Nucleic Acids in Host-Parasite Interactions

  • R. Heitefuss
  • G. Wolf
Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 4)


Most work on nucleic acid metabolism in host-parasite interactions has been done during recent years with the obligately biotrophic parasites, Puccinia spp., Erysiphe spp. and Plasmodiophora brassicae, with a few studies on Phytophthora infestans and Fusarium caeruleum.


Ribonucleic Acid Stem Rust Wheat Leave Nucleic Acid Metabolism Plasmodiophora Brassicae 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, R.F.: Cytological studies of infection of Baart, Kanred and Mindum wheats by Puccinia graminis forms III and XIX. J. Agr. Res. 21, 571–604 (1923).Google Scholar
  2. Atchison, B.A., Bourque, D.P., Wildman, S.G.: Preservation of 23-S chloroplast RNA as a single chain of nucleotides. Biochim. Biophys. Acta 331, 282–289 (1973).Google Scholar
  3. Bagi, G., Farkas, G.L.: On the nature of increase in ribonuclease activity in mechanically damaged tobacco leaves. Phytochemistry 6, 161–169 (1967).CrossRefGoogle Scholar
  4. Barnard, E.A.: Ribonucleases. Ann. Rev. Biochem. 38, 677–732 (1969).PubMedCrossRefGoogle Scholar
  5. Bauer, M.: Die Veränderungen des Nukleinsäuregehaltes im Blatt von Phaseolus vulgaris nach Infektion mit Uromyces phaseoli var. typica. Phytopathol. Z. 61, 191–196 (1968).CrossRefGoogle Scholar
  6. Bennett, J., Scott, K.J.: Ribosome metabolism in mildew-infected barley leaves. FEBS Lett. 16, 93–95 (1971).CrossRefGoogle Scholar
  7. Bhattacharya, P.K., Naylor, J.M., Shaw, M.: Nucleic acid and protein changes in wheat leaf nuclei during rust infection. Science 150, 1605–1607 (1965).PubMedCrossRefGoogle Scholar
  8. Bhattacharya, P.K., Shaw, M.: The physiology of host-parasite relations. XVIII. Distribution of tritium-labelled cytidine, uridine, and leucine in wheat leaves infected with stem rust fungus. Canad. J. Botany 45, 555–563 (1967).CrossRefGoogle Scholar
  9. Bhattacharya, P.K., Shaw, M.: The effect of rust infection on DNA, RNA, and protein in nuclei of Khapli wheat leaves. Canad. J. Botany 46, 96–99 (1968).CrossRefGoogle Scholar
  10. Bhattacharya, P.K., Shaw, M., Naylor, J.M.: The physiology of host-parasite relations. XIX. Further observations on nucleoprotein changes in wheat leaf nuclei during rust infection. Canad. J. Botany 46, 11–16 (1968).CrossRefGoogle Scholar
  11. Bhattacharya, P.K., Williams, P.H.: Microfluorometric quantitation of nuclear proteins and nucleic acids in cabbage root hair cells infected by Plasmodiophora brassicae. Physiol. Plant Pathol. 1, 167–175 (1971).CrossRefGoogle Scholar
  12. Biggs, D.R.: Studies on phytoalexins. The relationship between actinomycin D and ribonucleic acid synthesis during the induction of phaseollin in the french bean (Phaseolus vulgaris L.). Plant Physiol. 50, 660–666 (1972).PubMedCrossRefGoogle Scholar
  13. Boedtker, H.: Conformation independent molecular weight determinations of RNA by gel electrophoresis. Biochem. Biophys. Acta 240, 448–453 (1971).Google Scholar
  14. Bottomley, W.: Deoxyribonucleic acid-dependent ribonucleic acid polymerase activity of nuclei and plastids from etiolated peas and their response to red and far red light in vivo. Plant Physiol. 45, 608–611 (1970).PubMedCrossRefGoogle Scholar
  15. Bottomley, W., Smith, H.J., Bogorad, L.: RNA polymerase of maize: partial purification and properties of the chloroplast enzyme. Proc. Natl. Acad. Sci. US 68, 2412–2416 (1971).CrossRefGoogle Scholar
  16. Boyd, J.B., Mitchell, H.K.: Identification of deoxyribonucleases in Polyacrylamide gel following their separation by disk electrophoresis. Anal. Biochem. 13, 28–42 (1965).CrossRefGoogle Scholar
  17. Brady, C.J., Patterson, B.D., Tung, H.F., Smillie, R.M.: Protein and RNA synthesis during ageing of chloroplasts in wheat leaves. Autonom. Biogen. Mitoch. Chloropl. North-Holland 453–465 (1971).Google Scholar
  18. Brawerman, G.: Eukaryotic messenger RNA. Ann. Rev. Biochem. 43, 621–642 (1974).PubMedCrossRefGoogle Scholar
