Cholesterin

Chemie, Physiologie und Pathophysiologie
  • A. Weizel
  • M. Liersch
Part of the Handbuch der inneren Medizin book series (INNEREN, volume 7 / 4)

Zusammenfassung

Das Cholesterin ist der quantitativ wichtigste Vertreter der Stoffklasse der Steroide im tierischen Organismus. Es ist das vorherrschende Steroid der Wirbeltiere, während bei den Wirbellosen, den Hefen und Pflanzen zahlreiche andere Steroide neben dem Cholesterin von Wichtigkeit sind. Cholesterin liegt im Körper in freier Form, als Ester langketti-ger Fettsäuren und als Sulfat vor. Cholesterin ist ein wesentlicher Bestandteil der Zellmembran und kann daher in allen tierischen Geweben nachgewiesen werden. Darüber hinaus ist das Cholesterin der Vorläufer der Gallensäuren, der Nebennierenrindenhor-mone und der Sexualhormone.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abell, L.L., Mosbach, E.H., Kendall, F.E.: Cholesterol metabolism in the dog. J. biol. Chem. 220, 527–536 (1956).PubMedGoogle Scholar
  2. Agranoff, B.W., Eggerer, H., Henning, U., Lynen, F.: Isopentenyl pyrophosphate isomerase. J. Amer. Chem. Soc. 81, 1254–1255 (1959).Google Scholar
  3. Alexander, G.J., Schwenk, E.: Studies of biosynthesis of cholesterol. IX. Zymosterol as a precursor of cholesterol. Arch. Biochem. 66, 381–387 (1957).PubMedGoogle Scholar
  4. Alexandrow, D., Klopotowski, T., Smietanska, Z.: Effect of physical activity upon cholesterol synthesis in the rat lifer. J. Atheroscler. Res. 4, 351–355 (1964).Google Scholar
  5. Anderson, K.E., Kok, E., Javitt, N.B.: Bile acid synthesis in man. Metabolism of 7α-hydroxycholesterol—14C und 26-hydroxycholesterol — 3H. J. clin. Invest. 51, 112–117 (1972).PubMedGoogle Scholar
  6. Anfinsen, C.B., Horning, M.G.: Enzymatic degradation of the cholesterol side chain in cell free preparations. J. Amer. Chem. Soc. 75, 1511–1512 (1953).Google Scholar
  7. Avigan, J., Steinberg, D.: Sterol and bile acid excretion in man and the effects of dietary fat. J. clin. Invest. 44, 1845–1856 (1965).PubMedGoogle Scholar
  8. Avigan, J., Steinberg, D., Berman, M.: Distribution of labelled cholesterol in animal tissues. J. Lipid Res. 3, 216–221 (1962).Google Scholar
  9. Back, P.: Urinary profile of bile acids in liver Disease. In: Bile Acids in Human Diseases (P. Back, W. Gerok, Eds.). Stuttgart: Schattauer 1973.Google Scholar
  10. Back, P., Hamprecht, B., Lynen, F.: Regulation of cholesterol biosynthesis in rat liver. Diurnal changes of activity and influence of bile acids. Arch. Biochem. 123, 11–21 (1969).Google Scholar
  11. Back, P., Ross, K.: Identification of 3β-Hydroxy-5-cholenoic acid in human meconium. Hoppe-Seylers Z. physiol. Chem. 354, 83–89 (1973).PubMedGoogle Scholar
  12. Baker, R.D., Searle, G.W.: Bile salt absorption at various levels of rat small intestine. Proc. Soc. exp. Biol. (N.Y.) 105, 521–523 (1960).Google Scholar
  13. Balasubramaniam, S., Mitropoulos, K.A., Myant, N.B.: Evidence for the compartmentation of cholesterol in rat liver microsomes. Europ. J. Biochem. 34, 77–83 (1973).PubMedGoogle Scholar
  14. Barth, C., Hackenschmidt, J., Ullmann, H., Decker, K.: Inhibition of Cholesterol Synthesis by (—)-Hydroxy-citrate in Perfused Rat liver. Evidence for an Extramitochondrial Mevalonate Synthesis from Acetyl Coenzym A. FEBS Letters 22, 343–346 (1972).PubMedGoogle Scholar
  15. Barth, C.A., Hackenschmidt, H.J., Weis, E.E., Decker, K.F.A.: Influence of Kynurenate on Cholesterol and Fatty Acid Synthesis in Isolated Perfused Rat Liver. J. biol. Chem. 248, 738–739 (1973).PubMedGoogle Scholar
  16. Beher, W.T., Anthony, W.L., Beher, M.E.: Effects of conjugated bile acids on in vivo cholesterol metabolism in the mouse. Proc. Soc. exp. Biol. (N.Y.) 107, 49–51 (1961).Google Scholar
  17. Beher, W.T., Baker, G.D.: Build up and regression of inhibitory effects of cholic acid on in vivo liver cholesterol synthesis. Proc. Soc. exp. Biol. (N.Y.) 101, 214–217 (1959).Google Scholar
  18. Beher, W.T., Baker, G.D., Anthony, W.L.: Effect of dietary cholic acid on in vivo cholesterol metabolism. Proc. Soc. exp. Biol. (N.Y.) 100, 3–6 (1959).Google Scholar
  19. Beher, W.T., Baker, G.D., Anthony, W.L.: Effect of bile acids on fecal excretion of endproducts of cholesterol metabolism. Amer. J. Physiol. 199, 736–740 (1960).Google Scholar
  20. Beher, W.T., Baker, G.D., Anthony, W.L.: Feedback control of cholesterol biosynthesis in the mouse. Proc. Soc. exp. Biol. (N.Y.) 109, 863–868 (1962).Google Scholar
  21. Beher, W.T., Baker, G.D., Penney, G.D.: A comparative study of the effects of bile acids and cholesterol on cholesterol metabolism in the mouse, rat, hamster, and guinea pig. J. Nutr. 79, 523–530 (1963).PubMedGoogle Scholar
  22. Beher, W.T., Casazza, K.K., Beher, M.E., Filus, A.M., Bertasius, J.: Effects of cholesterol on bile acid metabolism in the rat. Proc. Soc. exp. Biol. (N.Y.) 134, 595–602 (1970).Google Scholar
  23. Beher, W.T., Rao, B., Beher, M.E., Semenuk, G., Bertasius, J., Vuzpetti, N.: The accumulation of tissue cholesterol and its relationship to bile acid and sterol turnover. Henry Ford Hosp. Med. J. 15, 107–118 (1967).Google Scholar
  24. Bergström, S.: The formation of bile acids from cholesterol in the rat. Kungl. Fysiograf. Sallsk. Lund. Forh. 22, 91–95 (1952).Google Scholar
  25. Bergström, S.: Bile acids, formation and metabolism. In: The biosynthesis of Terpenes and Sterols (G.E.W. Wolstenholme, M. O’connor, Eds.), p. 185–203. London: Churchill 1959.Google Scholar
  26. Bergström, S., Danielsson, H.: On the regulation of bile acid formation in the rat liver. Bile acids and steroids 58. Acta physiol. scand. 43, 1–7 (1958).PubMedGoogle Scholar
  27. Bergström, S., Gloor, U.: Metabolism of bile acids in rat liver slices and homogenates. Acta chem. scand. 8, 1373–1377 (1954).Google Scholar
  28. Bergström, S., Lindstedt, S., Samuelsson, B., Carey, E.J., Gregoriou, G.A.: The stereochemistry of 7α-hydroxylation in the biosynthesis of cholic acid from cholesterol. J. Amer. chem. Soc. 80, 2337–2338 (1958).Google Scholar
  29. Berndt, J., Gaumert, R.: Evidence for an activating-inactivating system of 3-hydroxy-3-methylglutaryl CoA reductase in mouse liver. Hoppe-Seylers Z. physiol. Chem. 355, 905–910 (1974).PubMedGoogle Scholar
  30. Berseus, D.: Conversion of cholesterol to bile acids in rat: Purification and properties of a Δ 4–3-ketoste-roid-5β-reductase and a 3α-hydroxy steroid dehydrogenase. Europ. J. Biochem. 2, 493–502 (1967).PubMedGoogle Scholar
  31. Berseus, D., Danielsson, H., Kallner, A.: Synthesis and meabolism of cholest-4-en,7α,12α-diol-3-on and 5β-Cholestane-7α,12α-diol-3on. J. biol. Chem. 240, 2396–2401 (1965).PubMedGoogle Scholar
  32. Berseus, D., Einarsson, K.: On the conversion of cho-lest-5en-3β,7α-diol to 7α-hydroxy-cholest-4-en-3on in rat liver homogenates. Acta chem. scand. 21, 1105–1108 (1967).Google Scholar
  33. Bhattacharyya, A., Connor, W.E., Spector, A.A.: Excretion of sterols from the skin of normal and hypercholesterolemic humans. J. clin. Invest. 51, 2060–2070 (1972).PubMedGoogle Scholar
  34. Bhattathiry, E.P., Siperstein, M.D.: Feedback control of cholesterol synthesis in man. J. clin. Invest. 42, 1613–1618 (1963).PubMedGoogle Scholar
  35. Björkhem, I., Danielsson, H., Einarsson, K.: On the conversion of cholesterol to 5β-cholestane-3α,7α-diol in guinea pig liver homogenates. Europ. J. Biochem. 2, 294–302 (1967).PubMedGoogle Scholar
  36. Björkhem, I., Danielsson, H., Einarsson, K., Johansson, G.: Formation of bile acids in man: conversion of cholesterol in to 5β-Cholestane 3α,7α,12α-triol in liver homogenates. J. clin. Invest. 47, 1573–1582 (1968).Google Scholar
  37. Björkhem, I., Einarsson, K., Johansson, G.: Formation and metabolism of 3β-hydroxy-cholest-5-en-7one and cholest-5-en-3β,7α-diol. Acta chem. scand. 22, 1595–1605 (1968).Google Scholar
  38. Blaton, V.H., Peeters, H.: Integrated approach to plasma lipid and lipoprotein analysis in Blood lipids and lipoproteins. In: Quantitation, Composition and Metabolism (G.J. Nelson, Ed.), p. 275–313. New York: Wiley 1972.Google Scholar
  39. Bloch, K.: The biological conversion of cholesterol to pregnanediol. J. biol. Chem. 157, 661–666 (1945).Google Scholar
  40. Bloch, K.: Über die Herkunft des Kohlenstoffatoms 7 in Cholesterin. Ein Beitrag zur Kenntnis der Biosynthese der Steroide. Helv. chim. Acta 36, 1611–1614 (1953).Google Scholar
  41. Bloch, K.: In: Biochemistry of Steroids (O. Hoffmann-Ostenhoff, Ed.), vol. 2. London: Pergamon Press 1959.Google Scholar
  42. Bloch, K., Berg, B.N., Rittenberg, D.: The biological conversion of cholesterol to cholic acid. J. biol. Chem. 149, 511–517 (1943).Google Scholar
  43. Bloch, K., Chaykin, S., Phillips, A.H., De Waard, A.: Mevalonic Acid Pyrophosphate and Isopentenyl-pyrophosphat. J. biol. Chem. 234, 2595–2604 (1959).PubMedGoogle Scholar
  44. Bloch, K., Rittenberg, D.: On utilization of acetic acid for cholesterol formation. J. biol. Chem. 145, 625–636 (1942).Google Scholar
  45. Bloch, K., Rittenberg, D.: Estimation of acetic acid formation in rat. J. biol. Chem. 159, 45–48 (1945).Google Scholar
  46. Blomhof, J.P., Skrede, S., Ritland, S.: Lecithin Cholesterol acyl transferase and plasma proteins in liver disease. Clin. chim. Acta 53, 197–207 (1974).Google Scholar
  47. Blomstrand, R., Ahrens, E.H., Jr.: The absorption of fats studied in a patient with chyluria III cholesterol. J. biol. Chem. 233, 327–330 (1958).PubMedGoogle Scholar
  48. Bloomfield, D.K.: Dynamics of cholesterol metabolism. I. Factors regulating total sterol biosynthesis and accumulation in the rat. Proc. nat. Acad. Sci. (Wash.) 50, 117–124 (1963).Google Scholar
  49. Bonner, J., Arreguin, B.: The Biochemistry of rubber formation in the guayule. I. Rubber formation in seedlings. Arch. Biochem. 21, 109–124 (1949).PubMedGoogle Scholar
  50. Borgström, B.: Studies on intestinal cholesterol absorption in the human. J. clin. Invest. 39, 809–815 (1960).PubMedGoogle Scholar
  51. Borgström, B.: Quantitative aspects of the intestinal absorption and metabolism of cholesterol and β-sitosterol in the rat. J. Lipid Res. 9, 473–481 (1968).PubMedGoogle Scholar
  52. Borgström, B.: Qualification of cholesterol absorption in man by fecal analysis after the feeding of a single isotope labelled meal. J. Lipid Res. 10, 331–337 (1969).PubMedGoogle Scholar
  53. Borgström, B., Lindhe, B.A., Wlodawer, P.: Absorption and distribution of cholesterol 4–14C in the rat. Proc. Soc. exp. Biol. (N.Y.) 99, 365–368 (1958).Google Scholar
