False Transmitters as Antihypertensive Agents

  • C. C. Porter
  • M. L. Torchiana
  • C. A. Stone
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 39)


Early in the 1960’s, it became apparent that the known ability of α-methyl aromatic amino acids to inhibit aromatic amino acid decarboxylation (Sourkes, 1954; Westerman, Balzer, and Knell, 1958; Denglerand Reichel, 1958; Smith, 1960) was not solely responsible for the depression of biogenic amine concentrations in tissues following the administration of α-methyldopa or α-methyl-m-tyrosine to animals. Norepinephrine concentrations in the tissues of animals which received the amino acids returned to normal considerably more slowly than serotonin and dopamine concentrations (Hess et al., 1961; Porteret al., 1961; Stone et al., 1961), and considerably more potent decarboxylation inhibitors had little effect upon tissue catecholamine concentrations (Udenfriend and Zaltzman-Nlrenberg, 1962).


Tyrosine Hydroxylase Nerve Stimulation Sympathetic Nerve Monoamine Oxidase Antihypertensive Agent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alleva, J. J.: Metabolism of tranylcypromine-C14 and dl-amphetamine-C14 in the rat. J. med. pharm. Chem. 6, 621–624 (1963).CrossRefGoogle Scholar
  2. Almgren, O.: The effect of protriptyline on the disappearance and nerve impulse induced release of labelled metaraminol in the rat. Acta physiol. scand. 82, 539–544 (1971).PubMedCrossRefGoogle Scholar
  3. Almgren, O., Jonason,J.: Relative importance of neuronal and extraneuronal mechanisms for the uptake and retention of noradrenaline in different tissues of the rat. Arch. exp. Path. Pharm. 270, 289–309 (1971).Google Scholar
  4. Almgren, O., Ltjndborg, P.G., Stitzel, R.E.: Release of 3H-metaraminol from subcellular fractions of rat salivary glands by nerve stimulation. Europ. J. Pharm. 6, 109–114 (1969).CrossRefGoogle Scholar
  5. Almgren, O., Lundborg, G.: Release of 3H-metaraminol by adrenergic nerve stimulation in reserpine-treated rats. Europ. J. Pharm. 9, 344–346 (1970).CrossRefGoogle Scholar
  6. Altura, B. M.: Peripheral vascular actions of α-methyldopa and its mode of action on arterioles. Proc. Soc. exp. Biol. (N. Y.) 145, 129–134 (1974).Google Scholar
  7. Altura, B.M.: Pharmacological effects of alphα-methyldopa, alpha-methylnorepinephrine, and octopamine on rat arteriolar, arterial and terminal vascular smooth muscle. Circulation Res. (Suppl. I) 36, 37, I–233–I–240 (1975).Google Scholar
  8. Anden, N.E., Corrodi, H., Ettles, M., Gustafsson, E., Persson, H.: Selective uptake of some catecholamines by the isolated heart and its inhibition by cocaine and phenoxybenzamine. Acta Pharm. (Kbh.) 21, 247–259 (1964).CrossRefGoogle Scholar
  9. Andén, N.E., Corrodi, H., Fuxe, K., Hökfelt, B., Hökfelt, T., Rydin, E, Svensson, T.: Evidence for a central noradrenaline receptor stimulation by Clonidine. Life Sci. 9, 513–524 (1970).PubMedCrossRefGoogle Scholar
  10. Andén, N. E., Engel, J., Rubenson, A.: Mode of action of L-dopa on central noradrenaline mechanisms. Arch. Pharm. 273, 1–10 (1972).CrossRefGoogle Scholar
  11. Andén, N.E., Henning, M.: Adrenergic nerve function, noradrenaline level and noradrenaline uptake in cat nictitating membrane after reserpine treatment. Acta physiol. scand. 67, 498–504 (1966).PubMedCrossRefGoogle Scholar
  12. Antonaccio, M. J., Robson, R.D., Burrell, R.: The effects of L-dopa and L-α-methyldopa on reflexes and sympathetic nerve function. Europ. J. Pharmacol. 25, 9–18 (1974).CrossRefGoogle Scholar
  13. Archer, S., Arnold, A., Kullnig, R.K., Wylie, D.W.: The enzymatic methylation of pyrogallol. Arch. Biochem. Biophys. 87, 153–154 (1960).PubMedCrossRefGoogle Scholar
  14. Axelrod, J.: Studies of sympathomimetic amines. II. The biotransformation and physiological disposition of d-amphetamine, D-p-hydroxyamphetamine and D-methamphetamine. J. Pharmacol, exp. Ther. 110, 315–326 (1954).Google Scholar
  15. Axelrod, J.: O-Methylation of epinephrine and other catechols in vitro and in vivo. Science 126, 400 (1957).PubMedCrossRefGoogle Scholar
  16. Axelrod, J.: Purification and properties of phenylethanolamine-N-methyltransferase. J. biol. Chem. 237, 1657–1660 (1962).PubMedGoogle Scholar
  17. Axelrod, J.: Enzymatic formation of adrenaline and other catechols from monophenols. Science 140, 499–500 (1963).PubMedCrossRefGoogle Scholar
  18. Axelrod, J.: Methylation reactions in the formation and metabolism of catecholamines and other biogenic amines. Pharmacol. Rev. 18, 95–113 (1966).PubMedGoogle Scholar
  19. Axelrod, J., Inscoe, J.K., Daly, J.: Enzymatic formation of O-methylated dihydroxy derivatives from phenolic amines and indoles. J. Pharmacol, exp. Ther. 149, 16–23 (1965).Google Scholar
  20. Axelrod, J., Laroche, M. J.: Inhibition of O-methylation of epinephrine and norepinephrine in vitro and in vivo. Science 130, 800 (1959).PubMedCrossRefGoogle Scholar
  21. Axelrod, J., Tomchik, R.: Enzymatic O-methylation of epinephrine and other catechols. J. biol. Chem. 233, 702–705 (1958).PubMedGoogle Scholar
  22. Bacq, Z.M., Grosselin, L., Dresse, A., Renson, J.: Inhibition of α-methyl-transferase by catechol and sensitization to norepinephrine. Science 130, 453–454 (1959).PubMedCrossRefGoogle Scholar
  23. Barrett, R.E., Balch, T.St.: Uptake of catecholamines into serotonergic nerve cells as demonstrated by fluorescence histochemistry. Experientia (Basel) 27, 663–664 (1971).CrossRefGoogle Scholar
  24. Bayliss, R.I.S., Harvey-Smith, E.A.: Methyldopa in the treatment of hypertension. Lancet 1962 I, 763–768.CrossRefGoogle Scholar
  25. Belleau, B., Burba, J.V.: Tropolones: A unique class of noncompetitive inhibitors of S- adenosylmethionine-catechol-O-methyltransferase. Acta Biochim. Biophys. 154, 195–196 (1961).CrossRefGoogle Scholar
  26. Belleauj B., Moran, J.: Deuterium isotope effects in relation to the chemical mechanism of monoamine oxidase. Ann. N. Y. Acad. Sci. 107, 822–839 (1963).CrossRefGoogle Scholar
  27. Berneis, K.H., DaPrada, M., Pletscher, A.: A possible mechanism for uptake of biogenic amines by storage organelles: incorporation into nucleotide metal aggregates. Experientia (Basel) 27, 917–918 (1971).CrossRefGoogle Scholar
  28. Berneis, K. H., Pletscher, A., DaPrada, M.: Phase separation in solutions of noradrenaline and adenosine triphosphate: influence of bivalent cations and drugs. Brit. J. Pharmacol. 39, 382–389 (1970).Google Scholar
  29. Bhagat, B., Bovell, G., Robinson, I. M.: Influence of cocaine on the uptake of H3-norepi-nephrine and on the responses of isolated guinea-pig atria to sympathomimetic amines. J. Pharmacol, exp. Ther. 155, 472–478 (1967).Google Scholar
  30. Blaschko, H., Richter, D., Schlossman, H.: Oxidation of adrenaline and other amines. Biochem. J. 31, 2187–2196 (1937).PubMedGoogle Scholar
  31. Bogdanski, D.F., Blaszkowski, T. P., Tissari, A. H.: Mechanisms of biogenic amine transport and storage. IV. Relationship between K+ and the Na+ requirement for transport and storage of 5-hydroxytryptamine and norepinephrine in synaptosomes. Acta biochim. biophys. Acad. Sci. hung. 211, 521–532 (1970).CrossRefGoogle Scholar
  32. Bogdanski, D.F., Brodle, B.B.: Role of sodium and potassium ions in storage of norepinephrine by sympathetic nerve endings. Life Sci. 5, 1563–1569 (1966).PubMedCrossRefGoogle Scholar
  33. Bogdanski, D. F., Brodle, B.B.: The effects of inorganic ions on the storage and uptake of H3-norepinephrine by rat heart slices. J. Pharmacol, exp. Ther. 165, 181–189 (1969).Google Scholar
  34. Bogdanski, D.F., Tissari, A., Brodle, B.B.: Role of sodium, potassium, ouabain and reserpine in uptake, storage and metabolism of biogenic amines in synaptosomes. Life Sci. 7, 419–428 (1968).PubMedCrossRefGoogle Scholar
  35. Bolme, P., Fuxe, K.: Pharmacological studies on the hypotensive effects of Clonidine. Europ. J. Pharmacol. 13, 168–174 (1971).CrossRefGoogle Scholar
  36. Booth, A.N., Masri, M.S., Robbins, D.J., Emerson, O.H., Jones, F.T., Deeds, F.: The metabolic fate of gallic acid and related compounds. J. biol. Chem. 234, 3014–3016 (1959).PubMedGoogle Scholar
  37. Boullin, D. J.: A calcium requirement for release of 3H guanethidine by sympathetic nerve stimulation. J. Pharm. Pharmacol. 18, 709–712 (1966).PubMedCrossRefGoogle Scholar
  38. Brenneman, A.R., Kaufman, S.: The tole of tetrahydropteridines in the enzymatic conversion of tyrosine to 3, 4-dihydroxyphenylalanine. Biochem. biophys. Res. Commun. 17, 177–183 (1964).CrossRefGoogle Scholar