  19. Brown, R.E., Zawadzka, B., Millikan, D.F.: A sensitive method for the extraction and identification of deoxyribonucleic acid in plant leaf tissue. Phytochemistry 47, 1–4 (1962).Google Scholar
  20. Burton, K.: A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 62, 315–323 (1956).PubMedGoogle Scholar
  21. Callow, J.A.: Ribosomal RNA metabolism in cucumber leaves infected by Erysiphe cicho-racearum. Physiol. Plant Pathol. 3, 249–257 (1973).CrossRefGoogle Scholar
  22. Chakravorty, A.K., Shaw, M.: Changes in the transcription pattern of flax cotyledons after inoculation with flax rust. Biochem. J. 123, 551–557 (1971).PubMedGoogle Scholar
  23. Chakravorty, A.K., Shaw, M., Scrubb, L.A.: Ribonuclease activity of wheat leaves in relation to rust infection. Nature 247, 577 581 (1974a).Google Scholar
  24. Chakravorty, A.K., Shaw, M., Scrubb, L.A.: Changes in ribonuclease activity during rust infection. I. Characterization of multiple molecular forms of ribonuclease from flax rust grown in host-free media. Physiol. Plant Pathol. 4, 313–334 (1974b).CrossRefGoogle Scholar
  25. Chakravorty, A.K., Shaw, M., Scrubb, L.A.: Changes in ribonuclease activity during rust infection. II. Purification and properties of ribonuclease from healthy and infected flax cotyledons. Physiol. Plant Pathol. 4, 335–358 (1974c).CrossRefGoogle Scholar
  26. Cherry, J.H.: Nucleic acid determination in storage tissues of higher plants. Plant Physiol. 37, 670–678 (1962).PubMedCrossRefGoogle Scholar
  27. Cherry, J.H., Anderson, M.B.: Cytokinin induced changes in transfer RNA species. In: Plant Growth Substances, p. 181–189. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  28. Cherry, J.H., Chroboczek, H.: Factors affecting nucleic acid extractability. Phytochemistry 5, 411–422 (1966).CrossRefGoogle Scholar
  29. Dalgarno, L., Shine, J.: Ribosomal RNA. In: The Nucleic Acids, p. 107–149 (P.R. Stewart, D.S. Letham, eds.). Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  30. Dekhuuzen, Dekhuuzen, Dekker, J.: Mechanism or resistance of Cladosporium cucumerinum against 6-azauracil and 6-azauridine-monophosphate. Pest. Biochem. Physiol. 1, 11–18 (1971).CrossRefGoogle Scholar
  31. Dekhuuzen, H.M., Staples, R.C.: Mobilization factors in uredospores and bean leaves infected with bean rust fungus. Contrib. Boyce Thompson Inst. 24, 39–52 (1968).Google Scholar
  32. Dekker, J.: Systemic control of powdery mildew by 6-azauracil and some other purine and pyrimidine derivates. Mededel. Landbouwhogeschool Gent 27, 1214–1221 (1962).Google Scholar
  33. Dekker, J.: The development of resistance in Cladosporium cucumerinum against 6-azauracil, a chemotherapeutant of cucumber scab, and its relation to biosynthesis of RNA-precursors. Neth. J. Plant Pathol. 74, 127–136 (1968).CrossRefGoogle Scholar
  34. Dekker, J., Oort, A. J.P.: Mode of action of 6-azauracil against powdery mildew. Phytopathology 54, 815–818 (1964).Google Scholar
  35. Diener, T.D.: Virus infection and other factors affecting RNase activity of plant leaves. Virology 14, 177–189 (1961).PubMedCrossRefGoogle Scholar
  36. Dunkle, L.D., Maheshwari, R., Allen, P.J.: Infection structures from rust uredospores: Effect of RNA and protein synthesis inhibitors. Science 163, 481–482 (1969).PubMedCrossRefGoogle Scholar
  37. Dyer, T.A., Miller, R.H., Greenwood, A.D.: Leaf nucleic acids. I. Characteristics and role in the differentiation of plastids. J. Exptl. Botany 22, 125–136 (1971).CrossRefGoogle Scholar
  38. Dyer, T.A., Osborne, D.J.: Leaf nucleic acids. J. Exptl. Botany 22, 552–560 (1971).CrossRefGoogle Scholar
  39. Dyer, T.A., Scott, K.J.: Decrease in chloroplast polysome content of barley leaves infected with powdery mildew. Nature 236, 237–238 (1972).CrossRefGoogle Scholar
  40. Ewing, E.E., Cherry, J.H.: Base composition and column chromatography studies of ribonucleic acid differentially extracted from pea roots with sodium lauryl sulfate or p-amino salicylate. Phytochemistry 6, 1319–1328 (1967).CrossRefGoogle Scholar