  54. Borkowski, A., Delcroix, C., Levin, S.: Metabolism of adrenal cholesterol in man. I. In vivo studies. J. clin. Invest. 51, 1664–1678 (1972a).PubMedGoogle Scholar
  55. Borkowski, A., Delcroix, C., Levin, S.: Metabolism of adrenal cholesterol in man. II. In vitro studies including a comparison of adrenal cholesterol synthesis with the synthesis of the glucosteroid humans. J. clin. Invest. 51, 1679–1687 (1972b).PubMedGoogle Scholar
  56. Bortz, W.M.: Fat feeding and cholesterol synthesis. Biochim. biophys. Acta (Amst.) 137, 533–539 (1967).Google Scholar
  57. Bortz, W.M.: Nor-adrenalin induced increase in hepatic cholesterol synthesis and its blockage by puromycin. Biochim. biophys. Acta (Amst.) 152, 619–626 (1968).Google Scholar
  58. Bortz, W.M., Steele, L.A.: Synchronization of hepatic cholesterol synthesis, cholesterol and bile acid content, fatty acid synthesis and plasma free fatty acids levels in the fed and fasted rats. Biochim. biophys. Acta (Amst.) 306, 85–94 (1973).Google Scholar
  59. Boyd, G.S.: In: Hormones and Atherosclerosis (G. Pincus, Ed.), p. 49–62. New York: Academic Press 1959.Google Scholar
  60. Boyd, G.S., Eastwood, M.A., McLean, N.: Bile acids in the rat: studies in experimental occlusion of the bile duct. J. Lipid Res. 7, 83–94 (1966).PubMedGoogle Scholar
  61. Boyd, G.S., Scholan, N.A., Mitton, J.R.: Factors influencing cholesterol 7α-hydroxylase activity in the rat liver. In: Drugs Affecting Lipid Metabolism (W.L. Hölmes, L.A. Carlson, R. Paoletti, Eds.), p. 443–456. New York: Plenum Press 1969.Google Scholar
  62. Bricker, L.A., Levey, G.S.: Evidence for regulation of cholesterol and fatty acid synthesis in liver by cyclic adenosine 3′,5′ monophosphate. J. biol. Chem. 247, 4914–4915 (1972).PubMedGoogle Scholar
  63. Brodie, J.D., Wasson, G., Porter, J.: Enzyme-bound intermediates in the biosynthesis of mevalonic and palmitic acid. J. biol. Chem. 239, 1346–1356 (1964).PubMedGoogle Scholar
  64. Brown, M.S., Dana, E.S., Dietschy, J.M., Siperstein, M.D.: 3-Hydroxy-3-methylglutaryl Coenzym A Reductase. Solubilization and purification of a cold sensitive microsomal enzyme. J. biol. Chem. 248, 4731–4738 (1973a).PubMedGoogle Scholar
  65. Brown, M.S., Dana, S.E., Goldstein, J.L.: Regulation of HMG-CoA reductase activity in human fibroblasts by lipoproteins. Proc. nat. Acad. Sci. (Wash.) 70, 2162–2166 (1973b).Google Scholar
  66. Brown, M.S., Dana, S.E., Goldstein, J.L.: Regulation of HMG-CoA reductase activity in cultured human fibroblasts: Comparison of cells from a normal subject and from a patient with homozygous familial hypercholesterolemia. J. biol. Chem. 249, 789–796 (1974).PubMedGoogle Scholar
  67. Brunner, D., Manelis, G., Loebel, K.: Influence of age and race on lipid levels in Israel. Lancet 1959, 1071–1073.Google Scholar
  68. Bucher, N.L.R., McGarrahan, K.: The biosynthesis of cholesterol from acetate-l-C14 by cellular fractions of rat liver. J. biol. Chem. 222, 1–16 (1956).PubMedGoogle Scholar
  69. Bucher, N.L.R., McGarrahan, K., Gould, E., Loud, A. V.: Cholesterol biosynthesis in preparations of liver from normal, fasting, x-irradiated, cholesterol fed, triton, or Δ 4cholesten-3-one treated rats. J. biol. Chem. 234, 262–267 (1959).PubMedGoogle Scholar
  70. Bucher, N.L.R., Overath, P., Lynen, F.: β-hydroxy-β-methylglutaryl coenzym A reductase, cleavage and condensing enzymes in relation to cholesterol formation in rat liver. Biochim. biophys. Acta (Amst.) 40, 491–501 (1960).Google Scholar
  71. Burchard, H.: Beiträge zur Kenntnis der Cholesterine. Dissertation. Univ. Rostock 1889.Google Scholar
  72. Byers, S.D., Biggs, M.W.: Cholic acid and cholesterol: studies concerning possible intraconversion. Arch. Biochem. 39, 301–304 (1952).PubMedGoogle Scholar
  73. Calandra, S., Marlin, M.J., McIntyre, N.: Plasma lecithin: cholesterol Acyltransferase activity in liver disease. Europ. J. clin. Invest. 1, 352–360 (1971).PubMedGoogle Scholar
  74. Carey, J.B., Haslewood, G.A.D.: Crystallization of trihydroxycoprostanic acid from human bile. J. biol. Chem. 238, 855–856 (1963).PubMedGoogle Scholar
  75. Carey, J.B., Williams, G.: Metabolism of lithocholic acid in bile fistula patients. J. clin. Invest. 42, 450–455 (1963).PubMedGoogle Scholar
  76. Carey, M.C., Small, D.M.: The characteristics of mixed micellar solutions with particular reference to bile. Amer. J. Med. 49, 590–608 (1970).PubMedGoogle Scholar
  77. Carrol, K.K.: Acetate incorporation into cholesterol and fatty acids by liver slices from rats fed commercial or semisynthetic diets. The effect of dietary fats. Canad. J. Biochem. 42, 71–78 (1964).Google Scholar
  78. Cayen, M.N.: The effect of starvation and cholesterol feeding on the intestinal cholesterol synthesis in the rat. Biochim. biophys. Acta (Amst.) 187, 546–554 (1969).Google Scholar
  79. Chaikoff, J.L., Siperstein, M.D., Dauben, W.G., Bradlow, H.L., Eastham, J.F., Tomkins, G.M., Meier, J.R., Chen, R.W., Hotta, S., Srere, P.A.: 14C-Cholesterol. II. Oxidation of carbon 4 and 26 to carbon dioxide by the intact rat. J. biol. Chem. 194, 413–416 (1952).PubMedGoogle Scholar
  80. Channon, H.J.: The biological significance of the unsaponifiable matter of oils. I. Experiments with the unsaturated hydrocarbon squalene. Biochem. J. 20, 400–408 (1926).PubMedGoogle Scholar
  81. Chaykin, S., Law, J., Phillips, A.H., Tchen, T.T., Bloch, K.: Phosphorylated intermediates in the synthesis of squalene. Proc. nat. Acad. Sci. (Wash.) 44, 998–1004 (1958).Google Scholar
  82. Cheng, S.H., Stanley, M.M.: Secretion of cholesterol by intestinal mucosa in patients with complete common bile duct obstruction. Proc. Soc. exp. Biol. (N.Y.) 101, 223–225 (1959).Google Scholar
  83. Chobanian, A.V., Hollander, W.: Body cholesterol metabolism in man. I. The equilibration of serum and tissue cholesterol. J. clin. Invest. 41, 1732–1737 (1962a).PubMedGoogle Scholar
  84. Chobanian, A.V., Burrows, B.A., Hollander, W.: Body cholesterol metabolism in man. II. Measurement of the body cholesterol miscible pool and turnover rate. J. clin. Invest. 41, 1738–1744 (1962b).PubMedGoogle Scholar
  85. Clayton, R.B., Bloch, K.: The biological conversion of lanosterol to cholesterol. J. biol. Chem. 218, 319–325 (1956).PubMedGoogle Scholar
  86. Clayton, R.D.: Steroids and Terpenoids. In: Methods in Enzymology (S.P. Colowick, N.O. Kaplan, Eds.). New York: Academic Press 1969.Google Scholar
  87. Clinkenbeard, K.D., Sugiyama, T., Moss, J., Reed, W.D., Lane, M.D.: Molecular and Catalytic Properties of Cytosolic Acetoacetyl Coenzym A Thiolase from Avian Liver. J. biol. Chem. 248, 2275–2284 (1973).PubMedGoogle Scholar
  88. Coleman, D.L., Baumann, C.A.: Intestinal sterols IV. Δ 7-coprostanol. Arch. Biochem. 71, 287–292 (1957a).PubMedGoogle Scholar
  89. Coleman, D.L., Baumann, C.A.: Intestinal sterols, V. Reduction of sterols by intestinal microorganisms. Arch. Biochem. 72, 219–225 (1957b).PubMedGoogle Scholar
  90. Coleman, D.L., Wells, W.W., Baumann, C.A.: Intestinal sterols II. Determination of coprostanol and certain related sterols. Arch. Biochem. 60, 412–418 (1956).PubMedGoogle Scholar
  91. Connor, W.E., Hodges, R.E., Bleiler, R.A.: The serum lipids in man receiving high cholesterol and cholesterol-free diets. J. clin. Invest. 40, 894–901 (1961).PubMedGoogle Scholar
  92. Connor, W.E., Lin, D.S.: The intestinal absorption of dietary cholesterol in human being. Effect of dietary cholesterol. J. Lab. clin. Med. 76, 870 (1970).Google Scholar
  93. Connor, W.E., Lin, D.S.: The intestinal absorption of dietary cholesterol by hypercholesterolemic (Type II) und normocholesterolemic humans. J. clin. Invest. 53, 1062–1070 (1974).PubMedGoogle Scholar
  94. Connor, W.E., Witiak, D.T., Stone, D.B., Armstrong, M.L.: Cholesterol balance and fecal neutral steroid and bile acid excretion in normal men, fed dietary fats of different fatty acid composition. J. clin. Invest. 48, 1363–1375 (1969).PubMedGoogle Scholar
  95. Cook, R.P.: Comparative aspects of lipid absorption and excretion. Biochem. Soc. Symposium 9, 14 (1952).Google Scholar
  96. Cook, R.P.: Cholesterol, Chemistry, Biochemistry and Pathology. New York: Academic Press 1958.Google Scholar
  97. Cook, R.P., Edwards, D.C., Riddell, C.: Cholesterol metabolism. 7. Cholesterol absorption and excretion in man. Biochem. J. 62, 225–234 (1956).PubMedGoogle Scholar
  98. Cooper, A.D., Ockner, R.K.: Studies of hepatic cholesterol synthesis in experimental acute biliary obstruction. Gastroenterology 66, 586–594 (1974).PubMedGoogle Scholar
  99. Cornforth, J.W., Cornforth, R.H., Pelter, A., Horning, M.G., Popjak, G.: Studies on the biosynthesis of cholesterol. Rearrangemant of methyl groups during enzymic cyclisation of squalen. Tetrahedron Letters 5, 311–399 (1959).Google Scholar
  100. Cornforth, J.W., Hunter, G.D., Popjak, G.: Studies of cholesterol biosynthesis. 1. A new chemical degradation of cholesterol. Biochem. J. 54, 590–597 (1953).PubMedGoogle Scholar
  101. Cornforth, J.W., Popjak, G.: Mechanism of biosynthesis of squalene from sesquiterpenoids. Tetrahedron Letters 19, 29–35 (1959).Google Scholar
  102. Cornforth, J.W., Youhotsky-Gore, I., Popjak, G.: Studies on the biosynthesis of cholesterol. Degradation of rings C and D. Biochem. J. 65, 94–109 (1957).PubMedGoogle Scholar
  103. Cox, G.E., Counts, M., Wolski, J., Alvarez, J., Taylor, C.B.: The effect of dietary cholesterol upon the synthesis of plasma cholesterol in the human. Circulation 18, 193–494 (1958).Google Scholar
  104. Cox, G.E., Taylor, C.B., Patton, D., Davis, C.B., Blandin, N.: Origin of plasma cholesterol in man. Arch. Path. 76, 60–88 (1963).PubMedGoogle Scholar
  105. Danielsson, H.: On the oxidation of 3α,7α,12α-trihy-droxycoprostan by mouse and rat liver homogenate. Acta chem. scand. 14, 348–352 (1960a).Google Scholar
  106. Danielsson, H.: On the origin of neutral fecal sterols and their relation to cholesterol metabolism in the rat. Acta physiol. scand. 48, 364–371 (1960b).PubMedGoogle Scholar
  107. Danielsson, H.: Formation and metabolism of 26-hydroxycholesterol. Arkiv. Kemi. 17, 373–379 (1961).Google Scholar
  108. Danielsson, H.: Present status of research on catabolism and excretion of cholesterol. Advanc. Lipid Res. 1, 335–385 (1963).Google Scholar
  109. Danielsson, H.: Mechanism of bile acid formation. In: Bile Salt Metabolism (L. Schiff, J.D. Carey, J.M. Dietschy, Eds.), p. 91–102. Springfield/Ill.: Thomas 1969.Google Scholar
