmann, H.W.: The effect of deafferentation upon the locomotory activity of amphibian limbs. J. exp. Biol. 17, 227–236 (1940).Google Scholar
  40. Gray, J., Lissmann, H.W.: Further observations on the effect of de-afferentation on the locomotory activity of amphibian limbs. J. exp. Biol. 23, 121–132 (1946).PubMedGoogle Scholar
  41. Gray, J., Sand, A.: The locomotory rhythm of the dogfish (Scyllium canicula) J. exp. Biol. 13, 200–209 (1936).Google Scholar
  42. Grillner, S.: On the generation of locomotion in the spinal dogfish. Exp. Brain Res. 20, 459–470 (1974).PubMedCrossRefGoogle Scholar
  43. Grinnell, A.D.: A study of the interaction between motoneurones in the frog spinal cord. J. Physiol. (Lond.) 182, 612–648 (1966).Google Scholar
  44. Günther, P. G.: Die Innervation der tetanischen und tonischen Fasern der quergestreiften Skelettmuskulatur der Wirbeltiere. Die Innervation des M. sartoriusunddes M. ileofibularis des Frosches. Anat. Anz. 97, 175–191 (1949).Google Scholar
  45. Hering, H.W.: Über die nach Durchschneidung der hinteren Wurzeln auftretende Bewegungslosigkeit des Rückenmarkfrosches. Pflügers Arch. ges. Physiol. 54, 614–640 (1893).Google Scholar
  46. Hess, A.: The structure of extrafusal muscle fibres in the frog and their innervation. Studied by the cholinesterase-technique. Amer. J. Anat. 107, 129–152 (1960).PubMedCrossRefGoogle Scholar
  47. Hess, A.: Vertebrate slow muscle fibers. Physiol. Rev. 50, 40–62 (1970).PubMedGoogle Scholar
  48. Holemans, K.C., Meij, H.S., Meyer, B.J.: The existence of a monosynaptic reflex arc in the spinal cord of the frog. Exp. Neurol. 14, 175–186 (1966).PubMedCrossRefGoogle Scholar
  49. Holmes, S.J.: The Biology of the Frog. New York: McGraw-Hill 1927.Google Scholar
  50. Holst, E. von: Die relative Koordination als Phänomen und als Methode zentral nervöser Funktionsanalyse. Ergebn. Physiol. 42, 228–306 (1939).Google Scholar
  51. Joseph, B.S., Whitlock, D.B.: Central projections of selected spinal dorsal roots in anuran amphibians. Anat. Rec. 160, 279–288 (1968).PubMedCrossRefGoogle Scholar
  52. Kato, G.: The Microphysiology of Nerve. Tokyo: Maruten 1934.Google Scholar
  53. Katz, B., Miledi, R.: A study of spontaneous miniature potentials in spinal motoneurones. J. Physiol. (Lond.) 168, 389–422 (1963).Google Scholar
  54. Kennard, D.W.: The anatomical organization of neurons in the lumbar region of the spinal cord of the frog (Rana temporaria) J. comp. Neurol. 111, 447–468 (1959).PubMedCrossRefGoogle Scholar
  55. Kernell, D.: The delayed depolarization in cat and rat motoneurones. In: Progress in Brain Research (J.C. Eccles, J.P. Schade, eds.), vol. XII, p. 42–55. Amsterdam: Elsevier 1964.Google Scholar
  56. Kernell, D., Sjöholm, H.: Motoneurone models based on “voltage clamp equations” for peripheral nerve. Acta physiol. scand. 86, 546–562 (1972).PubMedCrossRefGoogle Scholar
  57. Kling, U., Székely, G.: Simulation of rhythmic nervous activities. I. Function of networks with cyclic inhibitions. Kybernetik 5, 89–103 (1968).PubMedCrossRefGoogle Scholar
  58. Krüger, P.: Grundlagen des Tetanus und Tonus der quergestreiften Skelettmuskelfasern der Wirbeltiere. Experientia (Basel) 6, 75–80 (1950).CrossRefGoogle Scholar
  59. Kubota, K., Brookhart, J.M.: Inhibitory synaptic potential of frog motor neurons. Amer. J. Physiol. 204, 660–666 (1963 a).PubMedGoogle Scholar
  60. Kubota, K., Brookhart, J.M.: Recurrent facilitation of frog motoneurons. J. Neurophysiol. 26, 877–893 (1963 b).PubMedGoogle Scholar
  61. Kuffler, S.W., Gerard, R.W.: The small-nerve system to skeletal muscle. J. Neurophysiol. 10, 389–394 (1947).Google Scholar
  62. Kuffler, S.W., Vaughan-Williams, E.M.: Small-nerve junctional potentials, the distribution of small motor nerve to frog skeletal muscle, and the membrane characteristics of the fibres they innervate. J. Physiol. (Lond.) 121, 289–318 (1953a).Google Scholar
  63. Kuffler, S.W., Vaughan-Williams, E.M.: Properties of the “slow” skeletal muscle fibres in the frog. J. Physiol. (Lond.) 121, 318–340 (1953b).Google Scholar
  64. Lännergren, J., Smith, R.S.: Types of muscle fibers in toad skeletal muscle. Acta physiol. scand. 68, 263–274 (1966).CrossRefGoogle Scholar
  65. Lassek, A.N., Moyer, L.K.: An ontogenetic study of motor deficits following dorsal brachial rhizotomy. J. Neurophysiol. 16, 243–251 (1953).Google Scholar
  66. Lázár, G.: Efferent pathways of the optic tectum in the frog. Acta biol. Acad. Sci. hung. 20, 171–183 (1969).PubMedGoogle Scholar
  67. Lenhossék, M. von: Der feinere Bau des Nervensystems im Lichte neuester Forschungen. Berlin: Fischer’s Medicin 1895.Google Scholar
  68. Lissmann, H.W.: The neurological basis of the locomotory rhythm in the spinal dogfish (Scyllium canícula, Acanthias vulgaris). II. Deafferentation. J. exp. Biol. 23, 162–176 (1946).PubMedGoogle Scholar
  69. Liu, C.N., Chambers, W.W.: Experimental study of anatomical organization of frog’s spinal cord. Anat. Rec. 127, 326 (1957).Google Scholar
  70. Llinás, R., Nicholson, C.: Electrophysiological properties of dendrites and somata in alligator Purkinje cells. J. Neurophysiol. 34, 532–551 (1971).PubMedGoogle Scholar
  71. Magherini, P.C., Precht, W., Richter, A.: Vestibulospinal effects on hindlimb motoneurons of the frog. Pflügers Arch. 348, 211–223 (1974).PubMedCrossRefGoogle Scholar
  72. Mark, R.F.: Matching muscles and motoneurones. A review of some experiments on motor nerve regeneration. Brain Res. 14, 245–254 (1969).PubMedCrossRefGoogle Scholar
  73. Matsuura, S.: Cholinergic transmission in the recurrent facilitatory pathway of the spinal motoneuron of the toad. Jap. J. Physiol. 21, 475–487 (1971).CrossRefGoogle Scholar
  74. Meij, H.S., Holemans, K.C.: Inhibitory interaction between motoneurons of adjacent segments in the frog spinal cord. Exp. Neurol. 23, 174–186 (1969).PubMedCrossRefGoogle Scholar
  75. Meij, H.S., Holemans, K.C., Meyer, B.J.: Monosynaptic transmission from afferents of one segment to motoneurons of other segments in the spinal cord. Exp. Neurol. 14, 496–505 (1966).PubMedCrossRefGoogle Scholar
  76. Mott, F.W., Sherrington, C.S.: Experiments on the influence of sensory nerves upon movement and nutrition of the limbs. Proc. roy. Soc. B 57, 481–488 (1895).Google Scholar
  77. Nelson, P.G., Burke, R.E.: Delayed depolarization in cat spinal motoneurons. Exp. Neurol. 17, 16–26 (1967).PubMedCrossRefGoogle Scholar
  78. Nieuwenhuys, R.: Comparative anatomy of the spinal cord. In: Progress in Brain Research (J.C. Eccles, J.P. Schade, eds.), vol. XI, p. 1–57. Amsterdam: Elsevier Publ. Co. 1964.Google Scholar
  79. Orkand, D.: A further study of electrical responses in slow and twitch muscle fibres of the frog. J. Physiol. (Lond.) 167, 181–191 (1963).Google Scholar
  80. Phillippson, M.: L’autonomie et la centralisation dans le système nerveux des animaux. Trav. Lab. Physiol. Inst. Solvay (Brux.) 7, 1–208 (1905).Google Scholar
  81. Piatt, J.: Studies on the problem of nerve pattern I. Transplantation of the forelimb primordium to ectopic sites in Ambystoma. J. exp. Zool. 131, 173–202 (1956).CrossRefGoogle Scholar