  41. Farkas, G.L., Dezsi, L., Horwarth, M., Kisban, K., Udvardy, J.: Common pattern of enzymatic changes in detached leaves and tissues attacked by parasites. Phytopathol. Z. 49, 343–354 (1964).Google Scholar
  42. Frisch-Niggemeyer, W., Reddi, K.K.: Studies on ribonuclease in tobacco leaves. I. Purification and properties. Biochim. Biophys. Acta 26, 40–46 (1957).PubMedCrossRefGoogle Scholar
  43. Fritz, H.G., Röttger, B.: Die Ermittlung von Ribonukleinsäure im Pflanzenmaterial. Z. Naturforsch. 18b. 124–132 (1963).Google Scholar
  44. Fuchs, W.H., Tschen, J.: Syntheseaktivität und Größe der Zellkerne von Phaseolus vulgaris nach Infektion mit Uromyces phaseoli typica. Neth. J. Plant Pathol. 75, 86–95 (1969).CrossRefGoogle Scholar
  45. Glitz, D.G., Dekker, C.H.A.: Studies on a RNase from Ustilago sphaerogena. I. Purification and properties of the enzyme. Biochem. 3, 1391–1406 (1964).CrossRefGoogle Scholar
  46. Guinn, G.: Extraction of nucleic acids from lyophilized plant material. Plant Physiol. 41, 689–695 (1966).PubMedCrossRefGoogle Scholar
  47. Hadwiger, L.A., Hess, S.L., Broembsen, s von: Stimulation of phenylalanine ammonia lyase activity and phytoalexin production. Phytopathology 60, 332–336 (1970).CrossRefGoogle Scholar
  48. Hadwiger, L.A., Jafri, A., Broembsen, S. von, Eddy, R. Jr.: Mode of pisatin induction. Increased template activity and dye-binding capacity of chromatin isolated from polypep-tide-treated pea pods. Plant Physiol. 53, 52–63 (1974).PubMedCrossRefGoogle Scholar
  49. Hadwiger, L.A., Schwochau, M.E.: Specificity of deoxyribonucleic acid intercalating compounds in the control of phenylalanine ammonia lyase and pisatin levels. Plant Physiol. 47, 346–351 (1971).PubMedCrossRefGoogle Scholar
  50. Harvey, A.E., Chakravorty, A.K., Shaw, M., Scrubb, L.A.: Changes in ribonuclease activity in ribes leaves and pine tissue culture infected with blister rust, Cronartium ribicola. Physiol. Plant Pathol. 4, 359–371 (1974).CrossRefGoogle Scholar
  51. Heitefuss, R.: Nucleic acid metabolism in obligate parasitism. Ann. Rev. Phytopathol. 4, 221–244(1966).CrossRefGoogle Scholar
  52. Heitefuss, R.: The significance of changes in nucleic acid metabolism for the relations between host and obligate parasites. Neth. J. Plant Pathol. 74, 9–18 (1968).CrossRefGoogle Scholar
  53. Heitefuss, R.: Der Einfluß von Actinomycin auf Puccinia graminis tritici auf Weizen und den Einbau von Orotsäure-C14 und Uridin-H3 in Wirtspflanze und Parasit. Phytopathol. Z. 69, 107–114 (1970).CrossRefGoogle Scholar
  54. Heitefuss, R., Bauer, M. geb. de la Isla: Der Einfluß von 5-Fluoruracil auf den Nukleinsäure-stoffwechsel von Phaseolus vulgaris nach Infektion mit Uromyces phaseoli. Phytopathol. Z. 66, 25–37 (1969).CrossRefGoogle Scholar
  55. Hess, S.L., Hadwiger, L.A.: The induction of phenylalanine ammonia lyase and phaseollin by 9-aminoacridine and other deoxyribonucleic acid intercalating compounds. Plant Physiol. 48, 197–202 (1971).PubMedCrossRefGoogle Scholar
  56. Hirai, T.: Comparison of the biochemical changes due to fungus infection versus virus infection. Phytopathol. Z. 69, 256–266 (1970).CrossRefGoogle Scholar
  57. Holdgate, D.P., Goodwin, T.W.: Quantitative extraction and estimation of plant nucleic acid. Phytochemistry 4, 831–843 (1965).CrossRefGoogle Scholar
  58. Hoppe, J.H., Heitefuss, R.: Untersuchungen zur Regulation des Kohlenhydratstoffwechsels in Weizenkeimpflanzen nach Infektion mit Puccinia graminis tritici. Phytopathol. Z. 86, 37–55 (1976).CrossRefGoogle Scholar
  59. Howells, A.J.: Messenger RNA. In: The Ribonucleic Acids, p. 59–80 (P.R. Stewart, D.S. Letham, eds.). Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  60. Howes, N.K., Samborski, D.J., Rohringer, R.: Production and bioassay of gene-specific RNA determining resistance of wheat to stem rust. Canad. J. Botany 52, 2489–2497 (1974).CrossRefGoogle Scholar
  61. Ingle, J.: Synthesis and stability of chloroplast ribosomal-RNAs. Plant Physiol. 43, 1448–1458 (1968).PubMedCrossRefGoogle Scholar
  62. Ingle, J.: The extraction and estimation of nucleotides and nucleic acids from plant material. Phytochemistry 2, 353–370 (1963).CrossRefGoogle Scholar
  63. Ingle, J., Burns, R.G.: The loss of ribosomal ribonucleic acid during the preparation of nucleic acid from certain plant tissues by the detergent-phenol method. Biochem. J. 110, 605–606 (1968).PubMedGoogle Scholar
  64. Ingle, J., Key, J.L.: A re-evaluation of the fractionation of high molecular weight RNA by MAK chromatography. Biochem. Biophys. Res. Commun. 30, 711–716 (1968).PubMedCrossRefGoogle Scholar
  65. Ingle, J., Key, J.L., Holm, R.E.: Demonstration and characterization of DNA-like RNA in excised plant tissue. J. Mol. Biol. 11, 730–746 (1965).PubMedCrossRefGoogle Scholar
  66. Ingle, J., Wells, R., Possingham, J.V., Leaver, C.J.: The origin of chloroplast ribosomal RNA. Autonom. Biogen. Mitoch. Chloropl. North-Holland, 393–401 (1971).Google Scholar
  67. de la Isla, M.: Beitrag zum Ribonukleinsäurestoffwechsel von Phaseolus vulgaris nach Infektion mit Uromyces phaseolicola var. typica. Dissertation Göttingen (1967).Google Scholar
  68. Jackson, M., Ingle, J.: The interpretation of studies on rapidly labelled ribonucleic acid in higher plants. Plant Physiol. 81, 412–414 (1973).CrossRefGoogle Scholar
  69. Jacobson, A., Lodish, H.F.: A simple and inexpensive procedure for preparative Polyacrylamide gel electrophoresis of RNA. Anal. Biochem. 54, 515–517 (1973).CrossRefGoogle Scholar
  70. Jacoby, W.B. (ed.): Methods in Enzymology, vol. XXII, sect. V, p. 273–342. London-New York: Academic Press 1971.Google Scholar
  71. Johnson, L.B., Zscheile, F.P., Jr., Brannaman, B.L.: Effect of Puccinia recindita infection on the RNA composition of wheat leaves. Phytopathology 57, 632–638 (1967).Google Scholar
  72. Johri, M.M., Varner, J.E.: Characterization of rapidly labeled ribonucleic acid from dwarf peas. Plant Physiol. 45, 348–358 (1970).PubMedCrossRefGoogle Scholar
  73. Keen, N.T., Williams, P.H.: Synthesis and degradation of starch and lipids following infection of cabbage by Plasmodiophora brassicae. Phytopathology 59, 778–785 (1969).Google Scholar
  74. Key, J.L.: Studies of short-time labelled RNAs of soybean and carrot. Symp. Biol. Hung. 13, 15–28 (1972).Google Scholar
  75. Key, J.L., Leaver, C.J., Cowles, J.R., Anderson, J.M.: Characterization of short time labeled adenosine monophosphate-rich ribonucleic acids of soybean. Plant Physiol. 49, 783–788 (1972).PubMedCrossRefGoogle Scholar
  76. Kirby, K.S.: A new method for the isolation of ribonucleic acids from mammalian tissues. Biochem. J. 64, 405–408 (1956).PubMedGoogle Scholar
  77. Kirk, J.T.O.: Biochemical aspects of chloroplast development. Ann. Rev. Plant Physiol. 21, 11–42 (1970).CrossRefGoogle Scholar
  78. Leaver, C.J., Ingle, J.: The molecular integrity of chloroplast ribosomal ribonucleic acid. Biochem. J. 83, 235–243 (1971).Google Scholar
  79. Leaver, C.J., Key, J.L.: Ribosomal RNA synthesis in plants. J. Mol. Biol. 49, 671–680 (1970).PubMedCrossRefGoogle Scholar
  80. Lerch, B.: Phosphodiesterase. I. Spezifischer Nachweis nach Disk-Elektrophorese und Vorkommen in Pflanzen. Experientia 24, 889 (1968).PubMedCrossRefGoogle Scholar
  81. Lerch, B., Wolf, G.: Isolation of phosphodiesterase from sugar beet leaves. Biochem. Biophys. Acta 258, 206–218 (1972).PubMedGoogle Scholar
  82. Letham, D.S.: Transfer RNA and cytokinins. In: The Ribonucleic Acids, p. 81–106 (P.R. Stewart, D.S. Letham, eds.). Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  83. Loening, U.E.: The fractionation of high molecular weight ribonucleic acid by polyacrylamid-gel-electrophoresis. Biochem. J. 102, 251–257 (1967).PubMedGoogle Scholar
  84. Loening, U.E., Ingle, E.: Diversity of RNA components in green plant tissue. Nature 215, 363–367 (1967).PubMedCrossRefGoogle Scholar