  110. Danielsson, H., Einarsson, K.: On the conversion of cholesterol to 7α, 12α-dihydroxycholest-4en 3-on. J. biol. Chem. 241, 1449–1454 (1966).PubMedGoogle Scholar
  111. Danielsson, H., Einarsson, K.: Enzymatic transformations of the sterol nucleus in bile acid biosynthesis. In: Methods in Enzymology (R.D. Clayton, Ed.), Vol. 15. New York: Academic Press 1969.Google Scholar
  112. Danielsson, H., Einarsson, K., Johansson, G.: Effect of biliary drainage on individual reactions in the conversion of cholesterol to cholic acid. Europ. J. Biochem. 2, 44–49 (1967).PubMedGoogle Scholar
  113. Danielsson, H., Gustaffson, B.: On serum-cholesterol levels and neutral fecal sterols in germ free rats. Arch. Biochem. 83, 482–485 (1959).PubMedGoogle Scholar
  114. Danielsson, H., Tchen, T.T.: Steroid metabolism. In: Metabolic Pathways (D.M. Greenberg, Ed.), 3rd Ed. New York: Academic Press 1968.Google Scholar
  115. Davignon, J., Simmons, W.J., Ahrens, E.H.: Usefulness of chromic oxide as an internal standard for balance studies in formula fed patients and for assessment of colonic function. J. clin. Invest. 47, 127–138 (1968).PubMedGoogle Scholar
  116. Davis, C.B., Cox, G.E., Taylor, C.B., Cross, S.L.: Cholesterol synthesis in human liver. Surg. Forum 9, 486–489 (1958).PubMedGoogle Scholar
  117. DeMatteis, F.: Increased hepatic synthesis of cholesterol following trauma. Biochem. J. 106, 16P (1968).Google Scholar
  118. Denbesten, L., Connor, W.E., Kent, T.H., Lin, D.: Effect of cellulose in the diet on the recovery of dietary plant sterols from the feces. J. Lipid Res. 11, 341–345 (1970).PubMedGoogle Scholar
  119. De Waard, A., Popjak, G.: Studies of the biosynthesis of Cholesterol. 9. Formation of Phosphorylated derivatives of Mevalonic Acid in Liver Enzyme Preparations. Biochem. J. 73, 410–415 (1959).Google Scholar
  120. Dietschy, J.M.: Effects of bile salts on intermediate metabolism of the intestinal mucosa. Fed. Proc. 26, 1589–1598 (1967).PubMedGoogle Scholar
  121. Dietschy, J.M.: The role of bile salts in controlling the rate of intestinal cholesterogenesis. J. clin. Invest. 47, 286–299 (1968).PubMedGoogle Scholar
  122. Dietschy, J.M., Siperstein, M.D.: Cholesterol synthesis by the gastrointestinal tract: Localisation and mechanisms of control. J. clin. Invest. 44, 1311–1327 (1965).PubMedGoogle Scholar
  123. Dietschy, J.M., Siperstein, M.D.: Effects of cholesterol feeding and fasting on sterol synthesis in seventeen tissues of the rat. J. Lipid Res. 8, 97–104 (1967).PubMedGoogle Scholar
  124. Dietschy, J.M., Wilson, G.D.: Cholesterol synthesis in the squirrel monkey: relative rates of synthesis in various tissues and mechanisms of control. J. clin. Invest. 47, 166–174 (1968).PubMedGoogle Scholar
  125. Dietschy, J.M., Wilson, J.D.: Regulation of cholesterol metabolism. New Engl. J. Med. 282, 1128–1138, 1179–1183, 1241–1249 (1970).PubMedGoogle Scholar
  126. Djerassi, C., Knight, J.C., Wilkinson, D.J.: The structure of the cactus sterol Macdougallin. A novel link in sterol biogenesis. J. Amer. chem. Soc. 85, 835 (1963).Google Scholar
  127. Djerassi, C., Mills, J.S., Villotti, R.: The structure of the cactus sterol lophenol. A link in sterol biogenesis. J. Amer. chem. Soc. 80, 1005–1006 (1958).Google Scholar
  128. Dubach, U., Relant, L., Hatch, E., Koch, M.D.: Negative feedback mechanism of cholesterol synthesis in experimental nephrosis. Proc. Soc. exp. Biol. (N.Y.) 106, 136–139 (1961).Google Scholar
  129. Dugan, R.E., Ness, G.C., Laksamanan, M.R., Nepokroeff, L.M., Porter, J.W.: Regulation of hepatic HMG-CoA reductase by the interplay of hormones. Arch. Biochem. 161, 499–504 (1974).PubMedGoogle Scholar
  130. Durr, J.F., Rudney, H.: The reduction of β-Mrydroxy-β-methylglutaryl Coenzym A to mevalonic acid. J. biol. Chem. 235, 2572–2578 (1960).PubMedGoogle Scholar
  131. Economou, S.G., Tews, B.J., Taylor, C.B.: Studies on lipid metabolism in dogs with altered biliary physiology. Surg. Forum 8, 218–221 (1958).Google Scholar
  132. Edwards, P.A.: Effect of adrenalectomy and hypophysectomy on the circadian rhythm of HMG-CoA reductase activity in rat liver. J. biol. Chem. 248, 2912–2917 (1973).PubMedGoogle Scholar
  133. Edwards, P.A., Gould, R.G.: Turnover rate of hepatic HMG-CoA reductase as determined by use of cycloheximide. J. biol. Chem. 247, 1520–1524 (1972).PubMedGoogle Scholar
  134. Edwards, P.A., Green, C.: Incorporation of plant sterols into membranes and its relation to sterol absorption. FEBS Letters 20, 97–99 (1972).PubMedGoogle Scholar
  135. Edwards, P.A., Muroya, N., Gould, R.G.: In vivo demonstration of the circadian rhythm of cholesterol biosynthesis in the liver and intestine of the rat. J. Lipid Res. 13, 396–400 (1972).PubMedGoogle Scholar
  136. Eggen, D.A.: Cholesterol metabolism in rhesus monkey, squirrel monkey, and baboon. J. Lipid Res. 15, 139–145 (1974).PubMedGoogle Scholar
  137. Elliot, W.H.: Allo bile acids. In: The Bile Acids: Chemistry, Physiology and Metabolism (P.P. Nair, K. Kritscheysky, Eds.), Vol. 1. New York: Plenum Press 1971.Google Scholar
  138. Elliot, W.H., Hyde, P.M.: Metabolic pathways of bile acid synthesis. Amer. J. Med. 51, 568–579 (1971).Google Scholar
  139. Eneroth, P., Gordon, B., Ryhage, R., Sjövall, J.: Identification of mono- and dihydroxy bile acids in human feces by gas-liquid chromatography and mass spectrometry. J. Lipid Res. 7, 511–523 (1966).PubMedGoogle Scholar
  140. Eriksson, S.: Biliary excretion of bile acids and cholesterol in bile fistula rats. Bile acids and steroids 42. Proc. Soc. exp. Biol. (N.Y.) 94, 578–582 (1957).Google Scholar
  141. Eschenmoser, A., Ruziska, L., Jeger, O., Arigoni, D.: Zur Kenntnis der Triterpene. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen. Helv. chim. Acta 38, 1890–1904 (1955).Google Scholar
  142. Favarger, P., Metzger, E.F.: La resorption intestinale du deuteriocholesterol et sa repartition dans l’organisme animal sous forme libre et esterifee. Helv. chim. Acta 35, 1811–1819 (1952).Google Scholar
  143. Feyfe, T., Dunnigan, M.A., Hamilton, E., Rae, R.J.: Seasonal variations in serum lipids, and incidence and mortality of ischaemic heart disease. J. Atheroscler. Res. 8, 591–596 (1968).Google Scholar
  144. Fieser, L., Fieser, M.: Steroide. Weinheim/Bergstr.: Verlag Chemie 1961.Google Scholar
  145. Fimognari, G.M., Rodwell, V.W.: Cholesterol biosynthesis: mevalonate synthesis inhibited by bile salts. Science 147, 1038 (1965).PubMedGoogle Scholar
  146. Fletcher, K., Myant, N.B.: Influence of the thyroid on the synthesis of cholesterol by liver and skin in vitro. J. Physiol. 144, 361–372 (1958).PubMedGoogle Scholar
  147. Fletcher, K., Myant, N.B.: Effects of thyroxine on the synthesis of cholesterol and fatty acids by cell free fractions of rat liver. J. Physiol. 154, 145–152 (1960).PubMedGoogle Scholar
  148. Frantz, J.D., Schneider, H.S., Hinkelman, B.T.: Suppression of hepatic cholesterol synthesis in the rat by cholesterol feeding. J. biol. Chem. 206, 465–469 (1954).PubMedGoogle Scholar
  149. Frantz, J.D., Jr., Hinkelman, D.T.: Acceleration of hepatic cholesterol synthesis by Triton WR 1339. J. exp. Med. 101, 225–232 (1955).PubMedGoogle Scholar
  150. Fredrickson, D.S., Levy, R.I., Lees, R.S.: Fat transport in lipoproteins an integrated approach to mechanisms and disorders. New Engl. J. Med. 276, 32, 94, 148, 215, 273 (1967).Google Scholar
  151. Fredrickson, D.S., Lord, A.K., Hinkelman, B.T., Frantz, J.D.: The effect of ligation of the common bile duct on cholesterol synthesis in the rat. J. exp. Med. 99, 43–53 (1954).PubMedGoogle Scholar
  152. Fredrickson, D.S., Ono, K.: The in vitro production of 25- and 26-hydroxycholesterol and their in vivo metabolism. Biochim. biophys. Acta (Amst.) 22, 183–184 (1956).Google Scholar
  153. Friedman, M., Byers, S.D.: Hypercholesteremic roles of plasma cholate and phospholipid in biliary obstruction. Amer. J. Physiol. 191, 551–554 (1957).PubMedGoogle Scholar
  154. Fuyiwara, T., Hirono, H., Arakawa, T.: Idiopathic hypercholesterolemia: demonstration of an impaired feedback control of cholesterol synthesis in vivo. Tohoku J. exp. Med. 87, 155–167 (1965).Google Scholar
  155. Gallo, L.L., Treadwell, C.R.: Localization of cholesterol esterase and cholesterol in mucosal fractions of rat small intestine. Proc. Soc. exp. Biol. (N.Y.) 114, 69–72 (1963).Google Scholar
  156. Ganguly, J., Krishnamurthy, S., Mahadevan, S.: The transport of carotenoids, Vitamin A, and cholesterol across the intestines of rat and chickens. Biochem. J. 71, 756–762 (1959).PubMedGoogle Scholar
  157. Gautschi, F., Bloch, K.: On the structure of on intermediate in the biological demethylation of lanosterol. J. Amer. chem. Soc. 79, 684–689 (1957).Google Scholar
  158. Gautschi, F., Bloch, K.: Synthesis of isomeric 4,4,dimethylcholestenols and identification of a lanosterol metabolite. J. biol. Chem. 233, 1343–1347 (1958).PubMedGoogle Scholar
  159. Gibbons, G.F., Mitropoulos, K.A.: The role of cytochrome P 450 in cholesterol biosynthesis. Europ. J. Biochem. 40, 267–273 (1973).PubMedGoogle Scholar
  160. Gielen, J., van Cantfort, J.: Rôle des acides biliaires dans la régulation de la cholestérol 7α-hydroxylase. Arch. Int. Physiol. 77, 965–966 (1969).PubMedGoogle Scholar
  161. Gielen, J., van Cantfort, J., Robaye, B., Renson, J.: Rythme circadien de la cholestérol-7α-hydroxylase chez le rat. C.R. Acad. Sci. (Paris) 269, 731–732 (1969).Google Scholar
  162. Gjone, E.: Familial LCAT deficiency. Acta med. scand. 194, 353–356 (1973).PubMedGoogle Scholar
  163. Gjone, E., Norum, K.R.: Recent Research on lecithin: cholesterolacyl transferase. Scand. J. clin. Lab. Invest. 33, Suppl. 137 (1974).Google Scholar
  164. Glickmann, R.M., Kirsch, K., Isselbacher, K.J.: Fat absorption during inhibition of protein synthesis. Studies of lymph chylomicrons. J. clin. Invest. 51, 356–363 (1972).Google Scholar
  165. Glomset, J.A.: The plasma lecithin: Cholesterol esterification reaction. Biochim. biophys. Acta (Amst.) 70, 389–395 (1963).Google Scholar
  166. Glomset, J.A.: The plasma lecithin: Cholesterol acyltransferase reaction. J. Lipid Res. 9, 155–167 (1968).PubMedGoogle Scholar
  167. Glomset, J.A., Norum, K.R.: The metabolic role of lecithin: cholesterol acyltransferase: perspectives from pathology. Advanc. Lipid Res. 11, 1–65 (1973).Google Scholar