  82. Pitman, R.M., Tweedle, Ch. D., Cohen, M.J.: Branching of central neurons: Intracellular cobalt injection for light and electron microscopy. Science (N.Y.) 176, 412–414 (1972).CrossRefGoogle Scholar
  83. Purpura, D.P.: Comparative physiology of dendrites. In: The Neurosciences: A study program (G.C. Quarton, T. Melnechuk, F.O. Schmitt, eds.), p. 372–393. New York: Rockefeller Univ. Press 1967.Google Scholar
  84. Ranson, S.W.: Rigidity in deafferented limbs. J. comp. Neurol. 52, 341–346 (1931).CrossRefGoogle Scholar
  85. Retzlaf, E.: Neurohistological basis for the functioning of paired half centers. J. comp. Neurol. 101, 407–442 (1954).CrossRefGoogle Scholar
  86. Roberts, B.L.: Spontaneous rhythms in the motoneurons of spinal dogfish (Scyliorhinus canícula) J. Mar. Biol. Ass. (U.K.) 49, 33–49 (1969).CrossRefGoogle Scholar
  87. Rogers, W.M.: Heterotopic spinal cord grafts in salamander embryos. Proc. nat. Acad. Sci. (Wash.) 20, 247–249 (1934).CrossRefGoogle Scholar
  88. Romanes, G.J.: The motor pools of the spinal cord. In: Progress in Brain Research (J.C. Eccles, J.P. Schadé, eds.), vol. XI, p. 93–119. Amsterdam: Elsevier Publ. Co. 1964.Google Scholar
  89. Rubinson, K.: Projections of the tectum opticum of the frog. Brain, Behav. Evol. 1, 529–561 (1968).CrossRefGoogle Scholar
  90. Sala y Pons, C.: Estructura de la médulla espinal de los batricios. Trab. Lab. Invest. Biol. Univ. Barcelona 3–22 (1892).Google Scholar
  91. Silver, M.L.: The motoneurons of the spinal cord of the frog. J. comp. Neurol. 77, 1–39 (1942).CrossRefGoogle Scholar
  92. Simpson, J.I.: On how a frog is not a cat. Ph. D. Thesis M. I.T. Dept. Mech. Engineering 1969.Google Scholar
  93. Smith, R.H., Ovalle, W.K.: Varieties of fast and slow extrafusal muscle fibres in amphibian hind limb muscles. J. Anat. (Lond.) 116, 1–24 (1973).Google Scholar
  94. Smith, R.S., Lännergren, J.: Types of motor units in the skeletal muscle of Xenopus laevis Nature (Lond.) 217, 281–293 (1968).CrossRefGoogle Scholar
  95. Smith-Harcombe, E., Wyman, R.J.: Diagonal locomotion in deafferented toads. J. exp. Biol. 53, 225–263 (1970).Google Scholar
  96. Snider, S.R., Abood, L.G., Snider, R.S.: Investigations on the neural tissue-limb deplant of the salamander. Exp. Brain Res. 6, 81–88 (1968).PubMedCrossRefGoogle Scholar
  97. Snider, S.R., Snider, R.S., Abood, L.G.: Studies on the neural tissue-limb deplant of salamander. Exp. Neurol. 23, 1–10 (1969).Google Scholar
  98. Sotelo, C., Taxi, J.: Ultrastructural aspects of electrotonic junctions in the spinal cord of the frog. Brain Res. 17, 137–141 (1970).PubMedCrossRefGoogle Scholar
  99. Spencer, W.A., Kandel, E.R.: Electrophysiology of hippocampal neurons IV. Fast prepotentials. J. Neurophysiol. 24, 272–285 (1961).Google Scholar
  100. Stefani, E., Schmidt, H.: Early stage of re-innervation of frog slow muscle fibres. Pflügers Arch. 336, 271–275 (1972).PubMedCrossRefGoogle Scholar
  101. Stensaas, L.J., Stensaas, S.S.: Light and electron microscopy of motoneurons and neuropile in the amphibian spinal cord. Brain Res. 31, 67–84 (1971).PubMedCrossRefGoogle Scholar
  102. Straznicky, K.: Function of heterotopic spinal cord segments investigated in the chick. Acta biol. Acad. Sci. hung. 14, 145–155 (1963).Google Scholar
  103. Straznicky, K., Székely, G.: Functional adaptation of thoracic spinal cord segments in the newt. Acta biol. Acad. Sci. hung. 18, 449–456 (1967).PubMedGoogle Scholar