  39. Brest, A.N., Seller, R., Onesti, G., Sekine, G., Moyer, J.H.: Preliminary observations on the antihypertensive effectiveness of α-methyldopa, a decarboxylase inhibitor. In: Hypertension, Recent Advances. Philadelphia: Lea and Febiger 1961.Google Scholar
  40. Brodle, B.B., Cho, A.K., Gessa, G.L.: Possible role of p-hydroxynorephedrine in the depletion of norepinephrine induced by d-amphetamine and in tolerance to this drug. In: International Symposium on Amphetamine and Related Compounds. New York: Raven Press 1970.Google Scholar
  41. Brown, G.L., Gdllespie, J.S.: The output of sympathetic transmitter from the spleen of the cat. J. Physiol. (Lond.) 138, 81–102 (1957).Google Scholar
  42. Brunner, H., Hedwall, P.R., Maître, L., Meier, M.: Antihypertensive effects of alphα-methylated catecholamine analogues in the rat. Brit. J. Pharmacol. 30, 108–122 (1967).PubMedGoogle Scholar
  43. Buhs, R.P., Beck, J. L., Speth, O.C., Smith, J. L., Trenner, N.R., Cannon, P. J., Laragh, J. H.: The metabolism of methyldopa in hypertensive human subjects. J. Pharmacol, exp. Ther. 143, 205–214 (1964)Google Scholar
  44. Burba, J.V., Murnaghan, M.F.: Catechol-O-methyltransferase inhibition and potentiation of epinephrine responses by desmethylpapaverine. Biochem. Pharmacol. 14, 823–829 (1964).CrossRefGoogle Scholar
  45. Burn, J.H.: Acetylcholine and “auto-inhibition”. J. Pharm. Pharmacol. 23, 470–471 (1971 a).PubMedCrossRefGoogle Scholar
  46. Burn, J. H.: Release of noradrenaline from sympathetic endings. Nature (Lond.) 231, 237–240 (1971b).CrossRefGoogle Scholar
  47. Burgen, A. S.V., Iversen, L. L.: The inhibition of noradrenaline uptake by sympathomimetic amines in the rat isolated heart. Brit. J. Pharmacol. 25, 34–49 (1965).PubMedGoogle Scholar
  48. Calne, O.B., Stern, G.M., Laurence, D.R., Sharkey, J., Armitage, P.: L-Dopa in postencephalitic Parkinsonism. Lancet 1969 I, 744–746.Google Scholar
  49. Cannon, P.J., Whitlock, R.T., Morris, R.C., Angers, M., Laragh, J.H.: Effect of alphα-methyldopa in severe and malignant hypertension. J. Amer. med. ass. 179, 673–681 (1962).Google Scholar
  50. Carlsson, A.: Pseudotransmitters. J. Neuro-visceral Relations Suppl. 9, 249–260 (1969).Google Scholar
  51. Carlsson, A., Dahlström, A., Fuxe, K., Hillarp, N.-Å.: Failure of reserpine to deplete noradrenaline neurons of α-methylnoradrenaline formed from α-methyldopa. Acta Pharmacol. (Kbh). 22, 270–276 (1965a).CrossRefGoogle Scholar
  52. Carlsson, A., Fuxe, K., Hamberger, B., Lindqvist, M.: Biochemical and histochemical studies on the effects of imipramine-like drugs and (+) amphetamine on central and peripheral catecholamine neurons. Acta physiol. scand. 67, 481–497 (1966).PubMedCrossRefGoogle Scholar
  53. Carlsson, A., Fuxe, K., Hökfelt, T.: Effect of desmethylimipramine, protriptyline and (+) amphetamine on fluorescence of central adrenergic neurons of rats pretreated with α-methyldopa and tetrabenazine or reserpine. Europ. J. Pharmacol. 2, 196–201 (1967 a).CrossRefGoogle Scholar
  54. Carlsson, A., Hillarp, N.Å., Waldeck, B.: Analysis of the Mg++-ATP-dependent storage mechanism in the amine granules of the adrenal medulla. Acta physiol. scand. 59, (Suppl. 215), 1–38 (1963).Google Scholar
  55. Carlsson, A., Lindqvist, M.: in vivo decarboxylation of α-methyldopa and α-methyl-m-tyrosine. Acta physiol. scand. 54, 87–94 (1962).PubMedCrossRefGoogle Scholar
  56. Carlsson, A., Lindqvist, M., Waldeck, B.: Mechanism of release of α-methylated noradrenaline analogues by monoamine oxidase inhibitors. Europ. J. Pharmacol. 3, 34–39 (1968).Google Scholar
  57. Carlsson, A., Waldeck, B.: β-Hydroxylation of tyramine in vivo. Acta pharmacol. (Kbh.) 20, 371–374 (1963).CrossRefGoogle Scholar
  58. Carlsson, A., Waldeck, B.: Mechanism of amine transport in the cell membranes of adrenergic nerves. Acta pharmacol. (Kbh.) 22, 293–300 (1965a).CrossRefGoogle Scholar
  59. Carlsson, A., Waldeck, B.: Inhibition of 3H metaraminol uptake by antidepressive and related agents. J. Pharm. Pharmacol. 17, 243–244 (1965b).PubMedCrossRefGoogle Scholar
  60. Carlsson, A., Waldeck, B.: Structure-activity relationships for release of 14C octopamine from adrenergic nerves by phenylethylamines. Acta pharmacol. (Kbh.) 24, 255–262 (1966a).CrossRefGoogle Scholar
  61. Carlsson, A., Waldeck, B.: Release of 3H-metaraminol by different mechanisms. Acta physiol. scand. 67, 471–480 (1966b).PubMedCrossRefGoogle Scholar
  62. Carlsson, A., Waldeck, B.: Different mechanism of drug-induced release of noradrenaline and its congenors α-methylnoradrenaline and metaraminol. Europ. J. Pharmacol. 4, 165–168 (1968a).CrossRefGoogle Scholar
  63. Carlsson, A., Waldeck, B.: Release of α-methylated noradrenaline analogues by Nialamide-Acta pharmacol. (Kbh.) 26, (6), 501–506 (1968b).CrossRefGoogle Scholar
  64. Cavanaugh, J.H., Griffith, J. D., Oates, J.A.: Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man. Clin. Pharmacol. Ther. 11, 656–664 (1970).PubMedGoogle Scholar
  65. Chang, C.C., Chang, J. C.: A change in the subcellular distribution of noradrenaline in the rat isolated vas deferens effected by nerve stimulation. Brit. J. Pharmacol. 25, 758–762 (1965).PubMedGoogle Scholar
  66. Clark, W.G.: Inhibition of amino acid decarboxylases. In: Metabolic Inhibitions, Vol. I. London: Academic Press 1963.Google Scholar
  67. Cohen, Y., Wepierre, J., Jacquot, C., Rapin, J.: Relation Entre l’activité antihypertensive de I’α-methyldopa et l’apparition de ses metabolites dans le coeur et le cerveau des rats hypertendus. Arch. int. Pharmacodyn. 207, 348–360 (1974).PubMedGoogle Scholar
  68. Colburn, R.W., Goodwin, F.K., Murphy, D.L., Bunney, W.E., Davis, J.M.: Quantitative studies of norepinephrine uptake by synaptosomes. Biochem. Pharmacol. 17, 957–964 (1968).PubMedCrossRefGoogle Scholar
  69. Corrodi, H., Fuxe, K., Hamberger, B., Ljungdahl, A.: Studies on central and peripheral noradrenaline neurons using a new dopamine-β-hydroxylase inhibitor. Europ. J. Pharmacol. 12, 145–155 (1970).CrossRefGoogle Scholar
  70. Cotzias, G.C., Papavasiliou, P.S., Gellene, R.: Modification of Parkinsonism- chronic treatment with L-dopa. New Engl. J. Med. 280, 337–345 (1969).PubMedCrossRefGoogle Scholar
  71. Creveling, C.R., Dalgard, N., Shimizu, H., Daly, S.W.: Catechol-O-methyltransferase: III m- and p-O-methylation of catecholamines and their metabolites. Molec. pharmacol. 6, 691–696 (1970).Google Scholar
  72. Creveling, C.R., Daly, S.W., Witkop, B., Udenfriend, S.: Substructures and inhibitors of dopamine- β-oxidase. Acta biochim. biophys. Acad Sci. hung. 64, 125–134 (1962).Google Scholar
  73. Crout, R.: Effect of inhibiting both catechol-O-methyltransferase and monoamine oxidase on cardiovascular responses to norepinephrine. Proc. Soc. exp. Biol. 108, 482–486 (1961).PubMedGoogle Scholar
  74. Crout, J.R.: Substitute adrenergic transmitters: a newly appreciated mechanism of action of antihypertensive drugs. Circulation Res. 1819, 120–130 (1966).Google Scholar
  75. Crout, J.R., Alpers, H.S., Tatum, E.L., Shore, P.A.: Release of metaraminol (Aramine) from the heart by sympathetic nerve stimulation. Science 145, 828–829 (1964).PubMedCrossRefGoogle Scholar
  76. Crout, J.R., Creveling, C.R., Udenfriend, S.: Norepinephrine metabolism in rat brain and heart. J. Pharmacol, exp. Ther. 132, 269–277 (1960).Google Scholar
  77. Crout, J.R., Johnston, R.R., Webb, W.R., Shore, P.A.: The antihypertensive action of metaraminol (Aramine) in man. Clin. Res. 13, 204 (1965).Google Scholar
  78. Crout, J.R., Shore, P.A.: Release of metaraminol (Aramine) from the heart by sympathetic nerve stimulation. Clin. Res. 12, 180 (1964).Google Scholar
  79. Dahlström, A.: The effects of drugs on axonal transport of amine storage granules. In: Bayer Symposium II. New aspects of storage and release mechanisms of catecholamines. Berlin-Heidelberg-New York: Springer 1970a.Google Scholar
  80. Dahlström, A.: Effect of mitosis inhibitors on the transport of amine storage granules in monoaminergic neurons in the rat. Acta physiol. scand. Suppl 357, 6 (1970b).PubMedGoogle Scholar
  81. Dahlström, A., Fuxe, K., Hamberger, B., Hökfelt, T.: Uptake and storage of catecholamines in rabbit brain after chronic reserpine treatment. J. Pharm. Pharmacol. 19, 345–349 (1967).PubMedCrossRefGoogle Scholar