  168. Glover, J., Green, C.: The distribution and transport of sterols across the intestinal mucosa of the guinea pig. Biochem. J. 67, 308–316 (1957).PubMedGoogle Scholar
  169. Glover, J., Morton, R.A.: The absorption and metabolism of sterols. Brit. med. Bull. 14, 226–233 (1958).PubMedGoogle Scholar
  170. Glover, J., Stainer, D.W.: Sterol metabolism. 4. The absorption of 7-dehydrocholesterol in the rat. Biochem. J. 72, 79–82 (1959).Google Scholar
  171. Goh, E.H., Heimberg, M.: Stimulation of hepatic cholesterol biosynthesis by oleic acid. Biochem. Biophys. Res. Com. 55, 382–388 (1973).PubMedGoogle Scholar
  172. Goldfarb, S.: Submicrosomal localization of hepatic HMG-CoA reductase. FEBS Letters 24, 153–155 (1972).PubMedGoogle Scholar
  173. Goldfarb, S., Pitot, H.C.: Stimulatory effect of dietary lipid and cholestyramin on hepatic HMG-CoA reductase. J. Lipid Res. 13, 797–801 (1972).PubMedGoogle Scholar
  174. Goldman, D.S.: Studies on the fatty acid oxidizing system of animal tissues. VII. The β-ketoacyl-CoA cleavage enzyme. J. biol. Chem. 208, 345–357 (1954).PubMedGoogle Scholar
  175. Goodman, D.S.: Cholesterol ester metabolism. Physiol. Rev. 45, 747–839 (1965).PubMedGoogle Scholar
  176. Goodman, D.S., Noble, R.P.: Turnover of plasma cholesterol in man. J. clin. Invest. 47, 231–241 (1968).PubMedGoogle Scholar
  177. Goodman, D.S., Noble, R.P., Dell, R.B.: Three-pool model of the long-term turnover of plasma cholesterol in man. J. Lipid Res. 14, 178–188 (1973).PubMedGoogle Scholar
  178. Goodman, D.S., Popjak, G.: Studies on the biosynthesis of cholesterol XII. Synthesis of allylpyrophosphates from mevalonate and their conversion into squalene with liver enzymes. J. Lipid Res. 1, 286–300 (1960).PubMedGoogle Scholar
  179. Goodman, D.S., Shiratori, T.: In vivo turnover of different cholesterol esters in rat liver and plasma. J. Lipid Res. 5, 578–586 (1964).PubMedGoogle Scholar
  180. Goodwin, L.D., Margolis, S.: Specific activation of in vitro cholesterol biosynthesis by preincubation of rat liver homogenates. J. biol. Chem. 248, 7610–7613 (1973).PubMedGoogle Scholar
  181. Gould, R.G.: Lipid metabolism and atherosclerosis. Amer. J. Med. 11, 209–227 (1951).PubMedGoogle Scholar
  182. Gould, R.G.: Symposium on sitosterol. IV. Absorbability of Beta sitosterol. Trans. N.Y. Acad. Sci. 18, 129–134 (1955).PubMedGoogle Scholar
  183. Gould, R.G.: The relationship between thyroid hormones and cholesterol biosynthesis and turnover. In: Hormones and atherosclerosis (G. Pincus, Ed.), p. 76–82. New York: Academic Press 1959.Google Scholar
  184. Gould, R., Bell, V.L., Lilly, E.H.: Effects of X-Irradiation on cholesterol, fatty acid, and protein synthesis in rat tissues. Radiat. Res. 5, 609 (1965).Google Scholar
  185. Gould, R.G., Jones, R.J., Leroy, G.V., Wissler, R.W., Taylor, C.B.: Absorbality of β-sitosterol in humans. Metabolism 18, 652–662 (1969).PubMedGoogle Scholar
  186. Gould, R.G., Le Roy, G.K., Okita, G.T., Kabara, J.J., Keegan, P., Bergenstal, D.M.: Use of 14C labelled acetate to study cholesterol metabolism in man. J. Lab. clin. Med. 46, 374–384 (1955).Google Scholar
  187. Gould, R.G., Swyryd, E.A.: Sites of control of hepatic cholesterol biosynthesis. J. Lipid Res. 7, 698–707 (1966).PubMedGoogle Scholar
  188. Gould, R.G., Taylor, C.B.: Effect of dietary cholesterol on hepatic cholesterol synthesis. Fed. Proc. 9, 179 (1950).Google Scholar
  189. Gould, R.G., Taylor, C.B., Hagerman, J.S., Warner, J., Cambell, D.J.: Cholesterol metabolism. I. Effect of dietary cholesterol on synthesis of cholesterol in dog tissue in vitro. J. biol. Chem. 201, 519–528 (1953).PubMedGoogle Scholar
  190. Grabowsy, G.A., Dempsey, M.E., Hanson, R.F.: Role of the squalene and sterol carrier protein (SCP) in bile acid synthesis. Fed. Proc. 32, 520 (1973).Google Scholar
  191. Green, K., Samuelsson, B.: Mechanism of bile acid biosynthesis studied with 3α-3H- and 4β-3H-cholesterol. Bile acids and steroids 144. J. biol. Chem. 239, 2804–2808 (1964).PubMedGoogle Scholar
  192. Greim, H., Trülzsch, D., Roboz, J., Dressler, K., Czygan, P., Hutterer, F., Schaffner, F., Popper, H.: Mechanismn of cholestasis 5. Bile acids in normal rat livers and in those after bile duct ligation. Gastroenterology 63, 837–845 (1972).PubMedGoogle Scholar
  193. Grundy, S.M., Ahrens, E.H., Jr.: An evaluation of the relative merits of two methods for measuring the balance of sterols in man. Isotopic balance versus chromatographic analysis. J. clin. Invest. 45, 1503–1515 (1966).PubMedGoogle Scholar
  194. Grundy, S.M., Ahrens, E.H., Jr.: Measurements of cholesterol turnover, synthesis and absorption in man, carried out by isotope kinetic and sterol balance methods. J. Lipid Res. 10, 91–107 (1969).PubMedGoogle Scholar
  195. Grundy, S.M., Ahrens, E.H., Jr.: The effects of unsaturated dietary fats on absorption, excretion, synthesis and distribution of cholesterol in man. J. clin. Invest. 49, 1135–1152 (1970).PubMedGoogle Scholar
  196. Grundy, S.M., Ahrens, E.H., Jr., Miettinen, T.A.: Quantitative isolation and gas-liquid chromatographic analysis of total fecal bile acids. J. Lipid Res. 6, 397–410 (1965).PubMedGoogle Scholar
  197. Grundy, S.M., Ahrens, E.H., Jr., Salen, G.: Dietary β-sitosterol as an internal standard to correct for cholesterol losses in sterol balance studies. J. Lipid. Res. 9, 374–387 (1968).PubMedGoogle Scholar
  198. Grundy, S.M., Ahrens, E.H., Jr., Salen, G.: Interruption of the enterohepatic circulation of bile acids in man: comparative effects of cholestyramine and ileal exclusion on cholesterol metabolism. J. Lab. clin. Med. 78, 94–121 (1971).PubMedGoogle Scholar
  199. Grundy, S.M., Hofman, A.F., Davignon, J., Ahrens, E.H., Jr.: Human cholesterol synthesis is regulated by bile acids. J. clin. Invest. 45, 1018–1019 (1966).Google Scholar
  200. Guder, W., Nolte, J., Wieland, O.: The influence of thyroid hormones on β-hydroxy-β-methyl-glutaryl-Coenzym A reductase of rat liver. Europ. J. Biochem. 4, 273–278 (1968).PubMedGoogle Scholar
  201. Gurpide, E., Mann, J., Sandberg, E.: Determination of kinetic parameters in a two-pool system by administration of one or more tracers. Biochemistry 3, 1250–1255 (1964).PubMedGoogle Scholar
  202. Hamprecht, B.: Regulation der Cholesterol-Synthese. Naturwissenschaften 56, 398–405 (1969).PubMedGoogle Scholar
  203. Hamprecht, B., Lynen, F.: Verfahren zur Bestimmung der 3-Hydroxy-3-methylglutaryl Coenzym A-Reductase-Aktivität in Rattenleber. Europ. J. Biochem. 14, 323–336 (1970).PubMedGoogle Scholar
  204. Hamprecht, B., Nüssler, L., Lynen, F.: Rhythmic changes of hydroxymethylglutaryl Coenzym A reductase acticity in liver of fed and fasted rats. FEBS Letters 4, 117–121 (1969).PubMedGoogle Scholar
  205. Hamprecht, B., Nüssler, L., Waltinger, G., Lynen, F.: Influence of bile acids on the activity of rat liver HMG-CoA reductase. 1. Effect of bile acids in vitro and in vivo. Europ. J. Biochem. 18, 10–14 (1971a).PubMedGoogle Scholar
  206. Hamprecht, B., Roscher, R., Waltinger, G., Nüssler, C.: Influence of bile acids on the activity of rat liver HMG-CoA reductase 2. Effect of cholic acid in lymph fistula rats. Europ. J. Biochem. 18, 15–19 (1971b).PubMedGoogle Scholar
  207. Hanson, R.F., Klein, P.D., Williams, G.C.: Bile acid formation in man: metabolism of 7α-hydroxy 4-cholesten-3-on in bile fistula patients. J. Lipid Res. 14, 50–53 (1973 a).PubMedGoogle Scholar
  208. Hanson, R.F., McCoy, K., Dempsey, M.E.: The role of a carrier protein in bile acid synthesis. Gastroenterology 64, 154 (1973b).Google Scholar
  209. Harry, D.S., Dini, M., McIntyre, N.: Effect of cholesterol feeding and biliary obstruction on hepatic cholesterol biosynthesis in the rat. Biochim. biophys. Acta (Amst.) 296, 209–220 (1973).Google Scholar
  210. Haslewood, G.A.D.: Bile Salts. London: Methuen 1967.Google Scholar
  211. Hechler, O., Solomom, M., Zaffaroni, A., Pincus, G.: Transformation of cholesterol and acetate to adrenal cortical humans. Arch. Biochem. 46, 201–214 (1953).Google Scholar
  212. Heller, R.A., Gould, R.G.: Solubilization and partial purification of hepatic HMG-CoA reductase. Biochem. Biophys. Res. Com. 50, 859–865 (1973).PubMedGoogle Scholar
  213. Hellman, L., Frazell, E.L., Rosenfeld, R.S.: Direct measurement of cholesterol absorption via the thoracic duct in man. J. clin. Invest. 39, 1288 (1960).PubMedGoogle Scholar
  214. Hellman, L., Rosenfeld, R.S., Gallagher, T.F.: Cholesterol synthesis from 14C-acetate in man. J. clin. Invest. 33, 142–149 (1954).PubMedGoogle Scholar
  215. Hellman, L., Rosenfeld, R.S., Insull, W., Jr., Ahrens, E.H., Jr.: Intestinal excretion of cholesterol: A mechanism for regulation of plasma levels. J. clin. Invest. 36, 898 (1957).Google Scholar
  216. Henning, U., Möslein, E.M., Lynen, F.: Biosynthesis of terpenes. V. Formation of 5-pyrophosphomevalonic acid by phosphomevalonic kinase. Arch. Biochem. 83, 259–267 (1959).PubMedGoogle Scholar
  217. Hernandez, H.H., Chaikoff, I.L.: Purification and properties of pancreatic cholesterol esterase. J. biol. Chem. 228, 447–457 (1957).PubMedGoogle Scholar
  218. Hernandez, H.H., Chaikoff, I.L., Dauben, W.G., Abraham, S.: The absorption of 14C labelled epicholesterol in the rat. J. biol. Chem. 206, 757–765 (1954).PubMedGoogle Scholar
  219. Hickman, P.E., Horton, B.J., Sabine, J.R.: Effect of adrenalectomy on the diurnal variation of hepatic cholesterogenesis in the rat. J. Lipid Res. 13, 17–22 (1972).PubMedGoogle Scholar
  220. Higgins, M.J.P., Brady, D., Rudney, H.: Rat liver HMG-CoA reductase: a comparison and immunological study of purified solubilized preparations, and alteration of enzym levels by cholestyramine feeding. Arch. Biochem. 163, 271–282 (1974).PubMedGoogle Scholar
  221. Higgins, M., Kawashi, T., Rudney, H.: The mechanism of the diurnal variation of hepatic HMG-CoA reductase activity in the rat. Biochem. Biophys. Res. Com. 45, 138–144 (1971).PubMedGoogle Scholar
  222. Higgins, M.J.P., Kekwick, R.G.O.: An investigation into the role of malonyl-coenzym A in isoprenoid biosynthesis. Biochem. J. 134, 295–310 (1973).PubMedGoogle Scholar
  223. Higgins, M., Rudney, H.: Regulation of rat liver HMG-CoA reductase activity by cholesterol. Nat. New Biol. 246, 60–61 (1973).PubMedGoogle Scholar
  224. Hofmann, A.F., Small, D.M.: Detergent properties of bile salts: correlation with physiological function. Ann. Rev. Med. 18, 333–376 (1967).PubMedGoogle Scholar