  85. Lonberg-Holm, K.K.: Nucleic acid synthesis in seedlings. Nature 213, 454–457 (1967).CrossRefGoogle Scholar
  86. Malca, I., Zscheile, F.P., Jr., Gulli, R.: Nucleotide composition of RNA in healthy and mildew-infected leaves of barley. Phytopathology 54, 1112–1116 (1964).Google Scholar
  87. Manahan, C.O., App, A.A., Still, C.C.: The presence of polyadenylate sequences in the ribonucleic acid of a higher plant. Biochem. Biophys. Res. Commun. 53, 588–595 (1973).PubMedCrossRefGoogle Scholar
  88. Mandell, J.D., Hershey, A.D.: A fractionating column for analysis of nucleic acids. Anal. Biochem. 1, 66–67 (1960).PubMedCrossRefGoogle Scholar
  89. Manocha, M.S., Shaw, M.: The physiology of host-parasite relations. XVI. Fine structure of the nucleus in the rust-infected mesophyll cells of wheat. Canad. J. Botany 44, 669–673 (1966).CrossRefGoogle Scholar
  90. Mans, R.J.: Transfer RNA-primed oligoadenylate synthesis in maize seedlings. III. Deoxyoligo-nucleotide primers. Biochem. Biophys. Res. Commun. 45, 980–983 (1971).PubMedCrossRefGoogle Scholar
  91. Mans, R.J.: RNA polymerase in higher plants. In: Nucleic acid biosynthesis (A.J. Lashin, J.A. Last, eds.). Methods in Molecular Biology 4, 93–124 (1973).Google Scholar
  92. Matsushita, S., Mori, T., Hata, T.: Enzyme activities associated with ribosomes from soybean seedlings. Plant Cell Physiol. 7, 533–545 (1966).Google Scholar
  93. McDonald, P.W., Strobel, G.A.: Adenosine diphosphate-glucose pyrophosphorylase control of starch accumulation in rust-infected wheat leaves. Plant Physiol. 46, 126–135 (1970).CrossRefGoogle Scholar
  94. Millikan, D.F., Wyllie, T.D., Pickett, E.E.: Some comparative biochemical changes associated with downy mildew infection in soybeans. Phytopathology 55, 932 (1965 a).Google Scholar
  95. Millikan, D.F., Wyllie, T.D., Pickett, E.E.: Isolation and properties of nucleic acids from soybean leaf tissue. Phytochemistry 4, 981–983 (1965 b).CrossRefGoogle Scholar
  96. Naito, N., Lee, M.C., Tani, T.: Inhibition of germination and infection structure formation of Puccinia coronata uredospores by plant growth regulators and antimetabolites. Techn. Bull. Fac. Agr. Kagawa Univ. 23, 51–56 (1971).Google Scholar
  97. Nawashin, S.: Beobachtungen über den feineren Bau und Umwandlungen von Plasmodiophora brassicae Woron. im Laufe ihres intrazellulären Lebens. Flora 86, 404–427 (1899).Google Scholar
  98. Ogur, M., Rosen, G.: The nucleic acids of plant tissues. I. The extraction and estimation of deoxypentose nucleic acid and pentose nucleic acid. Arch. Biochem. 25, 262–276 (1950).PubMedGoogle Scholar
  99. Oku, H., Ouchi, S., Shiraishi, T.: Response to obligate parasite infection of nucleic acid metabolism in host chloroplast. In: Nucleic acids and proteins in higher plants, p. 277–282 (G.L. Farkas, ed.). Budapest: Akademiai Kiado 1972.Google Scholar
  100. Onoe, T., Tani, T.,Naito, N.: The uptake of labeled nucleosides by Puccinia coronata grown in susceptible oat leaves. Rept. Tottori Mycol. Inst. (Japan) 10, 303–312 (1973).Google Scholar
  101. Payne, P.I., Loening, U.E.: RNA breakdown accompanying the isolation of pea root microsomes. An analysis by Polyacrylamide gel electrophoresis. Biochim. Biophys. Acta 224, 128–135 (1970).PubMedGoogle Scholar
  102. Peacock, A.C., Dingman, C.W.: Resolution of multiple ribonucleic acid species by Polyacrylamide gel electrophoresis. Biochemistry 6, 1818–1827 (1967).PubMedCrossRefGoogle Scholar
  103. Peacock, A.C., Dingman, C.W.: Molecular weight estimation and separation of ribonucleic acid by electrophoresis in agarose acrylamide composite gels. Biochemistry 7, 668–670 (1968).PubMedCrossRefGoogle Scholar
  104. Person, C.A.: A preliminary note on the histochemical localization of DNA and RNA in rust-infected wheat leaves. Canad. J. Genet. Physiol. 2, 103–104 (1960).Google Scholar
  105. Petri, W.H.: Discontinuous Polyacrylamide gel electrophoresis of RNA. Anal. Biochem. 48, 442–447 (1972).PubMedCrossRefGoogle Scholar