  82. Dahlström, A., Fuxe, K., Hillarp, N.-Ä.: Site of action of reserpine. Acta pharmacol. (Kbh.) 22, 277–292 (1965).CrossRefGoogle Scholar
  83. Daly, J. W., Axelrod, J., Witkop, B.: Methylation and demethylation in relation to the in vitro metabolism of mescaline. Ann. N. Y. Acad. Sci. 96, 37–43 (1962).PubMedCrossRefGoogle Scholar
  84. Daly, J., Guroff, G.: Production of m-methyltyrosine and p-hydroxymethylphenylalanine from p-methylphenylalanine by phenylalanine hydroxylase. Arch. Biochem. Biophys. 125, 136 (1968).PubMedCrossRefGoogle Scholar
  85. Davis, R.A., Drain, D. J., Horlington, M., Azare, R.L., Urbansra, A.: The effect of L-α-methyldopa and N-2-hydroxybenzyl-N-methylhydrazine (NSD 1039) on the blood pressure of renal hypertensive rats. Life Sci. 3, 193–197 (1963).PubMedCrossRefGoogle Scholar
  86. Day, M.D., Rand, M. J.: A hypothesis for the mode of action of α-methyldopa in relieving hypertension. J. Pharm. Pharmacol. 15, 221–224 (1963).PubMedCrossRefGoogle Scholar
  87. Day, M.D., Rand, M.J.: Some observations on the pharmacology of α-methyldopa. Brit. J-Pharmacol. 22, 72–86 (1964).PubMedGoogle Scholar
  88. Day, M.D., Rand, M. J.: Mode of action of methyldopa. J. Pharm. Pharmacol. 19, 395–396 (1967).PubMedCrossRefGoogle Scholar
  89. Day, M.D., Roach, A. G., Whiting, R. L.: The mechanism of the antihypertensive action of α-methyldopa in hypertensive rats. Europ. J. Pharmacol. 21, 271–280 (1973).CrossRefGoogle Scholar
  90. Dengler, H., Reichel, G.: Hemmung der Dopa Decarboxylase durch α-methyldopa in vivo. Arch. exp. Path. Pharmak. 234, 275–278 (1958).CrossRefGoogle Scholar
  91. Dhasmana, K.M., Spilker, B.A.: On the mechanism of L-dopa induced postural hypotension in the cat. Brit. J. Pharmacol. 47, 437–451 (1973).Google Scholar
  92. D’Iorio, A., Benoiton, N.L., Tong, J.H., Sharma, S.: A new biosynthetic pathway to catecholamines via m-tyrosine. Ad vane. Neurol. 5, 265–270 (1974).Google Scholar
  93. Dollerty, C.T., Harington, M.: Methyldopa in hypertension, clinical and pharmacological studies. Lancet 1962 I, 759–763.Google Scholar
  94. Dorris, R.L., Shore, P.A.: Localization and persistence of metaraminol and α-methyl-m-tyramine in rat and rabbit brain. J. Pharmacol, exp. Ther. 179, 10–12 (1971).Google Scholar
  95. Douglas, W.W., Kanno, T.: The effect of amethocaine on acetylcholine-induced depolarization and catecholamine secretion in the adrenal chromaffin cell. Brit. J. Pharmacol. 30, 612–619 (1967).PubMedGoogle Scholar
  96. Dring, L.G., Smith, R.L., Williams, R.T.: The metabolic fate of amphetamine in man and other species. Biochem. J.116, 425–435 (1970).PubMedGoogle Scholar
  97. Ellenbogen, L., Taylor, R. J., Bkundage, G. B.: On the role of pteridines as co-factors for tyrosine hydroxylase. Biochim. biophys. Res. Commun. 19, 708–715 (1965).Google Scholar
  98. Eränkö, O., Härkönen, M.: Effect of axon division on the distribution of noradrenaline and acetylcholinesterase in sympathetic neurons of the rat. Acta physiol. scand. 63, 411–412 (1965).CrossRefGoogle Scholar
  99. Esterhutzen, A.C., Graham, J.D.P., Lever, J.D., Spriggs, T.L.B.: Catecholamine and acetylcholinesterase distribution in relation to noradrenaline release. An enzyme histochemi-cal and autoradiographic study on the innervation of the cat nictitating muscle. Brit. J. Pharmacol. 32, 46–56 (1968).Google Scholar
  100. Von Etjler, U.S., Hillarp, N.-Å.: Evidence for the presence of noradrenaline in submicrosco-pic structures of adrenergic axons. Nature (Lond.) 117, 44–45 (1965).Google Scholar
  101. Von Ehler, U.S., Lishakjo, F.: Effect of cocaine and tyramine on noradrenaline release and uptake in isolated nerve vesicles. Experientia (Basel) 21, 342–343 (1965 a).CrossRefGoogle Scholar
  102. Von Euler, U.S., Lishajko, F.: Free and bound noradrenaline in the rabbit heart. Nature (Lond.) 205, 179–180 (1965b).CrossRefGoogle Scholar
  103. Von Euler, U. S., Lishajko, F.: Reuptake and net uptake of noradrenaline in adrenergic nerve granules with a note on the affinity for 1 and ¿-isomers. Acta physiol. scand. 71, 151–162 (1967).CrossRefGoogle Scholar
  104. Farmer, J. B.: Impairment of sympathetic nerve responses by dopa, dopamine and their α-methyl analogues. J. Pharm. Pharmacol. 17, 640–646 (1965).PubMedCrossRefGoogle Scholar
  105. Fillion, G., Lltjch, S.: Release of noradrenaline from the dog heart in situ following administration of 5-hydroxy-tryptamine (5-HT). Acta pharmacol. (Kbh.) 28 (Suppl. 1), 45 (1970).Google Scholar
  106. Finch, L., Haeusler, G.: Further evidence for a central hypotensive action of α-methyldopa in both the rat and cat. Brit. J. Pharmacol. 47, 217–228 (1973).Google Scholar
  107. Fischer, J.E., Horst, W.B., Kopin, I. J.: β-Hydroxylated sympathomimetic amines as false neurotransmitters. Brit. J. Pharmacol. 24, 477–484 (1965a).PubMedGoogle Scholar
  108. Fisher, J. E., Kopin, I. J., Axelrod, J.: Evidence for extraneuronal binding of norepinephrine. J. Pharmacol, exp. Ther. 147, 181–185 (1965b).Google Scholar
  109. Folkow, B., Häggendahl, J.: Some aspects of thequantal release of theadrenergictransmitter. In: Bayer Symposium II, 1969. New aspects of storage and release mechanisms of catecholamines. New York-Berlin-Heidelberg: Springer 1970.Google Scholar
  110. Fredholm, B., Sedvall, G.: Influence of sympathetic nerve stimulation on noradrenaline stores in the rat salivary gland. Life Sci. 5, 2023–2032 (1966).CrossRefGoogle Scholar
  111. Friedman, S., Kaufman, S.: 3, 4-Dihydroxyphenylethylamine β-hydroxylase. J. biol. Chem. 240, 4763–4773 (1965).PubMedGoogle Scholar
  112. Fuxe, K., Hillarp, N.-Å.: Uptake of L-dopa and noradrenaline by central catecholamine neurons. Life Sci. 3, 1403–1406 (1964).PubMedCrossRefGoogle Scholar
  113. Fuxe, K., Sedvall, G.: The distribution of adrenergic nerve fibers to the blood vessels in skeletal muscle. Acta physiol. scand. 64, 75–86 (1965).PubMedCrossRefGoogle Scholar
  114. Gaffney, T.E., Chidsey, C.A., Braunwald, E.: Study of the relationship between the neurotransmitter store and adrenergic nerve block induced by reserpine and guanethidine. Circulation Res. 12, 264–268 (1963).PubMedGoogle Scholar
  115. Geffen, L.B., Livett, B.G., Rush, R. A.: Immunohistochemical localization of chromogra-nins in sheep sympathetic neurons and their release by nerve impulses. In: Bayer Symposium II, 1969. New aspects of storage and release mechanisms of catecholamines. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  116. Gessa, G.L., Vargiu, L., Crabai, F.: Interaction of desmethylimipramine (DMI) with the adrenergic and NE releasing action of tyramine, α-methyl-m-tyramine and metaraminol. Life Sci. 5, 501–507 (1966).CrossRefGoogle Scholar
  117. Gessa, G.L., Vacca, L.: Antagonismo da parte della demetilimipramina dell’ effetto adrener-gico della tiramina. Bol. Soc. ital. Biol. Sper. 41, 808–813 (1965).Google Scholar
  118. Gewirtz, G.P., Kopin, I.J.: Release of dopamine-β-hydroxylase with norepinephrine during cat splenic nerve stimulation. Nature (Lond.) 227, 406–407 (1970).CrossRefGoogle Scholar
  119. Gill, J. R., Mason, D. T., Bartter, F. C.: Effects of hydroxyamphetamine (Paredrine) on the function of the sympathetic nervous system in normotensive subjects. J. Pharmacol, exp. Ther. 155, 288–295 (1967).Google Scholar
  120. Gdllis, C.N.: Characteristics of norepinephrine retention by a subcellular fraction of rabbit heart. J. Pharmacol, exp. Ther. 146, 54–60 (1964).Google Scholar
  121. Gillis, C.N., Patton, D.M.: Cation dependence of sympathetic transmitter retention by slices of rat ventricle. Brit. J. Pharmacol. 29, 309–318 (1967).PubMedGoogle Scholar
  122. Glowinski, J., Iversen, L.L., Axelrod, J.: Storage and synthesis of norepinephrine in the reserpine-treated rat brain. J. Pharmacol, exp. Ther. 151, 385–399 (1966).Google Scholar
  123. Godwin-Austen, R.B., Tomlinson, E.B., Frears, C.C: Effects of L-dopa in Parkinson’s disease. Lancet 1969 II, 165–168.Google Scholar
  124. Goldstein, M., Anagnoste, B.: The conversion in vivo of d-amphetamine to (+) p-hydroxy-norephedrine. Acta biochem. biophys. Acad. Sci. hung. 107, 166–168 (1965).Google Scholar
  125. Goldstein, M., Anagnoste, B., Freedman, L.S., Roffman, M., Ebstein, R.P., Park, D.H., Fuxe, K., Hökfelt, T.: Characterisation, localisation and regulation of catecholamine synthesising enzymes, pp. 69–78. In: Usdin, E., Snyder, S.H. (Eds.): Frontiers in Catecholamine Research, Strasbourg, 1973. New York: Pergamon Press 1973.Google Scholar