  104. Stussi, T.: Étude des localisations motrices du reflément lombaire chez la grenouille. Arch. Sci. Physiol. 14, 261–277 (1960).Google Scholar
  105. Székely, G.: Functional specificity of spinal cord segments in the control of limb movements. J. Embryol. exp. Morph. 11, 431–444 (1963).PubMedGoogle Scholar
  106. Székely, G.: Logical network for controlling limb movements in urodela. Acta physiol. Acad. Sci. hung. 27, 285–289 (1965).PubMedGoogle Scholar
  107. Székely, G.: Growth of the Nervous System. In: CIBA Symp. (G.E.W. Wolstenholme, M. O’Connor, eds.), p. 77–93. London: Churchill Ltd. 1968.Google Scholar
  108. Székely, G.: Development of limb movements: Embryological, physiological and model studies. In: CIBA Symp. Growth Nervous System (G.E.W. Wolstenholme, M. O’Connor, eds.), p. 77–93. London: Churchill Ltd. 1968.Google Scholar
  109. Székely, G.: Problems of neuronal specificity in the development of some behavioral patterns in amphibia. In: Aspects of Neurogenesis (G. Gottlieb, ed.), vol. II, p. 115–150). New York-London: Academic Press 1974.Google Scholar
  110. Székely, G.: The morphology of motoneurons and dorsal root fibers in the frog’s spinal cord. Brain Res. 103, 275–290 (1976).PubMedCrossRefGoogle Scholar
  111. Székely, G., Czéh, G.: Localization of motoneurones in the limb moving spinal cord segment of Ambystoma. Acta physiol. Acad. Sci. hung. 32, 3–18 (1967).PubMedGoogle Scholar
  112. Székely, G., Czéh, G.: Muscle activities of partially innervated limbs during locomotion in Ambystoma. Acta physiol. Acad. Sci. hung. 40, 269–286 (1971a).PubMedGoogle Scholar
  113. Székely, G., Czéh, G.: Activity of spinal cord fragments and limbs deplanted in the dorsal fin of Urodele larvae. Acta physiol. Acad. Sci. hung. 40, 303–312 (1971b).PubMedGoogle Scholar
  114. Székely, G., Czéh, G., Vörös, G.: The activity pattern of limb muscles in freely moving normal and deafferented newts. Exp. Brain Res. 9, 53–62 (1969).PubMedCrossRefGoogle Scholar
  115. Székely, G., Gall y as, F.: Intensification of cobaltous sulfide precipitate in frog nervous tissue. Acta biol. Acad. Sci. hung. (1976) (in press).Google Scholar
  116. Székely, G., Szentágothai, J.: Experiments with “model nervous systems”. Acta biol. Acad. Sci. hung. 12, 253–269 (1962).Google Scholar
  117. Taub, E., Berman, A.J.: Movement and learning in the absence of sensory feedback. In: The Neuropsychology of Spatially Oriented Behavior. (S.J. Freedman, ed.), p. 173–192. Home-wood, Ill.: Dorsey Press 1968.Google Scholar
  118. Tiegs, O.W.: Innervation of voluntary muscle. Physiol. Rev. 33, 90–144 (1953).PubMedGoogle Scholar
  119. Tomita, M.: A study on movement pattern of four limbs in walking. IL EMG study on the coordination of muscular activities of the muscles of four limbs during walk in man and dog. [In Japanese.] Zinruigaku Zassi 75, 173–194 (1967).Google Scholar
  120. Tower, S.: Function and structure of chronically isolated lumbosacral spinal cord of the dog. J. comp. Neurol. 67, 109–131 (1937).CrossRefGoogle Scholar
  121. Weiss, P.: A study of motor coordination and tonus in deafferented limbs of amphibia. Amer. J. Physiol. 115, 461–475 (1936).Google Scholar
  122. Weiss, P.: Self-differentiation of the basic patterns of coordination. Comp. Psychol. Monogr. 17, 1–96 (1941).Google Scholar
  123. Weiss, P.: The deplantation of fragments of nervous system in amphibians. J. exp. Zool. 113, 397–461 (1950).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • G. Székely
  • G. Czéh

There are no affiliations available

Personalised recommendations