  106. Pitt, D.: Changes in hydrolase activity of Solanum tuber-tissue during infection by Phytophthora erythroseptica. Trans. Brit. Mycol. Soc. 55, 257–266 (1970).CrossRefGoogle Scholar
  107. Pitt, D., Coombes, C.: Release of hydrolytic enzymes from cytoplasmatic particles of Solanum tuber tissue during infection by tuber-rotting fungi. J. Gen. Microbiol. 56, 321–329 (1969).Google Scholar
  108. Pitt, D., Galpin, M.: Role of lysosomal enzymes in pathogenicity. In: Fungal Pathogenicity and the Plant’s Response, p. 449–467 (R.J.W. Byrde, C.V. Cutting, eds.). London-New York: Academic Press 1973.Google Scholar
  109. Plumb, R.T., Manners, J.G., Myers, A.: Behaviour of nucleic acids in mildew-infected wheat. Trans. Brit. Mycol. Soc. 51, 563–573 (1968).CrossRefGoogle Scholar
  110. Polya, G.M.: Transcription. In: The Ribonucleic Acids, p. 7–36 (P.R. Stewart, D.S. Letham, eds.). Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  111. Poulson, R.: Isolation, purification and fractionation of RNA. In: The Ribonucleic Acids, p. 243–261 (P.R. Stewart, D.S. Letham, eds.). Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  112. Quick, W.A., Shaw, M.: The physiology of host-parasite relations. XVII. Acid soluble nucleotides in rust-infected and senescing wheat leaves. Canad. J. Botany 44, 777–788 (1966).CrossRefGoogle Scholar
  113. Randles, J.W.: RNase isoenzymes in Chinese cabbage systemically infected with turnip yellow mosaic virus. Virology 36, 556–563 (1968).PubMedCrossRefGoogle Scholar
  114. Reddi, K.K.: Studies on tobacco leaf ribonuclease. III. Its role in the synthesis of tobacco mosaic virus nucleic acid. Biochim. Biophys. Acta 33, 164–169 (1959).PubMedCrossRefGoogle Scholar
  115. Rogers, M.E., Loening, U.E., Fraser, R.S.S.: Ribosomal RNA precursors in plants. J. Mol. Biol. 49, 681–692 (1970).PubMedCrossRefGoogle Scholar
  116. Rohringer, R., Heitefuss, R.: Incorporation of P32 into ribonucleic acid of rusted wheat leaves. Canad. J. Botany 39, 263–267 (1961).CrossRefGoogle Scholar
  117. Rohringer, R., Howes, N.K., Kim, W.K., Samborski, D.J.: Evidence for a genespecific RNA determining resistance in wheat to stem rust. Nature 249, 585–588 (1974).PubMedCrossRefGoogle Scholar
  118. Rohringer, R., Samborski, DJ. Person, C.O.: RNase-activity in rusted wheat leaves. Canad. J. Botany 39, 77–84 (1961).Google Scholar
  119. Rubin, B.A., Axenova, V.A., Huyen, N.D.: Some peculiarities of protein synthesis in infected plant tissues. Acta Phytopathol. Acad. Sci. Hung. 6, 61–64 (1971).Google Scholar
  120. Sachse, B.: Untersuchungen über Nukleinsäure abbauende Enzyme in Blättern von Triticum aestivum nach Infektion mit Puccinia graminis tritici. Dissertation Göttingen (1970).Google Scholar
  121. Sachse, B., Wolf, G.: Untersuchungen über Nukleinsäure abbauende Enzyme in Blättern von Triticum aestivum nach Infektion mit Puccinia graminis tritici. Phytopathol. Z. 68, 276–279 (1970).CrossRefGoogle Scholar
  122. Sachse, B., Wolf, G., Fuchs, W.H.: Nukleinsäure abbauende Enzyme in Blättern von Triticum aestivum nach Infektion mit Puccinia graminis tritici. Acta Phytopathol. Acad. Sci. Hung. 6, 39–49 (1971).Google Scholar
  123. Schmidt, G., Thannhauser, S.J.: A method for the determination of deoxyribonucleic acid, ribonucleic acid, and phosphoproteins in animal tissues. J. Biol. Chem. 161, 83–89 (1945).PubMedGoogle Scholar
  124. Schwochau, M.E., Hadwiger, L.A.: Stimulation of pisatin production in Pisum sativum by actinomycin D and other compounds. Arch. Biochem. Biophys. 126, 731–733 (1968).PubMedCrossRefGoogle Scholar
  125. Schwochau, M.E., Hadwiger, L.A.: Regulation of gene expression by actinomycin D and other compounds which change the conformation of DNA. Arch. Biochem. Biophys. 134, 3441 (1969).CrossRefGoogle Scholar
  126. Scott, K.J.: Obligate parasitism by phytopathogenic fungi. Biol. Rev. 47, 537–572 (1972).CrossRefGoogle Scholar