  126. Goldstein, M., Contrera, J. F.: The activation and inhibition of phenylamine-β-Hiydroxylase. Experientia (Basel) 18, 334 (1962).CrossRefGoogle Scholar
  127. Goldstein, M., Lauber, E., Mc Kereghan, M.R.: The inhibition of dopamine-β-hydroxylase by tropolone and other chelating agents. Biochem. Pharmacol. 13, 1103–1105 (1964).PubMedCrossRefGoogle Scholar
  128. Gorkin, V.Z.: Monoamine oxidases. Pharmacol. Rev. 18, 115–120 (1966).PubMedGoogle Scholar
  129. Groden, B.M.: Parkinsonism occurring with methyldopa treatment. Brit. med. J. 1963 I, 1001.Google Scholar
  130. Gropetti, A., Costa, E.: Tissue concentrations of p-hydroxynorephedrine in rats injected with d-amphetamine: effect of pretreatment with desipramine Life Sci. 8, 653–665 (1969).CrossRefGoogle Scholar
  131. GuRoff, G., Daly, J.W., Jerina, L.M., Renson, J., Witkop, B., Udenfriend, S.: Hydroxylation-induced migration: The NIH shift. Science 157, 1524–1530 (1967).PubMedCrossRefGoogle Scholar
  132. Gutman, Y., Well-Malherbe, H.: Kinetics of catecholamine release by tyramine in rat heart, spleen and uterus. Life Sci. 5, 1293–1298 (1966).CrossRefGoogle Scholar
  133. Haefely, W., Hürlimann, A., Thoenen, H.: The effect of stimulation of sympathetic nerves in the cat pretreated with reserpine, α-methyldopa and α-methyl-m-tyrosine. Brit. J. Pharmacol. 26, 172–185 (1966).PubMedGoogle Scholar
  134. Haefely, W., Hurlimann A., Thoenen, H.: Adrenergic transmitter changes and response to sympathetic nerve stimulation after differing pretreatment with α-methyldopa. Brit. J. Pharmacol. 31, 105–119 (1967).PubMedGoogle Scholar
  135. Häggendal, J.: Some further aspects on the réalèse of the adrenergic transmitter In: Bayer Symposium II. New aspects of storage and release mechanisms of catecholamines. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  136. Häggendal, J., Dahlström, A.: Uptake and retention of 3H-noradrenaline in adrenergic nerve terminals after and axotomy. Europ. J. Pharmacol. 10, 411–415 (1970).CrossRefGoogle Scholar
  137. Häggendal, J., Dahlström, A.: The recovery of noradrenaline in adrenergic nerve terminals of the rat after reserpine treatment. J. Pharm. Pharmacol. 23, 81–89 (1971).0PubMedCrossRefGoogle Scholar
  138. Hamberger, B., Malmfors, T., Norberg, K. A., Sachs, C.: Uptake and accumulation of catecholamines in peripheral adrenergic neurons of reserpinized animals studied with a histochemical method. Biochem. Pharmacol. 13, 841–844 (1964).PubMedCrossRefGoogle Scholar
  139. Hedwall, P.R., Maître, L.: Studies on the localization of the sympathetic blockade produced by alphα-methyldopa. Arch. exp. Path. Pharmak. 270 (Suppl. 1), R 58 (1971).Google Scholar
  140. Heise, A., Kroneberg, G.: α-Sympathetic receptor stimulation in the brain and hypotensive activity of α-methyldopa. Europ. J. Pharmacol. 17, 315–317 (1972).CrossRefGoogle Scholar
  141. Heise, A., Kroneberg, G.: Central neurons α-adrenergic receptors and the mode of action of α-methyldopa. Naunyn Schmiedebergs. Arch. Pharmacol. 279, 285–300 (1973).CrossRefGoogle Scholar
  142. Helle, K.B.: Immunological properties of chromogranin. In: Bayer Symposium II, 1969. New aspects of storage and release mechanisms of catecholamines. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  143. Helle, K.B., Lagercrantz, H., Stjärne, L.: Biochemistry of catecholamine storage: some similarities between whole sympathetic nerve trunk vesicles and membranes of adrenome-dullary vesicles. Acta physiol. scand. 81, 565–585 (1971).PubMedCrossRefGoogle Scholar
  144. Henning, M.: Effect of different dopa decarboxylase inhibitors on the hypotensive response toα-methyldopa in rats. Brit. J. Pharmacol. 34, 233p (1968).Google Scholar
  145. Henning, M.: Interaction of dopa decarboxylase inhibitors with the effect of α-methyldopa on blood pressure and tissue monoamines in rats. Acta pharmacol. (Kbh.) 27, 135–148 (1969).CrossRefGoogle Scholar
  146. Henning, M., Rubenson, A.: Central hypotensive effect of L-3, 4-dihydroxyphenylalanine in the rat. J. Pharm. Pharmacol. 22, 553–560 (1970).PubMedCrossRefGoogle Scholar
  147. Henning, M., Rtjbenson, A.: Evidence that the hypotensive action of methyldopa is mediated by central actions of methylnoradrenaline. J. Pharm. Pharmacol. 23, 407–411 (1971).PubMedCrossRefGoogle Scholar
  148. Henning, M., Van Zwieten, P.A.: Central hypotensive effect of α-methyldopa. J. Pharm. Pharmacol. 20, 409–417 (1968).PubMedCrossRefGoogle Scholar
  149. Hertting, G., Axelrod, J., Kopin, I. J. Whitby, L.G.: Lack of uptake of catecholamines after chronic denervation of sympathetic nerves. Nature (Lond.) 189, 66 (1961).CrossRefGoogle Scholar
  150. Hess, S. M.: The releasing action of α-methyl-β-hydroxyphenylalanine (α-methyl-meta-tyrosine). Arch. int. Pharmacodyn. 138, 584–590 (1962).PubMedGoogle Scholar
  151. Hess, S.M., Connamacher, R.H., Ozaki, M., Udenfriend, S.: The effects of α-methyldopa and α-methyl-m-tyrosine on the metabolism of norepinephrine and serotonin in vivo. J. Pharmacol, exp. Ther. 134, 129–138 (1961).Google Scholar
  152. Holtmeier, H.J., Von Klein-Wisenberg, A., Marongitt, F.: Vergleichende Untersuchungen über die blutdrucksenkende Wirkung von alphα-methyl-Dopa und alphα-methyl-m-Tyrosine. Dtsch. med. Wschr. 91, 198–205 (1966).PubMedCrossRefGoogle Scholar
  153. Holtz, P., Westerman, E.: Über die Dopadecarboxylase und Histidindecarboxylase des Nervengewebes. Arch exp. Path. Pharmak. 227, 538–546 (1956).CrossRefGoogle Scholar
  154. Horn, A.S., Coyle, J.T., Synder, S.H.: Catecholamine uptake by synaptosomes from rat brain. Structure-activity relationships of drugs with differential effects on dopamine and norepinephrine neurones. Molec. Pharmacol. 7, 66–80 (1971).Google Scholar
  155. Horst, W.D., Kopin, I. J., Ramey, E.R.: Influence of sodium and calcium on norepinephrine uptake by isolated perfused rat hearts. Amer. J. Physiol. 215, 817–822 (1968).PubMedGoogle Scholar
  156. Hörtnagl, H., Hörtnagl, H., Winkler, H.: Bovine splenic nerve: characterization of noradrenaline-containing vesicles and other cell organelles by density gradient centrifugation. J. Physiol. (Lond.) 205, 103–114 (1969).Google Scholar
  157. Horwitz, D., Pettinger, W.A., Orvis, H., Thomas, R.E., Sjoerdsma, A.: Effects of methyldopa in fifty hypertensive patients. Clin. Pharmacol. Ther. 8, 224–234 (1966).Google Scholar
  158. Horwitz, D., Sjoerdsma, A.: Effects of alphα-methyl-meta-tyrosine intravenously in man. Life Sci. 3, 41–48 (1964).PubMedCrossRefGoogle Scholar
  159. Hughes, J., Gillis, C.N., Bloom, F.E.: The uptake and disposition of β-norepinephrine in perfused rat lung. J. Pharmacol, exp. Ther. 169, 237–248 (1969).Google Scholar
  160. Ikeda, M., Eahien, L.A., Udenfriend, S.: A kinetic study of bovine adrenal tyrosine hydroxylase. J. biol. Chem. 241, 4452–4456 (1966).PubMedGoogle Scholar
  161. Ikeda, M., Levitt, M., Udenfriend, S.: Phenylalanine as substrate and inhibitor of tyrosine hydroxylase. Arch. Biochem. 120, 420–427 (1967).PubMedCrossRefGoogle Scholar
  162. Ingénito, A.J., Barret, J.P., Procita, L.: A centrally mediated peripheral hypotensive effect of α-methyldopa. J. Pharmacol, exp. Ther. 175, 593–599 (1970).Google Scholar
  163. Iversen, L.L.: Inhibition of noradrenaline uptake by sympathomimatic amines. J. Pharm. Pharmacol. 16, 435–436 (1964).PubMedCrossRefGoogle Scholar
  164. Iversen, L.L.: Role of transmitter uptake mechanisms in synaptic neurotransmission. Brit. J. Pharmacol. 41, 571–591 (1971).Google Scholar
  165. Iversen, L.L., Glowinski, J., Axelrod, J.: The uptake and storage of H3-norepinephrine in the reserpine pretreated rat heart. J. Pharmacol, exp. Ther. 150, 173–183 (1965).Google Scholar
  166. Iversen, L.L., Kravitz, E.A.: Sodium dependence of transmitter uptake of adrenergic nerve terminals. Molec. Pharmacol. 2, 360–362 (1966).Google Scholar
  167. Iversenj, L.L., Whitby, L.G.: The subcellular distribution of catecholamines in normal and tyramine depleted mouse hearts. Biochem. Pharmacol. 12, 582–584 (1963).CrossRefGoogle Scholar
  168. Jaju, B.P., Tangri, K.K., Bhargava, K.P.: Central vasomotor effects of α-methyldopa. Canad. J. phys. Pharmacol. 44, 687–690 (1966).CrossRefGoogle Scholar
  169. Jarrott, B.: Occurrence and properties of catechol-O-methyl transferase in adrenergic neurons. J. Neurochem. 18, 17–27 (1971).PubMedCrossRefGoogle Scholar
  170. Jester, J., Horst, W.D.: Influence of serotonin on adrenergic mechanisms. Biochem. Pharmacol. 21, 333–338 (1972).Google Scholar
  171. Jonsson, J., Grobecker, H., Holtz, P.: Effect of ß-phenethylamine on content and subcellular distribution of norepinephrine in rat heart and brain. Life Sci. 5, 2235–2246 (1966).CrossRefGoogle Scholar
  172. Kakimoto, Y., Armstrong, M.D.: On the identification of octopamine in mammals. J. Biochem. 237, 422–427 (1962).Google Scholar
  173. Kalsmer, S., Nickerson, M.: Disposition of norepinephrine and epinephrine in vascular tissue, determined by the technique of oil immersion. J. Pharmacol, exp. Ther. 165, 152–165 (1969).Google Scholar
  174. Kaufman, S., Friedman, S.: Dopamine-β-hydroxylase. Pharmacol. Rev. 17, 71–100 (1965).PubMedGoogle Scholar
  175. Kilbingerj, H., Lindmar, R., Löffelholz, K., Mtjscholl, E.: Freisetzung von falschen Uber-trägerstoffen nach Infusion von (+)- und (-)-α-methyldopamin. Naunyn-Schmiedebergs Arch. Pharmak. 266, 370–371 (1970).CrossRefGoogle Scholar
  176. Kclbinger, H., Lindmar, R., Löffelholz, K., Muscholl, E., Patil, P.N.: Storage and release of false transmitters after infusion of (+) and (-) α-methyldopamine. Arch. exp. Pharmak. 271, 234–248 (1971).Google Scholar
  177. Kirpekar, S.M., Misu, Y.: Release of noradrenaline by splenic nerve stimulation and its dependence on calcium. J. Physiol (Lond.) 188, 219–234 (1967).Google Scholar
  178. Kirshner, N.: Biosynthesis of adrenaline and noradrenaline. Pharmacol. Rev. 11, 350–357 (1959).PubMedGoogle Scholar
  179. Kirshnerj, N., Mc Goodall, C.: The formation of adrenaline from noradrelanine. Acta biochim. biophys. Acad. Sci. hung. 24, 658–659 (1957).CrossRefGoogle Scholar
  180. Kopin, I.J.: Biochemical aspects of release of norepinephrine and other amines from sympathetic nerve endings. Pharmacol. Rev. 18, 513–523 (1966).PubMedGoogle Scholar
  181. Kopin, I.J.: Biosynthesis and metabolism of catecholamines. Anesthesiology 29 (4), 654–660 (1968a).PubMedCrossRefGoogle Scholar
  182. Kopin, I.J.: Fiase adrenergic transmitters. Ann. Rev. Pharmacol. 8, 377–394 (1968b).PubMedCrossRefGoogle Scholar
  183. Kopin, I. J.: Regulation of catecholamine-synthesizing enzymes. J. Psychiat. Res. 11, 335–338 (1974).PubMedCrossRefGoogle Scholar
  184. Kopin, I. J., Fischer, J. E., Musacchio, J.M., Horst, W.D., Weise, V. K.: False neurochemical transmitters and the mechanism of sympathetic blockade by monoamine oxidase inhibitors. J. Pharmacol, exp. Ther. 147, 186–193 (1965).Google Scholar
  185. Kopin, I.J., Gordon, E.K.: Metabolism of norepinephrine-H3 released by tyramine and reserpine. J. Pharm, exp. Ther. 138, 351–359 (1962).Google Scholar
  186. Kopin, I. J., Fischera, J. E., Musacchio, J., Horst, W.D.: Evidence for a false transmitter mechanism for the hypotensive effect of monoamine oxidase inhibitors. Proc. nat. Acad. Sci. (Wash.) 52, 716–721 (1964).CrossRefGoogle Scholar
  187. Kopin, I. J., Weise, V.K., Sedvall, G. C.: Effect of false transmitters on norepinephrine synthesis. J. Pharmacol, exp. Ther. 170, 246–252 (1969).Google Scholar
  188. Ladtjron, P., Belpaire, F.: Evidence for an extragranular localization of tyrosine hydroxylase. Nature (Lond.) 217, 1155–1156 (1968a).CrossRefGoogle Scholar
  189. Laduron, P., Belpaire, F.: Tissue fractionation and catecholamines. II. Intracellular distribution patterns of tyrosine hydroxylase, dopa decarboxylase, dopamine- β-hydroxylase, phenylethanolamine N-methyltransferase and monoamine oxidase in adrenal medulla. Biochem. Pharmacol. 17, 1127–1140 (1968b).PubMedCrossRefGoogle Scholar
  190. Laduron, P., Belpaire, F.: Transport of noradrenaline and dopamine-β-hydroxylase in sympathetic nerves. Life Sci. 7, 1–7 (1968c).PubMedCrossRefGoogle Scholar
  191. Laguado, J.R., Sourkes, T. L.: Inhibition of amine oxidase by metal ions and by sulphydryl compounds. Canad. J. Biochem. 34, 1185–1194 (1956).CrossRefGoogle Scholar
  192. Lee, F.L.: The relation between norepinephrine content and response to sympathetic nerve stimulation of various organs of cats pretreated with reserpine. J. Pharmacol, exp. Ther. 156, 137–141 (1967).Google Scholar
  193. Lee, F.L., Weiner, N., Trendelenburg, U.:The uptake of tyramine and formation of octopamine in normal and tachyphylactic rat atria. J. Pharmacol, exp. Ther. 155, 211–222 (1967).Google Scholar
  194. Leitz, F.H., Stefano, F.J.E.: Desipramine-induced release of norepinephrine from heart. Biochem. Pharmacol. 19, 1797–1801 (1970).PubMedCrossRefGoogle Scholar
  195. Levitt, M., Spector, S., Sjoerdsma, A., Udenfriend, S.: Elucidation of the rate-limiting step in norepinephrine biosynthesis in the perfused guinea-pig heart. J. Pharmacol, exp. Ther. 148, 1–8 (1965).Google Scholar
  196. Lewander, T.: Displacement of brain and heart noradrenaline by p-hydroxy-norephedrine after administration of p-hydroxyamphetamine. Acta pharmacol. (Kbh.) 29, 20–32 (1971 a).CrossRefGoogle Scholar
  197. Lewander, T.: On the presence of p-hydroxynorephedrine in the rat brain and heart in relation of changes in catecholamine levels after administration of amphetamine. Acta pharmacol. (Kbh.) 29, 33–48 (1971b).CrossRefGoogle Scholar
  198. Lewander, T.: Effects of acute and chronic amphetamine intoxication on brain catecholamines in the guinea pig. Acta pharmacol. (Kbh.) 29, 209–225 (1971c).CrossRefGoogle Scholar
  199. Lindmar, R., MuscHoll, E., Rann, K.H.: Effects of rest and physical activity on the urinary excretion of noradrenaline and α-methylnoradrelanine in human subjects treated with α-methyldopa. Europ. J. Pharmacol. 2, 317–319 (1968).CrossRefGoogle Scholar
  200. Lindmar, R., Muscholl, E., Sprenger, E.: Funktionelle Bedeutung der Freisetzung von Dihy-droxyephedrin und Dihydroxypseudoephedrin als „falschen“sympathischen Überträgerstoffen am Herzen. Arch. exp. Path. Pharmakologie 256, 1–25 (1967).Google Scholar
  201. Lokhandwala, M.F., Buckley, J.P., Jandhyala, B.S.: Effect of methyldopa treatment on peripheral sympathetic nerve function in the dog. Europ. J. Pharmacol. 32, 170–178 (1975).CrossRefGoogle Scholar
  202. Lovenberg, W., Weissbach, H., Udenfriend, S.: Aromatic l-amino acid decarboxylase. J. biol. Chem. 237, 89–93 (1962).PubMedGoogle Scholar
  203. Lundborg, P.: Studies on the uptake and subcellular distribution of catecholamines and their α-methylated analogues. Acta physiol. scand. 72 (Suppl. 302), 3–34 (1967).Google Scholar
  204. Lundborg, P., Stitzel, R.E.: Uptake of biogenic amines by two different mechanisms present in adrenergic granules. Brit. J. Pharmacol. 29, 342–349 (1967a).PubMedGoogle Scholar
  205. Ltjndborg, P., Stitzel, R.E.: Effect of reserpine and protriptyline on the subcellular distribution of 3H-metaraminol in the mouse heart. Brit. J. Pharmacol. 30, 379–384 (1967b).Google Scholar
  206. Ltjndborg, P., Waldeck, B.: Two different mechanisms for incorporation of 3H-metaraminol into the amine-storing granules. J. Pharm. Pharmacol. 18, 762–763 (1966).CrossRefGoogle Scholar
  207. Maître, L.: Presence of α-methyldopa metabolites in heart and brain of guinea pigs treated with α-methyl-tyrosine. Life Sci. 4, 2249–2256 (1965).PubMedCrossRefGoogle Scholar
  208. Maître, L., Staehelin, M.: Presence of α-methylnoradrenalinc (Corbasil) in the heart of guinea pigs treated with metaraminol (“Aramine”). Nature (Lond.) 206, 723–724 (1965).CrossRefGoogle Scholar
  209. Maître, L., Staehelin, M.: On the norepinephrine replacement by α-methylnorepinephrine in the rat heart after treatment with α-methyldopa. Experientia (Basel) 23, 810 (1967).CrossRefGoogle Scholar
  210. Malmfors, T.: Release and depletion of the transmitter in adrenergic terminals produced by nerve impulses after the inhibition of noradrenaline synthesis or reabsorption. Life Sci. 3, 1397–1402 (1964).PubMedCrossRefGoogle Scholar
  211. Malmfors, T.: Studies on adrenergic nerves. Acta physiol. scand. 64 (Suppl. 248), 1–93 (1965).Google Scholar
  212. Matsumoto, C, Horita, A.: Antagonism of Bretylium by sympathomimetic amines. Nature (Lond.) 195, 1212–1213 (1962).CrossRefGoogle Scholar
  213. Mavrides, C, Missala, K., D’orio, H.: The effect of 4-methyltropolone on the metabolism of adrenaline. Canad. J. Biochem. 41, 1581–1587 (1963).PubMedCrossRefGoogle Scholar
  214. McGeer, P.L., McGeer, E.G.: Formation of adrenaline by brain tissue. Biochem. biophys. Res. Commun. 17, 502–507 (1964).CrossRefGoogle Scholar