  225. Hsia, S.L., Fulton, J.E., Jr., Fulghum, D., Buch, M.M.: Lipid synthesis from acetate-I-14C by suction blister epidermis and other skin components. Proc. Soc. exp. Biol. (N.Y.) 135, 285–291 (1970).Google Scholar
  226. Huber, J., Guder, W., Latzin, S., Hamprecht, B.: The influence of insulin and glucagon on hydroxy-methylglutaryl Coenzym A reductase acticity in rat liver. Hoppe-Seylers, Z. physiol. Chem. 354, 795–798 (1973).Google Scholar
  227. Huber, J., Hamprecht, B., Müller, O.A., Guder, W.: Tageszeitlicher Rhythmus der HMG-CoA Reduktase in der Rattenleber. II. Rhythmus bei adrenalek-tomierten Tieren. Hoppe-Seylers, Z. physiol. Chem. 353, 313–317 (1972).Google Scholar
  228. Huff, J.W., Gilfillan, J.C., Hunt, V.M.: Effect of cholestyramine, a bile acid binding polymer, on plasma cholesterol and fecal bile acid excretion in the rat. Proc. Soc. exp. Biol. (N.Y.) 114, 352–355 (1963).Google Scholar
  229. Hutchens, T.T., Van Bruggen, J.T., Cockburn, R.M., West, E.S.: The effect of fasting upon tissue lipogenesis in the intact rat. J. biol. Chem. 208, 115–122 (1954).PubMedGoogle Scholar
  230. Hutton, H.R.B., Boyd, G.S.: The metabolism of cholest-5-en-3β, 7α-diol by rat liver cell fractions. Biochim. biophys. Acta (Amst.) 116, 336–361 (1966).Google Scholar
  231. Jansen, G.R., Zanetti, M.E., Hutchison, C.F.: Studies on lipogenesis in vivo. Effects of starvation and refeeding and studies on cholesterol synthesis. Biochem. J. 99, 333–340 (1960).Google Scholar
  232. Javitt, N.B., Emermann, S.: 26-hydroxycholesterol, an intermediate in bile acid synthesis: In: Bile Salt Metabolism (L. Schiff, J.B. Carey, J.M. Dietschy, Eds.), p. 109–113. Springfield/Ill.: Thomas 1969.Google Scholar
  233. Javitt, N., Emermann, S.: Metabolic pathways of bile acid formation in the rat. Mt. Sinai J. Med. 37, 477–481 (1970).PubMedGoogle Scholar
  234. Johnston, J.D., Bloch, K.: In vitro conversion of zymosterol and dihydroyzymosterol to cholesterol. J. Amer. chem. Soc. 79, 1145–1149 (1957).Google Scholar
  235. Kandutsch, A.A., Russell, A.E.: Preputial gland tumor sterols. II. The identification of 4-α-methyl-Δ 8-cholesten-3β-ol. J. biol. Chem. 235, 2253–2255 (1960a).PubMedGoogle Scholar
  236. Kandutsch, A.A., Russell, A.E.: Preputial gland tumor sterols. I. The occurence of 24,25-dihydrolanosterol and a comparison with liver and normal gland. J. biol. Chem. 234, 2037–2042 (1906b).Google Scholar
  237. Kandutsch, A.A., Russell, A.E.: Preputial gland tumor sterols. III. A metabolic pathway from lanosterol to cholesterol. J. biol. Chem. 235, 2256–2261 (1960 c).PubMedGoogle Scholar
  238. Kandutsch, A.A., Saucier, S.E.: Prevention of cyclic and Triton induced increases in HMG-CoA reductase and sterol synthesis by puromycin. J. biol. Chem. 244, 2299–2305 (1969).PubMedGoogle Scholar
  239. Kannel, W.B., Dawber, T.R., Friedman, C.D., Glennon, W.E., McNamara, D.M.: Risk factors in coronary artery disease: an evaluation of several serum lipids as predictors of coronary heart disease. The Framingham Study. Ann. int. Med. 61, 888–899 (1964).Google Scholar
  240. Kaplan, J.A., Cox, G.E., Taylor, C.D.: Cholesterol metabolism in man: studies on absorption. Arch. Path. 76, 359–368 (1963).PubMedGoogle Scholar
  241. Karvinen, E., Lin, T.M., Ivy, A.C.: Capacity of human intestine to absorb exogenous cholesterol. J. appl. Physiol. 11, 143–147 (1957).PubMedGoogle Scholar
  242. Kattermann, R., Creutzfeld, W.: The effect of experimental cholestasis on the negative feed back regulation of cholesterol synthesis in rat liver. Scand. J. Gastroenterol. 5, 337–342 (1970).PubMedGoogle Scholar
  243. Kawachi, T., Rudney, H.: Solubilization and purification of β-Miydroxy-β-methylglutaryl coenzyme A reductase from rat liver. Biochemistry 9, 1700–1705 (1970).PubMedGoogle Scholar
  244. Kay, R.E., Entenman, C.: Stimulation of taurocholic acid synthesis and biliary excretion of lipids. Amer. J. Physiol. 200, 855–859 (1961).PubMedGoogle Scholar
  245. Keys, A. (Ed.): Coronary heart disease in seven countries. Circulation 41, Suppl. I (1970).Google Scholar
  246. Keys, A., Anderson, J.T., Grande, F.: Serum cholesterol response to changes in the diet. II. The effect of cholesterol in the diet. Metabolism 14, 759 (1965).Google Scholar
  247. Keys, A., Michelsen, O., Miller, E.O., Hayes, E.R., Todd, R.: The concentration of cholesterol in the blood serum of normal man in relation to age. J. clin. Invest. 29, 1347–1353 (1950).PubMedGoogle Scholar
  248. Knappe, J., Ringelmann, E., Lynen, F.: Über die β-Hydroxy-β-methyl-glutaryl-Reductase der Hefe. Zur Biosynthese der Terpene IX. Biochem. Z. 332, 195–213 (1959).PubMedGoogle Scholar
  249. Korzenovsky, M., Walters, C.P., Harvey, O.A., Diller, E.R.: Some factors which influence the catalytic activity of pancreatic cholesterol esterase. Proc. Soc. exp. Biol. (N.Y.) 105, 303–305 (1960).Google Scholar
  250. Kritchevsky, D., Staple, E., Rabinowitz, J.L., Whitehouse, M.W.: Differences in cholesterol oxidation and biosynthesis in liver of male and female rats. Amer. J. Physiol. 200, 519–522 (1961).PubMedGoogle Scholar
  251. Kudchodkar, B.J., Horlick, L., Sodhi, H.S.: Effects of nicotininic acid and plant sterols on cholesterol metabolism in man. Proceedings of fourth International Symposium of Drug affecting lipid metabolism. Philadelphia, USA (1971a).Google Scholar
  252. Kudchodkar, B.J., Sodhi, H.S., Horlick, L.: Absorption of dietary cholesterol in man. Circulation 44, Suppl. III (1971b).Google Scholar
  253. Kudchodkar, B.J., Sodhi, H.S.: Enterohepatic metabolism of cholesterol in types IIa and IIb hyperlipoproteinemia. Circulation 46, Suppl. II, 267 (1972).Google Scholar
  254. Kudchodkar, B.J., Sodhi, H.S.: Turnover of cholesterol esters in hyperlipoproteinemias. Proc. Can. Fed. Biol. Soc. 16, 93 (1973).Google Scholar
  255. Kudchodkar, B.J., Sodhi, H.S., Horlick, L.: Absorption of dietary cholesterol in man. Metabolism 22, 155–163 (1973a).PubMedGoogle Scholar
  256. Kudchodkar, B.J., Sodhi, H.S., Horlick, L.: Effect of positol on cholesterol metabolism in man. Unpublished results (1973b).Google Scholar
  257. Kudchodkar, B.J., Sodhi, H.S., Horlick, L.: Mechanism of action of nicotinic acid on cholesterol metabolism in man. Unpublished results (1973c).Google Scholar
  258. Kurland, G.S., Lucas, J.L., Friedberg, A.S.: The metabolism of intravenously infused C14-labelled cholesterol in enthyroidism and myxedema. J. Lab. clin. Med. 57, 574 (1961).PubMedGoogle Scholar
  259. Laksamanan, M.R., Nepokroeff, C.M., Ness, G.C., Dugan, R.E., Porter, J.W.: Stimulation by insulin of rat liver β-Miydroxy-β-methyl-glutarylcoenzym A reductase and cholesterol synthezising activities. Biochem. Biophys. Res. Com. 50, 704–710 (1973).Google Scholar
  260. Langdon, R.G., Bloch, K.: The utilization of squalene in the biosynthesis of cholesterol. J. biol. Chem. 200, 135–144 (1952).Google Scholar
  261. Langdon, R.G., Bloch, K.: The effect of some dietary additions on the synthesis of cholesterol from acetate in vitro. J. biol. Chem. 202, 77–81 (1953).PubMedGoogle Scholar
  262. Leal, R.: Effect of growth hormones in lipid synthesis. Rev. Port. Quin 4, 3–7 (1962).Google Scholar
  263. Lefevre, A.F., Decarli, L.M., Lieber, C.S.: Effect of ethanol on cholesterol and bile acid metabolism. J. Lipid Res. 13, 48–55 (1972).PubMedGoogle Scholar
  264. Levy, R.I., Fredrickson, D.S., Laster, L.: Lipoproteins and lipid transport in abetalipoproteinemia. J. clin. Invest. 45, 531–541 (1966).PubMedGoogle Scholar
  265. Lewis, B., Myant, N.B.: Studies in the metabolism of cholesterol in subjects with normal plasma cholesterol levels and in patients with essential hypercholesterolemia. Clin. Sci. 32, 201–213 (1967).PubMedGoogle Scholar
  266. Liebermann, G.: Über das Oxychinoterpen. Chem. Ber. 18, 1803–1809 (1885).Google Scholar
  267. Liersch, E.A.M., Barth, C.A., Hackenschmidt, J.H., Ullmann, H.L., Decker, K.F.A.: Influence of bile salts on cholesterol synthesis in the isolated perfused rat liver. Europ. J. Biochem. 32, 365–371 (1973).PubMedGoogle Scholar
  268. Lindberg, M., Gautschi, F., Bloch, K.: Ketonic inter-mediates in the demethylation of lanosterol. J. biol. Chem. 238, 1661–1664 (1963).PubMedGoogle Scholar
  269. Lindberg, M., Yuan, C., DeWaard, A., Bloch, K.: On the mechanism of formation of isopentenyl-pyrophosphate. Biochemistry 1, 182–188 (1962).PubMedGoogle Scholar
  270. Lindstedt, S., Ahrens, E.H., Jr.: Conversion of cholesterol to bile acids in man. Proc. Soc. exp. Biol. (N.Y.) 108, 286–188 (1961).Google Scholar
  271. Linn, T.C.: The demonstration and solubilization of β-Miydroxy-β-methylglutaryl coenzyme A reductase from rat liver microsomes. J. biol. Chem. 242, 984–989 (1967a).PubMedGoogle Scholar
  272. Linn, T.C.: The effect of cholesterol feeding and fasting upon β-Miydroxy-β-methylglutaryl coenzym A reductase. J. biol. Chem. 242, 990–993 (1967b).PubMedGoogle Scholar
  273. Lipsky, S.R., Bondy, P.K., Man, E.B., McGuire, J.S., Jr.: The effects of trijodo-thyronine on the biosynthesis of plasma lipids from acetate-l-14C in myxedematous subjects. J. clin. Invest. 34, 950 (1955).Google Scholar
  274. Little, H.N., Bloch, K.: Studies on the utilization of acetic acid for the biological synthesis of cholesterol. J. biol. Chem. 183, 33–46 (1950).Google Scholar
  275. Lofland, H.B., Clarkson, T.B., St’Clair, R.W., Lehner, N.D.M.: Studies on the regulations of plasma cholesterol levels in squirrel monkeys of two genotypes. J. Lipid Res. 13, 39–47 (1972).PubMedGoogle Scholar
  276. Lupien, P.J., Migicowsky, B.D.: Ability of starvation and of dietary cholesterol to suppress incorporation of labelled precursors into chick liver and plasma cholesterol. Canad. J. Biochem. 42, 443–449 (1964).PubMedGoogle Scholar
  277. Lynen, F.: In: Ciba Foundation Symposion on the “Biosynthesis of Terpenes and Sterols” (G.E.W. Wolstenholme, M. O’Connor, Eds.). London: Churchill 1959.Google Scholar
  278. Lynen, F., Agranoff, B.W., Eggerer, H., Henning, U., Möslein, E.M.: γ,γ-Dimethyl-allyl-pyrophosphat und Geranyl-pyrophosphat, biologische Vorstufen des Squalens. Zur Biosynthese der Terpene VI. Angew. Chem. 71, 657–663 (1959).Google Scholar
  279. Lynen, F., Henning, U., Bublitz, L., Sörbo, B., Kroeplin-Rueff, L.: Der chemische Mechanismus der Acetessigsäurebildung in der Leber. Biochem. Z. 330, 269–295 (1958a).PubMedGoogle Scholar
  280. Lynen, F., Eggerer, H., Henning, U., Kessel, J.: Far-nesylpyrophosphat und 3-Methyl-Δ 3butenyl-l-pyrophosphat, die biologischen Vorstufen des Squalens. Angew. Chem. 70, 738–742 (1958b).Google Scholar
  281. Lynen, F., Knappe, J., Lorch, E., Jutting, G., Ringelmann, E., Lachance, J.A.: Zur Biochemischen Funktion des Biotins: II. Reinigung und Wirkungsweise der β-methyl-crotonyl-Carboxylase. Biochem. Z. 335, 123–167 (1961).PubMedGoogle Scholar
  282. Mac Nintch, J.E., Stelair, R.W., Lehner, N.D., Clarkson, T.B., Lofland, H.B.: Cholesterol metabolism and atherosclerosis in cebus monkeys in relation to age. Lab. Invest. 16, 444–452 (1967).Google Scholar
  283. Makino, J., Sjövall, J., Norman, A., Strandvik, B.: Excretion of 3β-hydroxy-5-cholenoic and 3α-hydroxy-5α-cholanoic acids in urine of infants with biliary atresia. FEBS Letters 15, 161–164 (1971).PubMedGoogle Scholar
  284. Marsh, J.B., Drabkin, D.L.: Metabolic channeling in experimental nephrosis. V. Lipid metabolism in the early stages of the disease. J. biol. Chem. 230, 1083–1091 (1958).PubMedGoogle Scholar
  285. Masui, T., Staple, E.: The formation of cholic acid from 3α, 7α, 12α, 24ξ tretrahydroxy-coprostanic acid by rat liver. Biochim. biophys. Acta (Amst.) 104, 305–307 (1965).Google Scholar
  286. Mattson, F.H., Erickson, B.A., Kligman, A.M.: Effect of dietary cholesterol on serum cholesterol in man. Amer. J. clin. Nutr. 25, 589–594 (1972).PubMedGoogle Scholar
  287. Maudgal, R.K., Tchen, T.T., Bloch, K.: 1,2-Methyl shifts in the cyclisation of squalene to lanosterol. J. Amer. chem. Soc. 80, 2589–2590 (1958).Google Scholar
  288. McIntyre, N., Isselbacher, K.J.: Role of the small intestine in cholesterol metabolism. Amer. J. clin. Nutr. 26, 647–656 (1973).PubMedGoogle Scholar
  289. McIntyre, N., Kirsch, K., Orr, C., Isselbacher, K.J.: Sterols in the small intestine of the rat, guinea pig and rabbit. J. Lipid Res. 12, 336–346 (1971).PubMedGoogle Scholar
  290. McNamara, D.J., Quackenbush, F.W., Rodwell, V.W.: Regulation of hepatic HMG-CoA reductase. Developmental pattern. J. biol. Chem. 247, 5805–5810 (1972).PubMedGoogle Scholar
  291. Mendelsohn, D., Mendelsohn, L., Staple, E.: The in vitro catabolism of cholesterol: a comparison of the formation of cholest-4-en 7α-ol-3on and 5β-cholestan-7α-ol-3on from cholesterol in rat liver. Biochemistry 5, 1286–1290 (1966).PubMedGoogle Scholar
  292. Mendelsohn, D., Staple, E.: The in vitro catabolism of cholesterol. Formation of 3α,7α,12α-trihydroxy-koprostan from cholesterol in rat liver. Biochemistry 2, 577–579 (1963).PubMedGoogle Scholar
  293. Miettinen, T.A., Ahrens, E.H., Jr., Grundy, S.M.: Quantitative isolation and gas liquid chromatographic analysis of total dietary and fecal neutral steriods. J. Lipid Res. 6, 411–424 (1965).PubMedGoogle Scholar
  294. Miettinen, T.A., Penttila, I.M.: Leucine and mevalonate as precursors of serum cholesterol in man. Acta med. scand. 184, 159–164 (1968).PubMedGoogle Scholar
  295. Migicowsky, B.D., Wood, J.D.: Effect of starvation on cholesterol biosynthesis in vitro. Canad. J. Biochem. 33, 858–866 (1955).Google Scholar
  296. Mitropoulos, K.A., Dean, P.D.G., Waitehouse, M.W., Myant, N.B.: Conversion of 3β-hydroxy-cholest-5-en-26-oic acid into bile acids in vivo. Biochem. J. 105, 31 (1967).Google Scholar
  297. Mitropoulos, K.A., Myant, N.B.: The formation of lithocholic acid, chenodeoxycholic acid and α- and β-muricholic acids from cholesterol incubated with rat liver mitochondria. Biochem. J. 103, 472–479 (1967).PubMedGoogle Scholar
  298. Moir, N.J., Gaylor, J.L., Yanni, J.B.: Effect of cholestyramine on the terminal reactions of sterol biosynthesis. Arch. Biochem. 141, 465–472 (1970).PubMedGoogle Scholar
  299. Moore, R.B., Anderson, J.T., Taylor, H.L., Frantz, I.D., Jr.: Effects of dietary fat on the fecal excretion of cholesterol and its degradation products in man. J. clin. Invest. 47, 1517–1534 (1968).PubMedGoogle Scholar
  300. Mosbach, E.H., Rothshild, M.A., Bekersky, J., Oratz, M., Mongelli, J.: Bile acid synthesis in the isolated, perfused rabbit liver. J. clin. Invest. 50, 1720–1730 (1971).PubMedGoogle Scholar
  301. Murthy, S.K., Ganguly, J.: Studies on cholesterol esterases of the small intestine and pancreas of rats. Biochem. J. 83, 460–469 (1962).PubMedGoogle Scholar
  302. Myant, N.B., Eder, H.A.: The effect of biliary drainage upon the synthesis of cholesterol in the liver. J. Lipid Res. 2, 363–368 (1961).Google Scholar
  303. Nair, P.P., Kritchevsky, D.: The Bile Acids, Chemistry, Physiology and Metabolism. New York-London: Plenum Press 1971/1973. National Diet and Heart Study. Circulation 37, Suppl. I (1968).Google Scholar
  304. Nazir, D.J., Horlick, L., Kudchodkar, B.J., Sodhi, H.S.: Mechanism of action of cholestyramine in the treatment of hypercholesterolemia. Circulation 46, 95–102 (1972).PubMedGoogle Scholar
  305. Nervi, F.O., Dietschy, J.M.: Failure of adrenal corticosteroids to influence the major mechanisms of hepatic cholesterogenesis. Biochim. biophys. Acta (Amst.) 369 351–360 (1974).Google Scholar
  306. Nestel, P.J.: Cholesterol turnover in man. Advanc. Lipid. Res. 8, 1–39 (1970a).Google Scholar
  307. Nestel, P.J.: Turnover of plasma esterified cholesterol. Influence of dietary fat and carbohydrate and relation to plasmalipids and body weight. Clin. Sci. 38, 593–600 (1970b).PubMedGoogle Scholar
  308. Nestel, P.J., Couzens, E., Hirsch, E.Z.: Comparison of turnover of individual cholesterol esters in subjects with low and high plasma cholesterol concentration. J. Lab. clin. Med. 66, 582–595 (1965).PubMedGoogle Scholar
  309. Nestel, P.J., Havenstein, N., Whyte, H.M., Scott, T.J., Cook, L.J.: Lower plasma cholesterol after eating polyunsaturated ruminant fats. New Engl. J. Med. 288, 379–382 (1973).PubMedGoogle Scholar
  310. Nestel, P.J., Whyte, H.M., Goodman, D.S.: Distribution and turnover of cholesterol in humans. J. Clin. Invest. 48, 982–991 (1969).PubMedGoogle Scholar
  311. Nilsson, A., Sundler, R., Äkesson, B.: Biosynthesis of fatty acids and cholesterol in isolated rat liver parenchymal cells. Effect of albumin bound fatty acids. Europ. J. Biochem. 39, 613–620 (1973).PubMedGoogle Scholar
  312. Okishio, T., Nair, P.P.: Studies on bile acids. Some observations on the intracellular localization of maior bile acids in rat liver. Biochemistry 5, 3662–3668 (1966).PubMedGoogle Scholar
  313. Olson, J.A., Lindberg, M., Bloch, K.: On the demethylation of lanosterol to cholesterol. J. biol. Chem. 226, 941–956 (1957).PubMedGoogle Scholar
  314. Pawliger, D.F., Shipp, J.C.: Familial hypercholesterolemia: Effect of exogenous cholesterol on cholesterol biosynthesis in vivo and by liver in vitro. Clin. Res. 16, 51 (1968).Google Scholar
  315. Philips, G.B.: The lipid composition of human bile. Biochim. biophys. Acta (Amst.) 41, 361–363 (1960).Google Scholar
  316. Piehl, A.: Effect of bile acids on cholesterol absorption, deposition and synthesis in rat. Cholesterol studies. Acta physiol. scand. 34, 206–217 (1955).Google Scholar
  317. Playoust, M.R., Isselbacher, K.J.: Studies on the transport and metabolism of conjugated bile salts by intestinal mucosa. J. clin. Invest. 43, 467–476 (1964).PubMedGoogle Scholar
  318. Pope, J.L., Parkinson, T.M., Olson, J.A.: Action of bile salts on the metabolism and transport of water soluble nutrients by perfused rat jejunum in vitro. Biochim. biophys. Acta (Amst.) 130, 218–232 (1966).Google Scholar
  319. Popjak, G.: The biosynthesis of derivatives of allylic alcohols from [2–14C]mevalonate in liver enzyme preparations and their relation to synthesis of squalene. Tetrahedron Letters 19, 19–28 (1959).Google Scholar
  320. Popjak, G., Beeckmans, M.C.: Extrahepatic lipid synthesis. Biochem. J. 47, 233–238 (1950).PubMedGoogle Scholar
  321. Popjak, G., Cornforth, J.W., Cornforth, R.H., Ryhage, R., Goodman, P.S.: Studies on the biosynthesis of cholesterol. XVI. Chemical synthesis of 1–3H2–2-14C- and 1-D2–2-14C-trans-transfarnesyl pyrophosphate and their utilization in squalene biosynthesis. J. biol. Chem. 237, 56–61 (1962).PubMedGoogle Scholar
  322. Popjak, G., Goodman, P.S., Cornforth, J.W., Cornforth, R.H., Ryhage, R.: Studies on the biosynthesis of cholesterol, XV. Mechanisms of squalene biosynthesis from farnesyl pyrophosphate and from mevalonate. J. biol. Chem. 236, 1934–1947 (1961).PubMedGoogle Scholar
  323. Popjak, G., Lowe, A.E., Moore, D., Brown, L., Smith, F.A.: Scintillation counter for the measurement of radioacticity of vapors in conjugation with gas liquid chromatography. J. Lipid Res. 1, 29–39 (1959).Google Scholar
  324. Pudles, J., Bloch, K.: Conversion of 4-hydroxy methylene- Δ 7-cholesten-3-one to cholesterol. J. biol. Chem. 235, 3417–3420 (1960).PubMedGoogle Scholar
  325. Quarfordt, S.H., Greenfield, M.F.: Estimation of cholesterol and bile acid turnover in man by kinetic analysis. J. clin. Invest. 52, 1937–1945 (1973).PubMedGoogle Scholar
  326. Quintao, E., Grundy, S.M., Ahrens, E.H., Jr.: An evaluation of four methods for measuring cholesterol absorption by the intestine in man. J. Lipid Res. 12, 221–232 (1971a).PubMedGoogle Scholar
  327. Quintao, E., Grundy, S.M., Ahrens, E.H., Jr.: Effects of dietary cholesterol on the regulation of total body cholesterol in man. J. Lipid Res. 12, 233–247 (1971b).PubMedGoogle Scholar
  328. Rabinowitz, J.L., Herman, R.H., Weinstein, D., Staple, E.: Isolation of 3α, 7α-dihydroxycoprostane derived from cholesterol in human bile. Arch. Biochem. 114, 233–234 (1966).Google Scholar
  329. Redgrave, T.G.: Formation of cholesteryl ester rich particulate lipid during metabolism of chylomicrons. J. clin. Invest. 49, 465–471 (1970).PubMedGoogle Scholar
  330. Renson, J., Van Cantfort, J., Robaye, B., Gielen, J.: Mesures de la demi vie de la cholestérol 7α-hydroxylase. Arch. Int. Physiol. 17, 972–973 (1969).Google Scholar
  331. Rilling, H.C., Bloch, K.: On the mechanism of squalene biogenesis from mevalonic acid. J. biol. Chem. 234, 1424–1432 (1959).PubMedGoogle Scholar
  332. Ritland, S., Blomhoff, J.P., Gjone, E.: Lecithin: cholesterol acyltransferase and lipoprotein-X in liver disease. Clin. Chim. Acta 49, 251–259 (1973).PubMedGoogle Scholar
  333. Rittenberg, D., Schoenheimer, R.: Deuterium as indication in study of intermediary metabolism; further studies on biological uptake of deuterium into organic substances, with special reference to fat and cholesterol formation. J. biol. Chem. 121, 235–253 (1937).Google Scholar
  334. Robinson, R.: Structure of cholesterol. J. Soc. Chem. Ind. 53, 1062–1063 (1934).Google Scholar
  335. Rosenfeld, R.S., Fukushima, D.K., Hellman, L., Gallagher, T.F.: The transformation of cholesterol to coprostanol. J. biol. Chem. 211, 301–311 (1954).PubMedGoogle Scholar
  336. Rosenfeld, R.S., Gallagher, T.F.: Further studies of the biotransformation of cholesterol to coprostanol. Steroids 4, 515–520 (1964).Google Scholar
  337. Rosenfeld, R.S., Hellman, L.: The relation of plasma and biliary cholesterol to bile acid synthesis in man. J. clin. Invest. 38, 1334–1338 (1959).PubMedGoogle Scholar
  338. Rosenheim, O., Webster, T.A.: A dietary factor concerned in coprosterol formation. Biochem. J. 35, 920–927 (1941).PubMedGoogle Scholar
  339. Rosenheim, O., Webster, T.A.: The mechanism of coprosterol formation in vivo. 1. Cholesterone as an intermediate. Biochem. J. 37, 513–514 (1943).PubMedGoogle Scholar
  340. Rosenman, R.H., Friedman, M., Byers, S.O.: The effect of various hormones upon the hepatic synthesis of cholesterol in rats. Endocrinology 51, 142–147 (1952).PubMedGoogle Scholar
  341. Rudney, H.: The biosynthesis of β-hydroxy-β-methylglutaric acid. J. biol. Chem. 227, 363–377 (1957).PubMedGoogle Scholar
  342. Rudney, H.: In: Ciba Foundation Symposion on the Biosynthesis of Terpenes and Sterols (G.E.W. Wolstenholme, M. O’Connor, Eds.). London: Churchill 1959.Google Scholar
  343. Saba, N., Hechter, O., Stone, D.: Conversion of cholesterol to pregnenolene in bovine adrenal hemogenates. J. Amer. Chem. Soc. 76, 3862–3864 (1954).Google Scholar
  344. Sakakida, H., Shediac, C.C., Siperstein, M.D.: Effect of endogenous and exogenous cholesterol on the feedback control of cholesterol synthesis. J. clin. Invest. 42, 1521–1528 (1963).PubMedGoogle Scholar
  345. Salen, G., Ahrens, E.H., Grundy, S.M.: Metabolism of β-sitosterol in man. J. clin. Invest. 49, 952–967 (1970).PubMedGoogle Scholar
  346. Samuels, A.B., Palmer, R.H.: Conversion of chenode-oxycholic acid to cholic acid in humans with obstructive jaundice. Gastroenterology 64, 168 (1973).Google Scholar
  347. Samuel, P., Holtzman, C.M., Meilman, E., Perl, W.: Effect of neomycin on exchangeable pools of cholesterol in the steady state. J. clin. Invest. 48, 982–991 (1969).Google Scholar
  348. Samuel, P., Lieberman, S.: Improved estimation of body masses and turnover of cholesterol by computerized input-output analysis. J. Lipid Res. 14, 189–196 (1973).PubMedGoogle Scholar
  349. Samuel, P., Perl, W.: Long-term decay of serum cholesterol radioactivity: body cholesterol metabolism in normals and in patients with hyperlipoproteinemia and atherosclerosis. J. clin. Invest. 49, 346–357 (1970).PubMedGoogle Scholar
  350. Samuel, P., Perl, W., Holtzman, C.M., Rochman, N.D., Lieberman, S.: Long-term kinetics of serum and xanthoma cholesterol radioactivity in patients with hypercholesterolemia. J. clin. Invest. 51, 266–278 (1972).PubMedGoogle Scholar
  351. Sauer, F.: Fatty acid, cholesterol, and acetoacetate biosynthesis in liver homogenates from normal and starved guinea pigs. Canad. J. Biochem. 38, 635–641 (1960).PubMedGoogle Scholar
  352. Scaife, J.F., Migicowsky, B.B.: Effect of alloxan insulin and thyroxine on cholesterol and fatty acid synthesis in rat liver homogenates. Can. J. Biochem. 35, 15–23 (1957).PubMedGoogle Scholar
  353. Scallen, T.J., Srikantaiah, M.V., Seetharam, B., Hansbury, E., Gavey, K.L.: Sterol carrier protein hypothesis. Fed. Proc. 33, 1733–1746 (1974).PubMedGoogle Scholar
  354. Schettler, G., Wagner, H.: Turnover of labelled lipids and sterols in human investigation. Progr. Biochem. Pharmacol. 5, 72–89 (1969).Google Scholar
  355. Schneider, D.L., Gallo, D.G., Sarret, H.P.: Effect of cholestyramine on cholesterol metabolism in young adult swine. Proc. Soc. exp. Biol. (N.Y.) 121, 1244–1248 (1966).Google Scholar
  356. Schoenfield, L.J., Bonorris, G.G., Ganz, P.: Induced alterations in the rate limiting enzymes of hepatic cholesterol and bile acid synthesis in the hamster. J. Lab. clin. Med. 82, 858–868 (1973).PubMedGoogle Scholar
  357. Schoenheimer, R., Breusch, F.: Synthesis and destruction of cholesterol in the organism. J. biol. Chem. 103, 439–448 (1933).Google Scholar
  358. Scholan, N.A., Boyd, G.S.: The cholesterol 7α-hydroxylase enzyme system. Hoppe-Seylers Z. physiol. Chem. 349, 1628–1630 (1968).PubMedGoogle Scholar
  359. Schroepfer, G.J., Frantz, J.D.: Conversion of Δ 7 -cholestenol-4–14C and 7-dehydro-cholesterol-4-C14 to cholesterol. J. biol. Chem. 236, 3137–3140 (1961).PubMedGoogle Scholar
  360. Schwenk, E., Werthessen, N.T.: Studies on the biosynthesis of cholesterol, III. Purification of 14C-Cholesterol from perfusions of livers and other organs. Arch. Biochem. 40, 334–341 (1952).PubMedGoogle Scholar
  361. Schwenk, E., Werthessen, N.T.: Studies on the biosynthesis of cholesterol, IV. Higher counting substances accompanying 14C-Cholesterol in the intact rat. Arch. Biochem. 42, 91–93 (1953).PubMedGoogle Scholar
  362. Sebesin, S.M., Isselbacher, K.J.: Protein synthesis inhibition: Mechanism for the production of impaired fat absorption. Science 147, 1149–1150 (1965).Google Scholar
  363. Shapiro, D.J., Rodwell, V.W.: Diurnal variation and cholesterol regulation of hepatic HMG-CoA reductase activity. Biochem. Biophys. Res. Comm. 37, 867–872 (1969).PubMedGoogle Scholar
  364. Shapiro, D.J., Rodwell, V.W.: Regulation of hepatic HMG-CoA reductase and cholesterol synthesis. J. biol. Chem. 246, 3210–3216 (1971).PubMedGoogle Scholar
  365. Shefer, S., Hauser, S., Bekersky, J., Mosbach, E.H.: Feedback regulation of bile acid biosynthesis in the rat. J. Lipid Res. 10, 646–655 (1969).PubMedGoogle Scholar
  366. Shefer, S., Hauser, S., Bekersky, I., Mosbach, E.H.: Biochemical site of regulation of bile acid biosynthesis in the rat. J. Lipid Res. 11, 404–411 (1970).PubMedGoogle Scholar
  367. Shefer, S., Hauser, S., Lapar, V., Mosbach, E.H.: HMG-CoA reductase of intestinal mucosa and liver of the rat. J. Lipid Res. 13, 402–412 (1972).PubMedGoogle Scholar
  368. Shefer, S., Hauser, S., Lapar, V., Mosbach, E.H.: Regulatory effects of dietary sterols and bile acids on rat intestinal HMG-CoA reductase. J. Lipid Res. 14, 400–405 (1973a).PubMedGoogle Scholar
  369. Shefer, S., Hauser, S., Lapar, V., Mosbach, E.H.: Regulatory effects of sterols and bile acids on hepatic HMG-CoA reductase and cholesterol 7α-hydroxylase in the rat. J. Lipid Res. 14, 573–580 (1973b).PubMedGoogle Scholar
  370. Shefer, S., Hauser, S., Mosbach, E.H.: 7α-Hydroxylation of cholestanol by rat liver microsomes. J. Lipid Res. 9, 328–333 (1968).PubMedGoogle Scholar
  371. Simmonds, W.J., Hofmann, A.F., Theodor, E.: Absorption of cholesterol from micellar solution: Intestinal perfusion studies in man. J. clin. Invest. 46, 874–890 (1967).PubMedGoogle Scholar
  372. Siperstein, M.D.: The homeostatic control of cholesterol synthesis in liver. Amer. J. clin. Nutr. 8, 645–650 (1960).Google Scholar
  373. Siperstein, M.D.: Developmental and Metabolic Control Mechanism and Neoplasia, p. 427–451. Baltimore: Williams & Wilkins 1965.Google Scholar
  374. Siperstein, M.D.: Regulation of cholesterol biosynthesis in normal and malignant tissues. In: Current Topics in Cell Regulation (B.L. Horecker, E.R. Stadtman, Eds.), vol. 2, p. 65–100. New York: Academic Press 1970.Google Scholar
  375. Siperstein, M.D., Chaikoff, J.L.: 14C-Cholesterol, III. Excretion of carbons 4 and 26 in feces, urine, and bile. J. biol. Chem. 198, 93–104 (1952).PubMedGoogle Scholar
  376. Siperstein, M., Fagan, V.M.: Feedback control of mevalonate synthesis of dietary cholesterol. J. biol. Chem. 241, 602–609 (1966).PubMedGoogle Scholar
  377. Siperstein, M.D., Guest, M.J.: Studies on the feedback control of cholesterol synthesis. J. clin. Invest. 39, 642–652 (1960).PubMedGoogle Scholar
  378. Siperstein, M.D., Jayko, M.E., Chaikoff, I.L., Dauben, W.G.: Nature of the metabolic products of 14C-cholesterol excreted in bile and feces. Proc. Soc. exp. Biol. (N.Y.) 81, 720–724 (1952).Google Scholar
  379. Siperstein, M.D., Murray, A.W.: Cholesterol metabolism in man. J. clin. Invest. 34, 1449–1453 (1955).PubMedGoogle Scholar
  380. Sjövall, J., Eneroth, P., Ryhage, R.: Mass spectra of bile acids. In: The Bile Acids (P.P. Nair, D. Kritchevsky, Eds.), vol. 1. New York-London: Plenum Press 1971.Google Scholar
  381. Skeggs, H.R., Wright, L.D., Cresson, E.L., Macrae, G.D.E., Hoffmann, C.H., Wolf, D.E., Folkers, K.: Discovery of a new acetate replacing factor. J. Bacteriol. 72, 519–524 (1956).PubMedGoogle Scholar
  382. Snog-Kjaer, A., Prange, I., Dam, H.: Conversion of cholesterol into coprosterol by bacteria invitro. J. gen. Microbiol. 14, 256–260 (1956).PubMedGoogle Scholar
  383. Sodhi, H.S., Wood, P.D.S., Schlierf, G., Kinsell, L.W.: Plasma, bile and fecal sterols in relation to diet. Metabolism 16, 334–343 (1967a).PubMedGoogle Scholar
  384. Sodhi, H.S., Berger, E.A., Gould, R.G.: Evidence for two pools of cholesterol in small intestines. Fed. Proc. 26, 471 (1967b).Google Scholar
  385. Sodhi, H.S., Kudchodkar, B.J.: Correlating metabolism of plasma and tissue cholesterol with that of plasma-lipoproteins. Lancet 1973 I, 513–519.Google Scholar
  386. Sonderhoff, R., Thomas, H.: Die enzymatische Dehydrierung der Trideutero-Essigsäure. Liebigs Ann. Chem. 530, 195–213 (1937).Google Scholar
  387. Sperry, W.M.: Lipid excretion: A study of the relationship of the bile to the fecal lipids with special reference to certain problems of sterol metabolism. J. biol. Chem. 71, 351–378 (1927).Google Scholar
  388. Spritz, N., Ahrens, E.H., Grundy, S.M.: Sterol balance in man as plasma cholesterol concentrations are altered by exchanges of dietary fats. J. clin. Invest. 44, 1482–1493 (1965).PubMedGoogle Scholar
  389. Srere, P.A., Chaikoff, I.L., Treitman, S.S., Burstein, L.S.: The extrahepatic synthesis of cholesterol. J. biol. Chem. 182, 629–634 (1952).Google Scholar
  390. Staple, E.: Enzymatic degradation of the cholesterol side chain in the biosynthesis of bile acids. In: Methods in Enzymology (R.B. Clayton, Ed.) vol. 15. New York: Academic Press 1959.Google Scholar
  391. Staple, E., Gurin, S.: The incorporation of radioactive acetate into biliary cholesterol and cholic acid. Biochim. biophys. Acta (Amst.) 15, 372–376 (1954).Google Scholar
  392. Stern, J.R., Drummano, G.J., Loon, M.J., Del Campillo, A.: Enzymes of ketone body metabolism, I. Purification of an acetoacetate synthezising enzyme from ox liver. J. biol. Chem. 235, 313–317 (1960).PubMedGoogle Scholar
  393. Stokes, W.M., Fish, W.A.: Sterol metabolism, II. The occurence of desmosterol in rat liver. J. biol. Chem. 235, 2604–2607 (1961).Google Scholar
  394. Subbia, L.M.R.R., Kuksis, A.: Fate of intra venously administered β-sitosterol-22–23-H3 in the rat. Proc. Canad. Fed. Biol. Soc. 11, 140 (1968).Google Scholar
  395. Sugiyama, T., Clinkenbeard, K., Moss, J., Lane, M.D.: Multiple cytositic forms of hepatic β-hydroxy-β-methylglutaryl CoA synthase: Possible regulatory role in cholesterol synthesis. Biochem. Biophys. Res. Comm. 18, 255–261 (1972).Google Scholar
  396. Suld, H.M., Staple, E., Gurin, S.: Mechanism of formation of bile acids from cholesterol. Oxidation of 5β-cholestan-3α,7α,12α-triol and formation of propionic acid from the side chain by rat liver mitochondria. J. biol. Chem. 237, 338–344 (1962).PubMedGoogle Scholar
  397. Swell, L., Byron, J.E., Treadwell, C.R.: Cholesterol esterases, IV. Cholesterol esterase of rat intestinal mucosa. J. biol. Chem. 186, 543–548 (1950).PubMedGoogle Scholar
  398. Swell, L., Field, H., Jr., Treadwell, C.R.: Role of bile salts in activity of cholesterol esterase. Proc. Soc. exp. Biol. (N.Y.) 84, 417–420 (1953).Google Scholar
  399. Swell, L., Trout, E.C., Jr., Hopper, J.R., Field, H., Jr., Treadwell, C.R.: The mechanism of cholesterol absorption. Ann. N.Y. Acad. Sci. 72, 813–825 (1959).PubMedGoogle Scholar
  400. Sylven, C., Borgström, B.: Intestinal absorption and lymphatic transport of cholesterol in the rat. Influence of the fatty acid chain length of the carrier triglycerides. J. Lipid Res. 10, 351–355 (1969).PubMedGoogle Scholar
  401. Sylven, C., Nordström, C.: The site of absorption of cholesterol and sitosterol in the rat small intestine. Scand. J. Gastroenterol. 5, 57 (1970).PubMedGoogle Scholar
  402. Tavormina, P.A., Gibbs, M.H., Huff, J.W.: The utilization of β-hydroxy-β-methyl-δ-valerolactone in cholesterol biosynthesis. J. Amer. chem. Soc. 78, 4498–4499 (1956).Google Scholar
  403. Taylor, C.B., Cox, G.E., Nelson, L.G., Davis, C.B., Hass, G.M.: In vitro studies on human hepatic cholesterol synthesis. Circulation 12, 489 (1955).Google Scholar
  404. Taylor, C.B., Mikkelson, B., Anderson, A., Forman, D.T.: Human serum cholesterol synthesis measured with the deuterium label. Arch. Path. 81, 213–231 (1966).Google Scholar
  405. Taylor, C.B., Patton, D., Yogi, N., Cox, G.E.: Diet as source of serum cholesterol in man. Proc. Soc. exp. Biol. (N.Y.) 103, 768–772 (1960).Google Scholar
  406. Tchen, T.T., Bloch, K.: In vitro conversion of squalene to lanosterol and cholesterol. J. Amer. chem. Soc. 77, 6085–6086 (1955).Google Scholar
  407. Tchen, T.T., Bloch, K.: On the mechanism of enzymatic cyclization of squalene. J. biol. Chem. 226, 931–939 (1957).PubMedGoogle Scholar
  408. Tennent, D.M., Siegel, H., Zanetti, M.E., Kuron, G.W., Ott, W.H., Wolf, F.J.: Plasma cholesterol lowering of bile acid binding polymers in experimental animals. J. Lipid Res. 1, 469–473 (1960).PubMedGoogle Scholar
  409. Thomas, P.J., Hsia, S.L., Matschiner, J.T., Doisy, E.A., Elliott, W.H., Thayer, S.A.: Metabolism of lithocholic acid-24–14C in the rat. J. biol. Chem. 239, 102–105 (1964).PubMedGoogle Scholar
  410. Tomkins, G.M., Chaikoff, J.L.: Cholesterol synthesis by liver, I. Influence of fasting and of diet. J. biol. Chem. 196, 569–573 (1952).PubMedGoogle Scholar
  411. Tomkins, G.M., Chaikoff, J.L., Bennett, L.L.: Cholesterol synthesis by liver, II. Effect of hypophysectomy. J. biol. Chem. 199, 543–545 (1952).PubMedGoogle Scholar
  412. Tomkins, G.M., Sheppard, H., Chaikoff, J.L.: Cholesterol synthesis by liver, III. Its regulation by ingested cholesterol. J. biol. Chem. 201, 137–141 (1953a).PubMedGoogle Scholar
  413. Tomkins, G.M., Sheppard, H., Chaikoff, J.L.: Cholesterol synthesis by liver, IV. Suppression by steroid administration. J. biol. Chem. 203, 781–786 (1953b).PubMedGoogle Scholar
  414. Treadwell, C.R., Vahouny, G.V.: Cholesterol absorption. Handbook of Physiology. Section 6. Alimentary canal. Vol. 3. Intestinal absorption. C.F. Code (Ed.). American physiological Society, 1968, p. 1407–1438.Google Scholar
  415. Vahouny, G.V., Gregorian, H.M., Treadwell, C.R.: Comparative effects of bile acids on intestinal absorption of cholesterol. Proc. Soc. exp. Biol. (N.Y.) 101, 538–540 (1959).Google Scholar
  416. Vahouny, G.V., Treadwell, C.R.: Absolute requirement for free sterol for absorption by rat intestinal mucosa. Proc. Soc. exp. Biol. (N.Y.) 116, 496–498 (1964).Google Scholar
  417. Vahouny, G.V., Weersing, S., Treadwell, C.R.: Taurocholate protection of cholesterol esterase against proteolytic inactivation. Biochim. Biophys. Res. Comm. 15, 224–229 (1964).Google Scholar
  418. Vahouny, G.V., Weersing, S., Treadwell, C.R.: Function of specific bile acids in cholesterol esterase activity in vitro. Biochim. biophys. Acta (Amst.) 98, 607–616 (1965).Google Scholar
  419. Voser, W., Mijovic, M.W., Heusser, H., Jeger, O., Ruziska, L.: Über Steroide und Sexualhormone, 186. Über die Konstitution des Lanosterins und seine Zugehörigkeit zu den Steroiden. Helv. chim. Acta 35, 2414–2430 (1952).Google Scholar
  420. Wachtel, N., Emerman, S., Javitt, N.: Metabolism of cholest-5-ene,3β,26-diol in the rat and hamster. J. biol. Chem. 243, 5207–5212 (1968).PubMedGoogle Scholar
  421. Weis, H.J., Dietschy, J.M.: Failure of bile acids to control hepatic cholesterol genesis. Evidence for endogenous cholesterol feedback. J. clin. Invest. 48, 2398–2408 (1969).PubMedGoogle Scholar
  422. Wells, K.W., Neiderhiser, D.H.: Isolation and synthesis of a new sterol from rat feces. J. Amer. chem. Soc. 79, 6569–6570 (1957).Google Scholar
  423. White, L.W.: Stimulation of 3-hydroxy-3-methylglu-taryl CoA reductase by insulin. Circulation 46, Suppl. 253 (1972).Google Scholar
  424. White, L.W., Rudney, H.: Regulation of 3-hydroxy-3-methylglutarate and mevalonate biosynthesis by rat liver homogenates. Effects of fasting, cholesterol feeding and Triton administration. Biochemistry 9, 2725–2731 (1970).PubMedGoogle Scholar
  425. Whithehouse, M.W., Staple, E., Gurin, S.: Catabolism in vitro of cholesterol, I. Oxidation of the terminal methyl groups of cholesterol to carbon dioxide by rat liver preparations. J. biol. Chem. 234, 276–281 (1959).Google Scholar
  426. Williamson, D.H., Bates, M.W., Krebs, H.A.: Activity and intracellular distribution of enzymes of ketone body metabolism in rat liver. Biochem. J. 108, 353–361 (1968).PubMedGoogle Scholar
  427. Willmer, J.S., Foster, T.S.: The influence of adrenalectomy and individual steroid hormones upon the metabolism of acetatel-14C by rat liver slices, II. Incorporation into cholesterol. Canad. J. Biochem. 38, 1393–1397 (1960).PubMedGoogle Scholar
  428. Wilson, J.D.: The effect of dietary fatty acids on co-prostanol excretion by the rat. J. Lipid Res. 2, 350–356 (1961).Google Scholar
  429. Wilson, J.D.: Influence of dietary cholesterol in excretion of cholesterol-4–14C by the rat. Amer. J. Physiol. 202, 1073–1076 (1962).PubMedGoogle Scholar
  430. Wilson, J.D.: Relation between dietary cholesterol and bile acid excretion in the rat. Amer. J. Physiol. 203, 1029–1032 (1962).PubMedGoogle Scholar
  431. Wilson, J.D.: The quantification of cholesterol excretion and degradation in the isotopic steady state in the rat: The influence of dietary cholesterol. J. Lipid Res. 5, 409–417 (1964).PubMedGoogle Scholar
  432. Wilson, J.D.: The measurement of the exchangeable pools of cholesterol in the baboon. J. clin. Invest. 49, 655–665 (1970).PubMedGoogle Scholar
  433. Wilson, J.D., Lindsey, C.A., Jr.: Studies on the influence of dietary cholesterol on cholesterol metabolism in the isotopic steady state in man. J. clin. Invest. 44, 1805–1814 (1965).PubMedGoogle Scholar
  434. Wilson, J.D., Reinke, R.T.: Transfer of locally synthesized cholesterol from intestinal lymph. J. Lipid Res. 9, 85–92 (1968).PubMedGoogle Scholar
  435. Windaus, A.: Über die Entgiftung der Saponine durch Cholesterin. Chem. Ber. 42, 238–246 (1909).Google Scholar
  436. Windaus, A.: Über den Gehalt normaler und atheromatöser Aorten an Cholesterin und Cholesterinestern. Hoppe-Seylers Z. physiol. Chem. 67, 174–176 (1910).Google Scholar
  437. Wojciech, R., Janecek, H.M., Ivy, A.C.: Endogenous excretion and intestinal capacity for absorption of cholesterol in the dog. Amer. J. Physiol. 201, 190–193 (1961).PubMedGoogle Scholar
  438. Wood, P.D.S., Hatoff, D.: Incubation of human fecal homogenates with 4–14C cholesterol. Lipids 5, 702–706 (1970).PubMedGoogle Scholar
  439. Wood, P.D.S., Shioda, R., Kinsell, L.W.: Dietary regulation of cholesterol metabolism. Lancet 1966 II, 604–607.Google Scholar
  440. Woodward, R.B., Bloch, K.: The cyclization of squalene in cholesterol synthesis. J. Amer. chem. Soc. 75, 2023–2024 (1953).Google Scholar
  441. Wootton, J.D.P., Wiggins, H.S.: Studies in the bile acids, II. The non-ketonic acids of human bile. Biochem. J. 55, 292–294 (1953).PubMedGoogle Scholar
  442. Wright, L.D., Cresson, E.L., Skeggs, H.R., Macrae, G.D.E., Hoffmann, L.H., Wolff, D.E., Folkers, K.: Isolation of a new acetate replacing factor. J. Amer. chem. Soc. 78, 5273–5275 (1956).Google Scholar
  443. Wuersch, J., Haung, R.L., Bloch, K.: The origin of the isooctyl side chain of cholesterol. J. biol. Chem. 195, 439–446 (1952).PubMedGoogle Scholar
  444. Yamasaki, K.: Isolation of tetrahydroxynorsterocholanic acid from chicken bile and the bile acids from the bile of Citellus mongolicus ramosus, Hatarisu and of sheep. J. Biochemistry 38, 93–98 (1951).Google Scholar
  445. Zabin, J., Barker, W.F.: The conversion of cholesterol and acetate to cholic acid. J. biol. Chem. 205, 633–636 (1953).PubMedGoogle Scholar
  446. Zilversmit, D.B.: The design and analysis of isotope experiments. Amer. J. Med. 29, 832 (1960).PubMedGoogle Scholar
  447. Zilversmit, D.B.: Chylomicrons. In: Structural and functional Aspects of Lipoproteins in living Systems (E. Tria, A.M. Scanu, Eds.), p. 329–368. New York: Academic Press 1969.Google Scholar
  448. Zilversmit, D.B., Wentworth, R.A.: Determination of the optimal priming dose far achieving an isotopic steady state in a two-pool system: application to the study of cholesterol metabolism. J. Lipid. Res. 11, 551–557 (1970).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • A. Weizel
  • M. Liersch

There are no affiliations available

Personalised recommendations