  127. Scott, N.S., Munns, R., Graham, D., Smillie, R.S.: Origin and synthesis of chloroplast ribosomal RNA and photoregulation during chloroplast biogenesis. Autonom. Biogen. Mitoch. Chloropl. North-Holland, 383–392 (1971).Google Scholar
  128. Scrubb, L.A., Chakravorty, A.K., Shaw, M.: Changes in the ribonuclease activity of flax cotyledons following inoculation with flax rust. Plant Physiol. 50, 73–79 (1972).PubMedCrossRefGoogle Scholar
  129. Sebesta, K., Bauerova, J. Sormova, Z.: Bacterial contamination as a source of error in the estimation of DNA turnover in higher plants. Coll. Czech. Chem. Commun. 31, 2623–2625 (1966).Google Scholar
  130. Shaw, M.: The physiology and host-parasite relations of the rusts. Ann. Rev. Phytopathol. 10, 259–294 (1963).CrossRefGoogle Scholar
  131. Shaw, M.: Cell biological aspects of host-parasite relations of obligate fungal parasites. Canad. J. Botany 45, 1205–1220 (1967).CrossRefGoogle Scholar
  132. Shinde, B.G., Chandrasekhar, B.K., Santilli, V.: Distribution of ribonuclease in subcellular fractions of untreated, wounded, and TMV infected Pinto bean leaves. Phytopathology 54, 908 (1964).Google Scholar
  133. Shinde, B.G., Santilli, V.: Effect of actinomycin D on the tobacco mosaic virus infection-induced increase in ribonuclease activity. Phytopathology 57, 345 (1967).Google Scholar
  134. Shishiyama, J., Suwa, Y.: Relationship between histone and ribonucleic acid synthesis in isolated nuclei from powdery mildewed barley leaves. 2nd Int. Congr. Plant Pathol. Minneapolis, Abstr. 1013 1973.Google Scholar
  135. Singer, M.F., Leder, P.: Messenger RNA: An evaluation. Ann. Rev. Biochem. 35, 195–230 (1966).PubMedCrossRefGoogle Scholar
  136. Smillie, R.M., Krotkov, G.: The estimation of nucleic acids in some algae and higher plants. Canad. J. Botany 38, 31–49 (1960).CrossRefGoogle Scholar
  137. Solymosy, F., Fedorcsak, I., Gulyas, A., Farkas, G.L., Ehrenberg, L.: A new method based on the use of diethyl pyrocarbonate as a nuclease inhibitor for the extraction of undegraded nucleic acid from plant tissue. Europ. J. Biochem. 5, 520–527 (1968).PubMedCrossRefGoogle Scholar
  138. Spencer, D., Whitfeld, P.R., Bottomley, W., Wheeler, A.M.: The nature of the proteins and nucleic acids synthesized by isolated chloroplasts. Autonom. Biogen. Mitoch. Chloropl. North-Holland, 372–382 (1971).Google Scholar
  139. Tani, T., Irikura, H., Naito, N.: Inhibition of uredospores formation of Puccinia coronata by plant growth regulators and antimetabolites. Tech. Bull. Fac. Agr. Kagawa Univ. 23, 42–50 (1971).Google Scholar
  140. Tani, T., Onoe, T., Naito, N.: Drifts in 32P distribution and its incorporation into nucleic acid in oat leaves after inoculation with Puccinia coronata. Tech. Bull. Fac. Agr. Kagawa Univ. 21, 40–49 (1970).Google Scholar
  141. Tani, T., Yoshikawa, M., Naito, N.: Changes in 32P-ribonucleic acids in oat leaves associated with susceptible and resistant reactions to Puccinia coronata. Ann. Phytopathol. Soc. Japan 37, 43–51 (1971).CrossRefGoogle Scholar
  142. Tani, T., Yoshikawa, M., Naito, N.: Effect of rust infection of oat leaves on cytoplasmic and chloroplast ribosomal ribonucleic acids. Phytopathology 63, 491–494 (1973 a).CrossRefGoogle Scholar
  143. Tani, T., Yoshikawa, M., Naito, N.: Template activity of ribonucleic acid extracted from oat leaves infected by Puccinia coronata. Ann. Phytopathol. Soc. Japan 39, 7–13 (1973 b).CrossRefGoogle Scholar
  144. Tewari, K.K.: Genetic autonomy of extranuclear organelles. Ann. Rev. Plant Physiol. 22, 141–168 (1971).CrossRefGoogle Scholar
  145. Tuve, W.T., Anfinsen, B.C.: Preparation and properties of spinach RNase. J. Biol. Chem. 235, 3437–3441 (1960).PubMedGoogle Scholar
  146. Vanderhoef, L.N., Bohannon, R.F., Key, J.L.: Purification of transfer RNA and studies on aminoacyl-tRNA synthetases from higher plants. Phytochemistry 9, 2291–2304 (1970).CrossRefGoogle Scholar
  147. Van de Walle, C.: Polyadenylic sequences in plant RNA. FEBS Lett. 34, 31–34 (1973).PubMedCrossRefGoogle Scholar
  148. Venkataraman, R., de Leo, P.: Changes in leucyl-tRNA species during ageing of detached soybean cotyledons. Phytochemistry 11, 923–927 (1972).CrossRefGoogle Scholar
  149. Whitfeld, P.R.: Chloroplast RNA. In: The Ribonucleic Acids, p. 179–206 (P.R. Stewart, D.S. Letham, eds.). Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  150. Whitney, H.S., Shaw, M., Naylor, J.M.: The physiology of host-parasite relations. XII. A cytophotometric study of the distribution of DNA and RNA in rust-infected leaves. Canad. J. Botany 40, 1533–1544 (1962).CrossRefGoogle Scholar
  151. Williams, P.H.: A cytochemical study of hypertrophy in clubroot of cabbage. Phytopathology 56, 521–524 (1966).Google Scholar
  152. Williams, P.H.: Penetration and infection of cabbage roots by Plasmodiophora brassicae. Shokubutsu Byogai Kenkyu, Kyoto 8, 133–146 (1973).Google Scholar
  153. Williams, P.H., Aist, J.R., Bhattacharya, P.K.: Host-parasite relations in cabbage clubroot. In: Fungal Pathogenicity and the Plant’s Response, p. 141–158 (R.J.W. Byrde, C.V. Cutting, eds.). London-New York: Academic Press 1973.Google Scholar
  154. Williams, P.H., Keen, N.T., Strandberg, J.O., McNabola, S.S.: Metabolite synthesis and degradation during clubroot development in cabbage hypocotyls. Phytopathology 58, 921–928 (1968).Google Scholar
  155. Wilson, C.M.: Plant nucleases. III. Polyacrylamide gel electrophoresis of corn ribonuclease isoenzymes. Plant Physiol. 48, 64–68 (1971).PubMedCrossRefGoogle Scholar
  156. Wolf, G.: Einbau von P32 in verschiedene Nukleinsäure-Fraktionen rostinfizierter Weizenblätter. Phytopathol. Z. 59, 101–104 (1967).CrossRefGoogle Scholar
  157. Wolf, G.: Nachweis pflanzlicher RNasen in Polyacrylamid-Gelen nach Disk-Elektrophorese. Experientia 24, 890–891 (1968 a).PubMedCrossRefGoogle Scholar
  158. Wolf, G.: On the incorporation of 32P into the various nucleic acid fractions of rust-infected primary leaves of wheat. Neth. J. Plant Pathol. 74, 19–23 (1968b).CrossRefGoogle Scholar
  159. Wollgiehn, R., Parthier, B.s: Ein Beitrag zur quantitativen Bestimmung von Ribonukleinsäure und Protein in Blättern. Flora 154, 325–348 (1964).Google Scholar
  160. Wyen, N.V., Erdei, S., Farkas, G.L.: Isolation from Avena leaf tissues of a nuclease with the same type of specificity towards RNA and DNA. Accumulation of the enzyme during leaf sensescence. Biochim. Biophys. Acta 232, 472–483 (1971).PubMedGoogle Scholar
  161. Wyen, N.V., Erdei, S., Udverdy, J., Bagi, G., Farkas, G.L.: Hormonal control of nuclease level in exised Avena leaf tissues. J. Exptl. Botany 23, 37–44 (1972).CrossRefGoogle Scholar
  162. Wyen, N.V., Udvardy, J., Solymosy, F., Marre, F., Farkas, G.L.: Purification and properties of a RNase from Avena leaf tissues. Biochim. Biophys. Acta 68, 311–313 (1969).Google Scholar
  163. Yamamoto, M., Otsuka, N.: Investigations on the DNA of potato leaves in relation to the resistance of suscept against the invasion of Phytophthora infestans. Ann. Phytopathol. Soc. Japan 37, 84–90 (1971).CrossRefGoogle Scholar
  164. Yamamoto, M., Otsuka, N., Imamura, Y., Kitami, K.: Effect of DNA from the resistant potatoes on the Phytophthora infectivity to the susceptible cultivar. Symp. Cell. Biol. 22, 51–57 (1971).Google Scholar
  165. Yang, J.S., Brown, G.N.: Isoaccepting transfer ribonucleic acids during chilling stress in soybean seedling hypocotyls. Plant Physiol. 53, 694–698 (1974).PubMedCrossRefGoogle Scholar
  166. Yarwood, C.E., Cohen, M.: Hypertrophy from the uredial stage of bean rust. Botan. Gaz. 112, 204–300 (1951).CrossRefGoogle Scholar
  167. Zscheile, F.P., Jr., Moseman, J.G., Brannaman, B.L.: Content and nucleotide composition of ribonucleic acid in powdery mildew infected leaves of near-isogenic barley lines. Phytopathology 59, 492–495 (1969).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • R. Heitefuss
  • G. Wolf

There are no affiliations available

Personalised recommendations