  215. Michaelson, I.A., Richardson, K.C., Snyder, S.N., Titus, E.O.: The separation of catecholamine storage vesicles from rat heart. Life Sci. 3, 971–978 (1964).PubMedCrossRefGoogle Scholar
  216. Minsker, D.H., Scriabine, A., Stokes, A.L., Stone, C.A., Torchiana, M.L.: Effects of l-dopa alone and in combination with dopa decarboxylase inhibitors on the arterial pressure and heart rate of dogs. Experientia (Basel) 27, 529–531 (1971).CrossRefGoogle Scholar
  217. Mohammed, S., Fasola, A.F., Privitera, P.J., Lipicky, R.J., Martz, B.L., Gaffney, T.E.: Effect of methyldopa on plasma renin activity in man. Circulation Res. 25, 543–548 (1969).PubMedGoogle Scholar
  218. Mohammed, S., Privitera, P. H.: The effect of methyldopa on plasma renin activity in dogs. Clin. Res. 19, 329 (1971).Google Scholar
  219. Molinoff, P., Axelrod, J.: Octopamine: normal occurrence in sympathetic nerves of rats. Science 164, 428–429 (1969).PubMedCrossRefGoogle Scholar
  220. Molinoff, P.B., Axelrod, J.: Distribution and turnover of octopamine in tissues. J. Neuro-chem. 19, 157–163 (1972).Google Scholar
  221. Molinoff, P.B.: The regulation of the noradrenergic neuron. J. Psychiat. Res. 11, 339–345 (1974).PubMedCrossRefGoogle Scholar
  222. Moore, K.E., Laviriere, E.W.: Effects of d-amphetamine and restraint on the content of norepinephrine and dopamine in rat brain. Biochem. Pharmacol. 12, 1283–1288 (1963).PubMedCrossRefGoogle Scholar
  223. Mtjsacchio, J.M., Fischer, J.F., Kopin, I.J.: Subcellular distribution and release by sympathetic nerve stimulation of dopamine and α-methyldopamine. J. Pharmacol, exp. Ther. 152, 51–55 (1966).Google Scholar
  224. Mtrsacchio, J.M., Kopin, I.J., Weise, V.K.: Subcellular distribution of some sympathomimetic amines and their β-hydroxylated derivatives in the rat heart. J. Pharmacol, exp. Ther. 148, 22–28 (1965a).Google Scholar
  225. Musacchio, J.M., Weise, V.K., Kopin, I.J.: Mechanism of norepinephrine binding. Nature (Lond.) 205, 606–607 (1965b).CrossRefGoogle Scholar
  226. Muscholl, E.: In: Handbook of Experimental Pharmacology. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  227. Muscholl, E., Maître, L.: Release by sympathetic stimulation of α-methylnoradrenaline stored in the heart after administration of α-methyldopa. Experientia (Basel) 19, 658–659 (1963).CrossRefGoogle Scholar
  228. Muscholl, E., Rahn, K.H.: Nachweis von α-methylnoradrenaline im Harn von Hypertoniren während einer Behandlung mit α-methyldopa. Klin. Wschr. 44, 1412–1413 (1966).PubMedCrossRefGoogle Scholar
  229. Muscholl, E., Weber, E.: Die Hemmung der Aufnahme von α-methylnoradrenalin in das Herz durch sympathomimetische Amine. Arch. exp. Path. Pharmakol. 252, 134–143 (1965).CrossRefGoogle Scholar
  230. Nagatsu, T., Kuzuya, H., Hidaka, H.: Inhibition of dopamine β-hydroxylase by sulfhydryl compounds and the nature of the natural inhibitors. Acta biochem. biophys. Acad. Sci. hung. 139, 319–327 (1967).Google Scholar
  231. Nagatstj, T., Levitt, M., Udenfriend, S.: Tyrosine hydroxylase, the initial step in norepinephrine biosynthesis. J. biol. Chem. 239, 2910–2917 (1964a).Google Scholar
  232. Nagatstj, T., Levitt, M., Udenfriend, S.: Conversion of L-tyrosine to 3, 4-dihydroxyphenyl-alanine by cell-free preparations of brain and sympathetically innervated tissues. Biochem. biophys. Res. Commun. 14, 543–549 (1964b).Google Scholar
  233. Neff, N.H., Toza, T.N., Hammer, W., Brodle, B.B.: Kinetics of release of norepinephrine by tyramine. Life Sci. 4, 1869–1875 (1965).PubMedCrossRefGoogle Scholar
  234. Nijkamp, F.P., Ezer, J., DeJong, W.: Central inhibitory effect α-methyldopa on blood pressure, heart rate and body temperature of renal hypertensive rats. Europ. J. Pharmacol. 31, 243–249 (1975).CrossRefGoogle Scholar
  235. Nikodejevic, B., Senoh, S., Daly, S.W., Creveling, C.R.: Catechol-O-methyltransferase. II. A new class of inhibitors of catechol-O-methyltransferase; 3, 5-dihydroxy-4-ethoxy-benzoic acid and related compounds. J. Pharmacol, exp. Ther. 174, 83–93 (1970).Google Scholar
  236. Oates, J.A., Gillespie, L., Udenfriend, S., Sjoerdsma, A.: Decarboxylase inhibition and blood pressure reduction by α-methyl-3, 4-dihydroxy-DL-phenylalanine. Science 131, 1890–1891 (1960).PubMedCrossRefGoogle Scholar
  237. Orden, L.S. van, Bensch, K.G., Giarman, N.J.: Histochemical and functional relationships of catecholamines in adrenergic nerve endings. II. Extravesicular norepinephrine. J. Pharmacol, exp. Ther. 155, 428–439 (1967).Google Scholar
  238. Orden, L.S. van, Schaefer, J.M., Burke, J. P., Lodoen, F.V.: Differentiation of norepinephrine storage compartments in peripheral adrenergic nerves. J. Pharmacol, exp. Ther. 174, 357–368 (1970).Google Scholar
  239. Patil, P.N., La Pidus, J.B., Campbell, D., Tye, A.: Steric aspects of adrenergic drugs. II. Effects of DL-isomers and desoxy derivatives on the reserpine-pretreated vas deferens. J. Pharmacol, exp. Ther. 155, 12–23 (1967).Google Scholar
  240. Patil, P.N., Tye, A., La Pidus, J.B.: The effects of reserpine pretreatment of the d and l isomers of some sympathomimetic amines. J. Pharmacol, exp. Ther. 149, 199–205 (1965).Google Scholar
  241. Pellegrino de Iraldi, A., De Robertis, E.: Studies on the origin of the granulated and non-granulated vesicles. In: Bayer Symposium II. New Aspects of Storage and Release Mechanisms of Catecholamines. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  242. Petrack, B., Fetzer, V., Sheppy, F., Manning, T.: Tyrosine hydroxylase in guinea pig brain. Fed. Proc. 29, 277 (1970).Google Scholar
  243. Pettinger, W.A., Horwitz, D., Sjoerdsma, A.: Lactation due to methyldopa. Brit. med. J. 1963 I, 1460.Google Scholar
  244. Phdlippu, A., Schumann, H.J.: Bildung und Speicherung von α-methylnoradrenalin. Arch. exp. Path. Pharmakol. 256, 183–195 (1967).Google Scholar
  245. Pisano, J.J., Creveling, C.R., Udenfriend, S.: Enzymic conversion of p-tyramine to p-hydroxyphenylethanolamine (norsynephrine). Biochem. biophys. Acta 43, 566–568 (1960).CrossRefGoogle Scholar
  246. Poch, G.R., Kopin, I.J.: The role of octopamine in tachyphylaxis to tyramine. Biochem. Pharmacol. 15, 210–212 (1966).PubMedCrossRefGoogle Scholar
  247. Poillon, W.N.: Kinetic properties of brain tyrosine hydroxylase and its partial purification by affinity chromatography. Biochem. biophys. Res. Commun. 44, 64–70 (1971).PubMedCrossRefGoogle Scholar
  248. Porter, C.C,: Aromatic amino acid decarboxylase inhibitors. Fed. Proc. 30, 871–876 (1971).PubMedGoogle Scholar
  249. Porter, C.C., Tittjs, D.: Distribution and metabolism of methyldopa in the rat. J. Pharmacol. exp. Ther. 139, 77–87 (1963).PubMedGoogle Scholar
  250. Porter, C.C., Torchiana, M.L., Totaro, J.A., Stone, C.A.: Displacement of norepinephrine from the rat heart by 14C-metaraminol. Biochem. Pharmacol. 16, 2117–2124 (1967).Google Scholar
  251. Porter, C.C., Totaro, J. A., Leiby, CM.: Some biochemical effects of α-methyl-3, 4-dihydro-xyphenylalanine and related compounds in mice. J. Pharmacol, exp. Ther. 134, 139–145 (1961).Google Scholar
  252. Potter, L.T.: Storage of norepinephrine in sympathetic nerves. Pharmacol. Rev. 18, 439–451 (1966).PubMedGoogle Scholar
  253. Potter, L. T.: Role of intraneuronal vesicles in the synthesis, storage and release of noradrenaline. Circulation Res. 21, Supp. III, 13–24 (1967).PubMedGoogle Scholar
  254. Potter, L.T., Axelrod, J.: Intracellular localization of catecholamines in tissues of the rat. Nature (Lond.) 194, 581–582 (1962).CrossRefGoogle Scholar
  255. Potter, L.T., Axelrod, J.: Properties of norepinephrine storage particles of the rat heart. J. Pharm, exp. Ther. 142, 299–305 (1963a).Google Scholar
  256. Potter, L.T., Axelrod, J.: Subcellular localization of catecholamines in tissues of the rat. J. Pharmacol, exp. Ther. 142, 291–298 (1963b).Google Scholar
  257. Potter, L.T., Axelrod, J.: Studies on the storage of norepinephrine and the effect of drugs. J. Pharmacol, exp. Ther. 140, 199–205 (1963 c).Google Scholar
  258. Potter, W. P. de, Chubb, I. W.: The turnover rate of noradrenergic vesicles. Biochem. J. 125, 373–376 (1971).Google Scholar
  259. Potter,, Schaepdryver, Smith A.D.: Release of chromagranin A and dopamine β-hydroxylase from adrenergic nerves during nerve stimulation. Acta physiol. scand. Suppl. 357, 7 (1970).PubMedGoogle Scholar
  260. Priviteraj, P.J., Mohammed, D.: Studies on the mechanism of renin suppression by alpha-methyldopa. In: Control of Renin Secretion New York: Plenum Press 1972.Google Scholar
  261. Rangno, R.E., Kaufmann, J. S., Cavanatjgh, J.H., Island, D., Watson, J.T., Oates, J.: Effects of a false neurotransmitter, p-hydroxynorephedrine, on the function of adrenergic neurons in hypertensive patients. J. clin. Invest. 52, 952–960 (1973).PubMedCrossRefGoogle Scholar
  262. Robertis,, Pellergrinode, A., Lores, G.R., Zieher, L.M.: Synaptic vesicles from the rat hypothalmus, isolation and norepinephrine content. Life Sci. 4, 193–201 (1965).CrossRefGoogle Scholar
  263. Roberts, D.J., Street, D.M.: Influence of pargyline on the effects of dopamine infusions on sympathetically innvervated tissues. Neuropharmacology 9, 457–465 (1970).PubMedCrossRefGoogle Scholar
  264. Robson, R. D.: Utilization of enzyme inhibitors in the production and control of hypotension with L-dopa in dogs. Fed. Proc. 30, 676 (1972).Google Scholar
  265. Rosell, S., Kopin, I.J., Axelroda,J.: Release of tritiated epinephrine following sympathetic nerve stimulation. Nature (Lond.) 210, 301 (1964).CrossRefGoogle Scholar
  266. Ross, S. B., Renyi, A. L.: Blocking action of sympathomimetic amines on the uptake of tritiated noradrenaline by mouse cerebral cortex tissues in vitro. Acta pharmacol. (Kbh.) 21, 226–239 (1964).CrossRefGoogle Scholar
  267. Ross, S.B., Renyi, A.L.: Active uptake of tritiated metaraminol by mouse brain slices in vitro. Life Sci. 5, 639–647 (1966).PubMedCrossRefGoogle Scholar
  268. Rubenson, A.: Further studies on the mechanism of the central hypotensive effect of L-dopa, DL-m-tyrosine and L-α-methyldopa. J. Pharm. Pharmacol. 23, 228–230 (1971).PubMedCrossRefGoogle Scholar
  269. Rubensonj, A.: Analysis of the action of m-tyrosine on blood pressure in the conscious rat: evidence for a central hypotensive action. J. Pharm. Pharmacol. 23, 412–419 (1971).CrossRefGoogle Scholar
  270. Rubin, R. P.: The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22, 389–428 (1970).PubMedGoogle Scholar
  271. Rutledge, C.O., Jonason, J.: Metabolic pathways of dopamine and norepinephrine in rabbit brain in vitro. J. Pharmacol, exp. Ther. 157, 493–502 (1967).Google Scholar
  272. Sannerstedt, R., Bojs, G., Varnauskas, E., Werko, L.: Alphα-methyldopa in arterial hypertension. Acta med. scand. 174, 53–67 (1963).PubMedCrossRefGoogle Scholar
  273. Schmitt, H., Schmitt, H., Fenard, S.: Evidence for an a-sympathomimetic component in the effect of Catapresan on vasomotor centers. Europ. J. Pharmacol. 14, 98–100 (1971).CrossRefGoogle Scholar
  274. Schümann, H. J.: Nachweis von Oxytyramin (Dopamin) in Sympathischen Nerven und Ganglien. Arch. exp. Path. Pharmakologie 227, 566–573 (1956).Google Scholar
  275. Schümann, H.J., Grobecker, H.: Nachweis und Lokalization von α-methylnoradrenalin im Meerschweinchenorgan nach Vorbehandlung mit α-methyl-dopa. Arch. exp. Path. Pharmakologie 247, 297 (1965).CrossRefGoogle Scholar
  276. Schmitt, F. O.: Fibrous proteins — Neuronal organelles. Proc. nat. Acad. Sci. (Wash.) 60, 1092–1101 (1968).CrossRefGoogle Scholar
  277. Schmitt, H., Petillot, N.: Influence du replacement de la noradrenaline par des faux médiateurs et de L’inhibition de la synthesis sur L’excitabilité sympathique. J. Pharmacol. (Paris) 1, 183–194 (1970).Google Scholar
  278. Schoot, J. B. van der, Creveling, C. R.: Substrates and Inhibitors of dopamine-β-hydroxylase. In: Advances in Drug Research, Vol. 2. New York: Academic Press 1965.Google Scholar
  279. Scriabine, A., Clineschmidt, B.V., Sweet, C.S.: Central noradrenergic control of blood pressure. Ann. Rev. Pharmacol. Toxicol. 16, 113–123 (1976).CrossRefGoogle Scholar
  280. Sedvall, G., Thorson, J.: Adrenergic transmission at vasoconstrictor nerve terminals partially depleted by norepinephrine. Acta physiol. scand. 64, 251–258 (1965).PubMedCrossRefGoogle Scholar
  281. Seiden, L.S., Westley, J.: Partial purification of monoamine oxidase from rat brain. Acta biochim. biophys. Acad. Sci. hung. 58, 363–364 (1962).Google Scholar
  282. Senoh, S., Daly, J., Axelrod, J., Witkop, B.: Enzymatic p-O-methylation by catechol-O-methyl transferase. J. Amer. chem. Soc. 81, 6240–6245 (1959).CrossRefGoogle Scholar
  283. Shore, P.A.: The mechanism of norepinephrine depletion by reserpine, metaraminol and related agents. The role of monoamine oxidase. Pharmacol. Rev. 18, 561–568 (1966).PubMedGoogle Scholar
  284. Shore, P.A.: Transport and storage of biogenic amines. Ann. Rev. Pharmacol. 12, 209–226 (1972).PubMedCrossRefGoogle Scholar
  285. Shore, P.A., Busfield, D., Alpers, H.S.: Binding and release of metaraminol: Mechanism of norepinephrine depletion by α-methyl-m-tyrosine and related agents. J. Pharmacol, exp. Ther. 146, 194–199 (1964).Google Scholar
  286. Sjoerdsma, A., Vendsaltj, A., Engelman, K.: Studies on the metabolism and mechanisms of action of methyldopa. Circulation 28, 492–502 (1963).PubMedGoogle Scholar
  287. Sjoerdsma, A., Sttjdnitz, W.von: Dopamine- β-oxidase activity in man, using hydroxyam-phetamine as substrate. Brit. J. Pharmacol. 20, 278–284 (1963).PubMedGoogle Scholar
  288. Smith, A. P., Potter, W. P. de, Schaepdryver, Subcellular fractionation of bovine splenic nerves. Arch. int. Pharmacodyn. 179, 495–496 (1969).PubMedGoogle Scholar
  289. Smith, S.E.: The pharmacological actions of 3, 4-dihydroxyphenyl-α-methylalanine (α-methyldopa), an inhibitor of 5-hydroxytryptophan decarboxylase. Brit. J. Pharmacol. 15, 319–327 (1960).PubMedGoogle Scholar
  290. Smythies, J.R., Antun, F., Yank, G., Yorke, C.: Molecular mechanisms of storage of transmitters in synaptic terminals. Nature (Lond.) 231, 185–188 (1971).CrossRefGoogle Scholar
  291. Snyder, S.H., Michaelson, I.A., Musacchio, J.: Purification of norepinephrine storage granules from rat heart. Life Sci. 965–970 (1964).Google Scholar
  292. Snyder, S.H., Taylor, K.M., Coyle, J.T., Meyerhoff, J.L.: The role of brain dopamine in behavioral regulation and the actions of psychotropic drugs. Amer. J. Psychiat. 127, 117–125 (1970).Google Scholar
  293. Sotjrkes, T. L.: Inhibition of dihydroxyphenylalanine decarboxylase by derivatives of phenylalanine. Arch. Biochem. Biophys. 51, 444–456 (1954).CrossRefGoogle Scholar
  294. Sotjrkes, T.L., Murphy, G.F., Chavez, B., Zielinska, M.: The action of some α-methyl and other amino acids on cerebral catecholamines. J. Neurochem. 8, 109–115 (1961).CrossRefGoogle Scholar
  295. Sourkesj, T.L., Murphy, G.F., Rabinovitch, S.: Conversion of DL-m-tyrosine to dopamine in the rat. Nature (Lond.) 189, 577–578 (1961).CrossRefGoogle Scholar
  296. Van Spanning, H.W., VanZwieten, P.A.: The interaction between alphα-methyldopa and tricyclic antidepressants. Int. J. Clin. Pharmacol. 11, 65–67 (1975).Google Scholar
  297. Spector, S.: Inhibitors of endogenous catecholamine biosynthesis. Pharmacol. Rev. 18, 599–609 (1966).PubMedGoogle Scholar
  298. Spector, S., Gordon, R., Sjoerdsma, A., Udenfriend, S.: End-product inhibition of tyrosine hydroxylase on a possible mechanism for regulation of norepinephrine synthesis. Molec. Pharmacol. 3, 549–555 (1967).Google Scholar
  299. Spector, S., Sjoerdsma, A., Udenfriend, S.: Blockade of endogenous norepinephrine synthesis by α-methyltryosine, an inhibitor of tyrosine hydroxylase. J. Pharmacol, exp. Ther. 147, 86–95 (1965).Google Scholar
  300. Stjärne, L.: Studies on noradrenaline biosynthesis in nerve tissues. Acta physiol. scand. 67, 441–454 (1966).PubMedCrossRefGoogle Scholar
  301. Stjärne, L.: Quantal or graded secretion of adrenal medullary hormone and sympathetic neurotransmitter. In: Bayer Symposium II. New Aspects of Storage and release mechanisms of catecholamines. Berlin-Heidelberg-New York: Springer 1970.Google Scholar
  302. Stjärne, L., Hedqvist, P., Lagercrantz, H.: Catecholamines and adenine neucleotide material in effluent from stimulated adrenal medulla and spleen. Biochem. Pharmacol. 9, 1147–1158(1970).CrossRefGoogle Scholar
  303. Stjärne, L., Lishajko, F.: Localization of different steps in noradrenaline synthesis to different fractions of a bovine splenic nerve homogenate. Biochem. Pharmacol. 16, 1719–1729 (1967).PubMedCrossRefGoogle Scholar
  304. Stinson, R.H.: Electrical stimulation of the sympathetic nerves of the isolated rabbit ear and the fate of the neurohormone released. Canad. J. Biochem. Phys. 39, 309–316 (1961).CrossRefGoogle Scholar
  305. Stock, K., Westerman, E.: Effect of α-methyldopa and and α-methyl-m-tyrosine on the mobilization of free fatty acids. Experientia (Basel) 20, 495–496 (1964).CrossRefGoogle Scholar
  306. Stock, K., Westerman, E.: The significance of noradrenaline content in fatty tissue for the mobilization of unesterified fatty acids. Arch. exp. Path. Pharmak. 251, 465–487 (1965).Google Scholar
  307. Stone, C.A.: False adrenergic neurotransmission In: Proc. Symp. Physiol. Pharmacol. Vase. Neuroeffector Systems. Basel: Karger 1971.Google Scholar
  308. Stone, C.A., Porter, C.C., Stavorski, J.M., Ludden, C.T., Totaro, J.A.: Antagonism of certain effects of catecholamine-depleting agents by antidepressant and related drugs. J. Pharmacol, exp. Ther. 144, 196–204 (1964).Google Scholar
  309. Stone, C.A., Porter, C.C., Watson, L.S., Ross, C.A.: Pharmacology of decarboxylase inhibitors. In: Hypertension-Recent Advances. Philadelphia: Lea and Febiger 1961.Google Scholar
  310. Stone, CA., Stavorski, J.: Comparative effects of methyldopa and reserpine on mice and phenethylamine-induced cardioacceleration in the dog. Biochem. Pharmacol. 12, 201 (1963).Google Scholar
  311. Stone, C.A., Stavorski, J.M., Ludden, C.T., Wenger, H.C., Torchiana, M.L.: Some direct and indirect sympathomimetic actions of metaraminol. Arch. int. Pharmacodyn. 161, 49–60 (1966).PubMedGoogle Scholar
  312. Strang, R.R.: Parkinsonism occurring during methyldopa therapy. Canad. med. ass. J. 95, 928–929 (1966).PubMedGoogle Scholar
  313. Strauss, R.G., Mohammed, S., Loggie, J.M.H., Schubert, W.K., Fasola, A.F., Gaffney, T.E.: The effect of plasma renin activity in a child with Bartter’s syndrome. J. Pediat. 77, 1071–1074 (1970).PubMedCrossRefGoogle Scholar
  314. Thoa, N.B., Johnson, D.G., Kopin, I.J.: Inhibition of norepinephrine biosynthesis by α-methylamino acids in the guinea pig vas deferens. J. Pharmacol, exp. Ther. 180, 71–77 (1972a).Google Scholar
  315. Thoa, N.B., Wooten, G.F., Axelrod, J., Kopin, I.J.: Inhibition of dopamine-β-hydroxylase (DBH) and norepinephrine (NE) release from sympathetic nerves by colchicine, vinblastine and cytochalasin-B, and its enchancement by dibutyryl cyclic-AMP. Fed. Proc. 31, 566 A (1972b).Google Scholar
  316. Thoenen, H., Haefely, W., Gey, K.F., Hürlimann, A.: Diminished effects of sympathetic nerve stimulation in cats treated with disulfiram. Liberation of dopamine as sympathetic transmitter. Life Sci. 4, 2033–2038 (1965).PubMedCrossRefGoogle Scholar
  317. Thoenen, H., Haefely, W., Gey, K.F., Hurlimann, A.: Ersatz von Noradrenalin durch Dopamin als postganglionärer sympathetischer Transmitter bei Hemmung der Dopamin β-hydroxylase durch Disulfiram. Helv. physiol. pharmacol. Acta 24, C118–C119 (1966).Google Scholar
  318. Thoenen, H., Haefely, W., Gey, K.F., Hürlimann, A.: Quantitative aspects of the replacement of norepinephrine by dopamine as a sympathetic transmitter after inhibition of dopamine-β-hydroxylase by disulfiram. J. Pharmacol, exp. Ther. 156, 246–251 (1967a).Google Scholar
  319. Thoenen, H., Haefely, W., Gey, K.F., Hürlimann, A.: Liberation of α-methyldopamine as a “false” sympathetic transmitter after pretreatment of cats with α-methyldopa and disulfiram. Arch. exp. Path. Pharmacol. 258, 181–196 (1967b).Google Scholar
  320. Tissari, A.H., Schonhofer, P.S., Bogdanski, D.F., Brodie, B.B.: Mechanism of biogenic amine transport. II. Relationship between sodium and the mechanism of ouabain blockade of the accumulation of serotonin and norepinephrine by synaptosomes. Molec. Pharmacol. 5, 593–604 (1969).Google Scholar
  321. Titus, E., Dengler, H.J.: The mechanism of uptake of norepinephrine. Pharmacol. Rev. 18, 525–535 (1966).PubMedGoogle Scholar
  322. Torchiana, M.L., Lotti, V.J., Battelle, S., Clark, C.M., Stormo, G., Stone, C.A.: Central hypotensive action of methyldopa and L-dihydroxyphenylalanine. Proc. Inter. Pharmacol. Congress (1972).Google Scholar
  323. Torchiana, M.L., Lotti, V.J., Clark, C.M., Stone, C.A.: Comparison of centrally mediated hypotensive action of methyldopa and dopa in cats. Arch. int. Pharmacodyn. 205, 103–113 (1973).PubMedGoogle Scholar
  324. Torchiana, M.L., Porter, C.C., Stone, C.A.: Relation between molecular configuration and certain biological actions of α-methyldopamine and α-methyl-m-tyramine and their β-hydroxylated products, α-methylnorepinephrine and metaraminol. Arch. int. Pharmacodyn. 174, 118–134 (1968).PubMedGoogle Scholar
  325. Torchiana, M.L., Porter, C.C., Stone, C.A., Hanson, H.M.: Some biochemical and pharmacological actions of α-methylphenylalanine. Biochem. Pharmacol. 19, 1601–1614 (1970).PubMedCrossRefGoogle Scholar
  326. Torchiana, M.L., Porter, C.C., Watson, L.S., Stone, C.A.: Relationship of cardiovascular amd antihypertensive effects of methyldopa with α-methyl-norepinephrine concentrations in the hearts of rats. Pharmacologist 7, 145 (1965).Google Scholar
  327. Torchiana, M.L., Wenger, H.C., Stavorski, J., Ludden, C.T., Stone, C.A.: Effect of methyldopa and related agents on pressor responses to tyramine in reserpine-pretreated rats and dogs. J. Pharmacol, exp. Ther. 151, 242–252 (1966).Google Scholar
  328. Trendelenburg, U.: Supersensitivity and subsensitivity to sympathomimetic amines. Pharmacol. Rev. 15, 225–276 (1963).PubMedGoogle Scholar
  329. Trendelenburg, U., Muskus, A., Fleming, W.W.: Modification by reserpine of the action of sympathomimetic amines in spinal cats; a classification of sympathomimetic amines. J. Pharmacol, exp. Ther. 138, 170–180 (1962).Google Scholar
  330. Udenfriendj, S., Zaltzman-Nirenberg, P.: On the mechanism of the norepinephrine release produced by α-methyl-metatyrosine. J. Pharmacol. 138, 194–199 (1962).Google Scholar
  331. Udenfriend, S., Zaltzman-Nirenberg, P., Gordon,R., Spector, S.: Evaluation of the biochemical effects produced in vivo by inhibitors of the three enzymes involved in norepinephrine biosynthesis. Molec. Pharmacol. 2, 95–105 (1966).Google Scholar
  332. Udenfriend, S., Zaltzman-Nerenberg, P., Nagatsu, T.: Inhibitors of purified beef adrenal tyrosine hydroxylase. Biochem. Pharmacol. 14, 837–845 (1965).PubMedCrossRefGoogle Scholar
  333. Vaidya, R.A., Vaidya, A.B., Woert, M.H.van, Kase, N.G.: Galactorrhea and Parkinsonlike syndrome: an adverse effect of α-methyldopa. Metabolism 19, 1068–1070 (1970).PubMedCrossRefGoogle Scholar
  334. Waldmeier, P., Hedwall, P.R., Maître, L.: On the role of α-methyldopamine in the antihypertensive effect of α-methyldopa. Naunyn-Schmiedebergs Arch. Pharmacol. 289, 303–314 (1975).PubMedCrossRefGoogle Scholar
  335. Watanabe, A.M., Chase, T.N., Cardon, P. V.: Effect of L-dopa alone and in combination with an extracerebral decarboxylase inhibitor on blood pressure and some cardiovascular reflexes. Clin. Pharmacol. Ther. 11, 740–746 (1970).Google Scholar
  336. Watanabe, A.M., Parks, L.C., Kopin, I.J.: Modification of the cardiovascular effects of L-dopa by decarboxylase inhibitors. J. clin. Invest. 50, 1322–1328 (1971).PubMedCrossRefGoogle Scholar
  337. Weiner, N., Jardetsky, O.: A study of catecholamine nucleotide complexes by nuclear magnetic resonance spectroscopy. Arch. exp. Path. Pharmakol. 248, 308–318 (1964).CrossRefGoogle Scholar
  338. Weinshilboumjr M., Thoa, B.N., Johnson, D.G., Kopin, I.J., Axelrod, J.: Proportional release of norepinephrine and dopamine-hydroxylase from sympathetic nerves. Science 24, 1349–1351 (1971).CrossRefGoogle Scholar
  339. Westermanj E., Balzerj H., Knell, J.: Hemmung der Serotoninbildung durch α-methyldopa. Arch. exp. Path. Pharmakol. 234, 194–205 (1958).Google Scholar
  340. Whitnack, E., Leff, A., Mohammed, S., Gaffney, T.E.: The effect of L-dopa on chronotropic responses to cardioaccelerator nerve stimulation in dogs. J. Pharmacol, exp. Ther. 177, 409–414 (1971).Google Scholar
  341. Whitsett, T.L., Haltjshka, P.V., Goldberg, L.I.: Attenuation of postganglionic sympathetic nerve activity by L-dopa. Circulation Res. 27, 561–570 (1970).PubMedGoogle Scholar
  342. Yahr, M.D., Duvoisin, R.C., Schear, M.J., Barrett, E.E., Hoehn, M.M.: Treatment of Parkinsonism with levodopa. Arch. Neurol. (Paris) 21, 343–354 (1969).Google Scholar
  343. Zwieten, P.A.Van, Pauer, M., Van Spanning, H.W., de Langen, C.: Interaction between centrally acting hypotensive drugs and tricyclic antidepressants. Arch. int.Pharmacodyn. 214, 12–30 (1975).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1977

Authors and Affiliations

  • C. C. Porter
  • M. L. Torchiana
  • C. A. Stone

There are no affiliations available

Personalised recommendations