Perturbation of continuous spectra and unitary equivalence

Part of the Classics in Mathematics book series (volume 132)


This chapter is concerned with the perturbation theory for continuous spectra. The operators considered are mostly selfadjoint. The stability of the continuous spectrum under a small perturbation has been studied rather extensively, though the results are by no means satisfactory. It is known that the continuous spectrum is rather unstable, even under degenerate perturbations. In this respect it is much worse-behaved than the essential spectrum (which is in general larger than the continuous spectrum). On the other hand, the absolutely continuous spectrum (which is in general smaller than the continuous spectrum) is stable under certain restricted perturbations; furthermore, the absolutely continuous parts of the perturbed and the unperturbed operators are seen to be unitarily equivalent.


Integral Operator Continuous Spectrum Multiplication Operator Wave Operator Continuous Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 1995

Authors and Affiliations

  1. 1.University of CaliforniaBerkeleyUSA

Personalised recommendations