Skip to main content

Abstract

Although nucleic acids were isolated and described in the last century (MIESCHER), their key position among cell components has been recognized in only the past 30 years:

  • AVERY and co-workers (1944) proved, by transformation experiments, that deoxyribonucleic acid (DNA) is the carrier of genetic information. As life without enzymes and other proteins is impossible, Avery’s discovery implied that there must be a connection between DNA and the synthesis of protein. The question of how information for protein synthesis is coded in DNA and is then passed on could only be answered after the chemical structure of DNA was known.

  • In 1953 WATSON and CRICK published a model for the macromolecular structure of DNA. According to this DNA is an un-branched, linear, double-stranded macromolecule, consisting of two helically-arranged polynucleotide chains with complementary base sequences (Expt. 6). This molecule is replicated semi-conservatively. So far, three different DNA polymerases have been described, of which DNA polymerase III is the most important. However, some other enzymes and proteins are also involved in DNA replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  • CANTONI, G.L., DAVIES, D.R. (eds.): Procedures in Nucleic Acid Research, 667 p. London: Harper and Row Publ. 1966 and Vol. 2, 924 p. (1971).

    Google Scholar 

  • CHARGAFF, E., DAVIDSON, J.N. (eds.): The Nucleic Acids. 3 Volumes. New York: Academic Press 1955–1960.

    Google Scholar 

  • DAVIDSON, J.N.: The Biochemistry of the Nucleic Acids, 396 p. London: Chapman and Hall 1972.

    Google Scholar 

  • DAVIDSON, J.N., COHN, W.E. (eds.): Progress in Nucleic Acid Research and Molecular Biology. 14 Volumes. London: Academic Press 1963–1974.

    Google Scholar 

  • GROSSMAN, L., MOLDAVE, K. (eds.): Methods in Enzymology, Vol. 21. Nucleic Acids, Part D. London: Academic Press 1971.

    Google Scholar 

  • Kornberg, A.: DNA Synthesis, 399 p. San Francisco: Freeman and Co. 1974.

    Google Scholar 

  • MOLDAVE, K., GROSSMAN, L. (eds.): Methods in Enzymology, Vol. 20. Nucleic Acids and Protein Synthesis, Part C. London: Academic Press 1971.

    Google Scholar 

  • THOMAS, CA., JR., ABELSON, J.: The Isolation and Characterization of DNA from Bacteriophage. In: Procedures in Nucleic Acid Research (eds. J.L. Cantoni, D.R. Davies), p. 553–561. New York: Harper & Row 1967.

    Google Scholar 

  • WATSON, J.D.: The Double Helix, 183 p. London: Weidenfeld and Nicolson 1968.

    Google Scholar 

  • HILL, L.R.: The Determination DNA Base Compositions and its Application to Bacterial Taxonomy. In: Identification Methods for Microbiologists, Part B, pp. 177–186. London: Academic Press 1968.

    Google Scholar 

  • LAZURKIN, YU.S., FRANK-KAMWNETSKII, M.D., TRIFONOV, E.N.: Melting of DNA: Its Study and Application as a Research Method. Biopolymers 9, 1253–1306 (1970).

    Article  PubMed  CAS  Google Scholar 

  • MARMUR, J., ROWND, R., SCHILD KRAUT, C.L.: Denaturation and Renaturation of Deoxyribonucleic Acid. In: Progress in Nucleic Acid Research, Vol. 1, pp. 231–300. New York: Academic Press 1963.

    Google Scholar 

  • MARMUR, J., SCHILDKRAUT, C.L., DOTY, P.: Biological and Physical Chemical Aspects of Reversible Denaturation of DNA. In: The Molecular Basis of Neoplasia, pp. 9–43. Austin: University of Texas Press 1962.

    Google Scholar 

  • BAUTZ, E.K.F., HALL, B.D.: The Isolation of T4-Specific RNA on a DNA-Cellulose Column. Proc. Nat. Acad. Sci. U.S. 48, 400–408 (1962).

    Article  CAS  Google Scholar 

  • MAGASANIK, B.: Isolation and Composition of the Pentose Nucleic Acids and of the Corresponding Nucleoproteins. In: The Nucleic Acids (eds. E. Chargaff, J.N. Davidson), Vol. I, pp. 307–368. New York: Academic Press 1955.(((Special Radioisotope Literature

    Google Scholar 

  • CHASE, G.D., RABINOWITZ, J.L.: Principles of Radioisotope Methodology. Minneapolis: Burgess Publ. Comp. 1968.

    Google Scholar 

  • Wolf, G.: Isotopes in Biology. London: Academic Press 1964.

    Google Scholar 

  • BøVRE, K., SZYBALSKI, W.: DNA-RNA Hybridization Techniques. In: Methods in Enzymology, Vol. 21D (eds. L. Grossman, K. Moldave), pp. 350–383. London: Academic Press 1971.

    Google Scholar 

  • DE LEY, J.: Hybridization of DNA. In: Methods in Microbiology, Vol. 5 A (eds. J.R. Norris, D.W. Ribbons) pp. 311–329. London: Academic Press 1971.

    Chapter  Google Scholar 

  • GILLESPIE, D., SPIEGELMAN, S.: A Quantitative Assay for DNA-RNA Hybrids with DNA Immobilized on a Membrane. J. Mol. Biol. 12, 829–842 (1965).

    Article  PubMed  CAS  Google Scholar 

  • MCCARTHY, B.J., CHURCH, R.B.: The Specificity of Molecular Hybridization Reactions. Ann. Rev. Biochem. 39, 131–150 (1970).

    Article  PubMed  CAS  Google Scholar 

  • MIDGLEY, J.E.M.: Hybridization of Microbial RNA and DNA. In: Methods in Microbiology, Vol. 5 A (eds. J.R. Norris, D.W. Ribbons), 331 p. London: Academic Press 1971.

    Chapter  Google Scholar 

  • WARNAAR, S.O., COHEN, J.A.: A Quantitative Assay for DNA-DNA Hybrids Using Membrane Filters. Biophys. Biochem. Res. Communications 24, 554–558 (1966).

    Article  CAS  Google Scholar 

  • CHAMPE, S.P., BENZER, S.: Reversal of Mutant Phenotypes by 5-Fluorouracil: An Approach to Nucleotide Sequences in Messenger-RNA. Proc. Nat. Acad. Sci. US 48, 532–546 (1962).

    Article  CAS  Google Scholar 

  • EDLIN, G.: Gene Regulation during Bacteriophage T4 Development I. Phenotypic Reversion of T4 Amber Mutants by 5-Fluorouracil. J. Molec. Biol. 12, 363–374 (1965).

    Article  PubMed  CAS  Google Scholar 

  • MANDEL, H.G.: The Incorporation of Fluorouracil into RNA and its Molecular Consequences. In: Progress in Molecular and Subcellular Biology (ed. F.E. Hahn) 1, 82–135 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Winkler, U., Rüger, W., Wackernagel, W. (1976). Nucleic Acids and Transcription. In: Bacterial, Phage and Molecular Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66314-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66314-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07602-5

  • Online ISBN: 978-3-642-66314-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics