Skip to main content

Laser Applications in Remote Sensing

  • Chapter
Remote Sensing for Environmental Sciences

Part of the book series: Ecological Studies ((ECOLSTUD,volume 18))

Abstract

The invention of the laser in 1960 was undoubtedly one of the most significant technological advances of a productive century. It marked the beginning of a period of intensive exploration and development as to its use that is still in its infancy. Nevertheless progress has been rapid and whole new areas of capability have already been firmly established. The possibility of applying laser energy for remote sensing was recognized from the very beginning, at least in basic form, and was among the first applications of laser technology to achieve some measure of practical accomplishment. The reasons for this probably lie in the earlier achievements of analogous or similar techniques. As described below, the principal laser application in remote sensing is based upon the radar principle. As it happens some of the very first applications of the radar principle were made with light long before the development of microwaves—and were concerned with remote probing of the atmosphere!

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen,R. J., Evans,W.E.: Laser radar (LIDAR) for mapping aerosol structure. Rev. Sci. Instr. 43,1422–1432(1972).

    Google Scholar 

  • Ahmed,S.A.: Molecular air pollution monitoring by dye laser measurement of differential absorption of atmospheric elastic backscatter. Appl. Optics 12, 901–903 (1973).

    Article  CAS  Google Scholar 

  • Benedetti-Michelangeli,G., Congeduti,F., Fiocco,G.: Measurement of aerosol motion and wind velocity in the lower troposphere by Doppler optical radar. J. Atmos. Sci. 29, 906–910(1972).

    Google Scholar 

  • Blamont,J.E., Chanin,M.L., Megie,G.: Vertical distribution and temperature profile of the night time atmospheric sodium layer obtained by laser backscatter. Ann. Geophys. 28, 833–838(1972).

    Google Scholar 

  • Bowman,M.R., Gibson,A.J., Sandford,M.C.W.: Atmospheric sodium measured by a tuned laser radar. Nature (Lond.) 221, 456 (1969).

    Article  CAS  Google Scholar 

  • Bright,D.: “NOAA’s Lidar Program”. Proc. Symposium on the use of lasers for hydrographic studies, Sept. 12, 1973, NASA, Wallops Island, Va. (Kim,H.H. Ed.). In course of publication).

    Google Scholar 

  • Byer,R.L., Garbuny,M.: Pollutant detection by absorption using Mie scattering and topographic targets as retroreflectors. Appl. Optics 12, 1496–1505 (1973).

    Article  CAS  Google Scholar 

  • Carswell,A.I., Sizgoric,S.: Underwater probing with laser radar. Proc. Symp. on Use of Lasers for Hydrographic Studies, Sept. 12, 1973, NASA, Wallops Island, Va. (Kim,H.H. Ed.). (In course of publication).

    Google Scholar 

  • Chang,C.C., Young,L. A.: Remote measurement of water temperature by Raman scattering. Proc. Eighth Int. Symp. Remote Sens. Env., II, 1049–1068, Ann Arbor, 2–6 October (1972).

    Google Scholar 

  • Chang,R.K., Fouche,D.G.: Gains in detecting pollution. Laser Focus 8, 43–45 (1972).

    Google Scholar 

  • Clemesha,B.R., Nakamura,Y.: Dust in the upper atmosphere. Nature (Lond.) 237, 328–329 (1972).

    Article  Google Scholar 

  • Collis,R.T.H.: Lidar observation of cloud. Science 149, 978–981 (1965).

    Article  PubMed  CAS  Google Scholar 

  • Collis,R.T.H.: Lidar—a new atmospheric probe. Quart. J. Roy. Met. Soc. 92, 220–230 (1966).

    Article  Google Scholar 

  • Collis,R.T.H.: Lidar observations of atmospheric motion in forest valleys. Bull. Amer. Meteor. Soc. 49, 918–922 (1968).

    Google Scholar 

  • Collis,R.T.H., Uthe,E.E.: Mie scattering techniques for air pollution measurements with lasers. Opto-electronics. 4, 87–99 (1972).

    Article  Google Scholar 

  • Cooney, J.: Measurement of the Raman scattering of laser atmospheric backscatter. Appl. Phys. Letters 12, 42–44 (1968).

    Article  Google Scholar 

  • Cooney, J.: Remote measurement of atmospheric water vapor profiles using the Raman component of laser backscatter. J. Appl. Meteor. 9, 182–184 (1970).

    Article  Google Scholar 

  • Cooney, J.: Comparison of water vapor profiles obtained by radiosonde and laser backscatter. J. Appl. Meteor. 10, 301–308 (1971).

    Article  Google Scholar 

  • Cooney, J.: Measurement of atmospheric temperature profile by Raman backscatter. J. Appl. Meteor. 11,108–112(1972).

    Google Scholar 

  • Cooney, J.: A method for extending the use of Raman lidar to daytime. J. Appl. Meteor. 12, 888–890(1973).

    Google Scholar 

  • Deirmendjian,D.: Electromagnetic scattering on spherical dispersions. New York: American Elsevier 1969.

    Google Scholar 

  • Derr,V.E.: The spectra of molecules of the earth’s troposphere. In: DERR,V.E. (Ed.): Chapter 9 in Remote Sensing of the Troposphere. Washington, D.C.: U.S. Gov’t Printing Office 1972.

    Google Scholar 

  • Elterman,L., Toolin,R.B., Essex,J.D.: Stratospheric aerosol measurements with implications for global climate. Appl. Optics 12, 330–337 (1973).

    Article  CAS  Google Scholar 

  • Felix,F., Keenliside,W., Kent,G.: Laser radar observations of atmospheric potassium. Nature (Lond.) 246, 345 (1973).

    Article  CAS  Google Scholar 

  • Fenner,W.R.,Hyatt,H.A., Kellam,J.M., Porto, S. P. S.: Raman cross section of some simple gases. J. Opt. Soc. Amer. 63, 73–77 (1973).

    Article  CAS  Google Scholar 

  • Fiocco,G., Grams, G.: Observations of the aerosol layer at 20 km by optical radar. J. Atmos. Sci. 21, 323–324 (1964).

    Article  Google Scholar 

  • Fiocco,G., Benedetti-Michelangeli,G., Maischberger,K., Madonna, E.: Measurement of temperature and aerosol to molecule ratio in the trophosphere by optical radar. Nature (Lond.) 229, 78–79 (1971).

    Google Scholar 

  • Fouche, D.G.: Fluorescence, and Raman and resonant Raman scattering. Appendix A of Study od Air Pollution Detection by Active Remote Sensing Techniques, prepared for NASA, Langley Research Center, Contract NAS1-11657 SRI (1974).

    Google Scholar 

  • Fouche, D. G., Chang,R. K.: Relative Raman cross sections for N2, O2, CO, CO2, SO2, and H2S. Appl. Phys. Letters 18, 579–580 (1971).

    Article  CAS  Google Scholar 

  • Fouche, D.G., Chang,R.K.: Relative Raman cross section for O3, CH4, C3, NO, N2O, and H2. Appl. Phys. Letters 20, 256–257 (1972a).

    Article  CAS  Google Scholar 

  • Fouche,D.G., Chang,R.K.: Observation of resonance Raman scattering below the dissociation limit in I2 vapor. Phys. Rev. Letters 29, 536–539 (1972b).

    Article  CAS  Google Scholar 

  • Fouche,D.G., Herzenberg,A., Chang,R.K.: Inelastic photon scattering by a polyatomic molecule: NO2. J. Appl. Phys. 43, 3846–3851 (1972).

    Article  CAS  Google Scholar 

  • Fox,R.J., Grams,G.W., Schuster,B.G., Weinman,J.A.: Measurements of stratospheric aerosols by airborne laser radar. J. Geosphys. Res. 78, 7789–7801 (1973).

    Article  Google Scholar 

  • Garvey,M.J., Kent,G.S.: Raman backscatter of laser radiation from the stratosphere. Nature (Lond.) 248, 124–125 (1974).

    Article  CAS  Google Scholar 

  • Gelbwachs,J.: NO2 lidar comparison: fluorescence vs. backscattered differential absorption. Appl. Optics. 12, 2812–2813 (1973).

    Article  CAS  Google Scholar 

  • Gelbwachs,J., Birnbaum,M.: Fluorescence of atmospheric aerosols and lidar implications. Appl. Optics 12, 2442–2447 (1973).

    Article  CAS  Google Scholar 

  • Gelbwachs,J., Birnbaum,M., Tucker, A. W., Fincher,C.L.: Fluorescence determination of atmospheric N02. Optoelectronics 4, 155–160 (1972).

    CAS  Google Scholar 

  • Gibson, A. J., Sandford,M.C.W.: Daytime laser radar measurements of the atmospheric sodium layer. Nature (Lond.) 239, 509–511 (1972).

    Article  CAS  Google Scholar 

  • Grams, G., Fiocco,G.: Stratospheric aerosol layer during 1964 and 1965. J. Geophys. Res. 72,3524–3542(1967).

    Google Scholar 

  • Grant,W.B., Hake,R.D., Liston,E.M., Robbins,R.C., Proctor,E.K.: Calibrated remote measurement of NO2 using the differential-absorption backscatter technique. Appl. Phys. Letters 24, 550–552 (1974).

    Article  CAS  Google Scholar 

  • Gross, H.G.: Progress in the application of higher specificity laser induced luminescence of the remote sensing of environment and resources. In: Shahroki,F. (Ed.): Remote Sensing of Earth Resources, Vol. 2. Tullahoma: University of Tennessee 1973.

    Google Scholar 

  • Hake,R.D.,JR., Arnold,D.E., Jackson,D.W., Evans,W.E., Ficklin,B.P., Long,R.A.: Dye-Laser observations of the nighttime atomic sodium layer. J. Geophys. Res. 77, 6839–6848(1972).

    Google Scholar 

  • Henningsen,T., Garbuny,M., Byer,R.L.: Remote detection of CO by parametric tuneable laser. Appl. Phys. Letters 24, 242–244 (1974).

    Article  CAS  Google Scholar 

  • Hickman,G.D.: Recent advances in the applications of pulsed lasers in the hydrosphere. In: Kim,H.H., Ryan,P.T. (Eds.): Proceedings, Symposium on the Use of Lasers for Hydrographic Studies. Wallops Island, VA: NASA 1974.

    Google Scholar 

  • Hinkley,E.D., Kelly, P. L.: Detection of air pollutants with tuneable diode lasers. Science 171,635–639(1971).

    Google Scholar 

  • Hirono,M., Fujiwara,M., Uchino,O., Itabe,J.: Observations of aerosol layers in the upper atmosphere by laser radar. Rep. Ionospheric Space Res. in Japan 26, 237–244 (1972).

    Google Scholar 

  • Houghton,W.M.: Measurement of Raman spectra of H2O and SO4 in seawater. In: Kim,H.H. (Ed.): The Use of Lasers for Hydrographic Studies. Symposium Proceedings. Wallops Island, Va.: NASA 1974.

    Google Scholar 

  • Huffaker,R.M.: Laser Doppler detection systems for gas velocity measurement. Appl. Optics 9,1026–1039(1970).

    Google Scholar 

  • Hyatt, H. A., Cherlow,J.M., Fenner,W.R., Porto, S. P. S.: Cross section for the Raman effect in molecular nitrogen gas. J. Opt. Soc. Amer. 63, 1604–1606 (1973).

    Article  CAS  Google Scholar 

  • Inaba,H., Kobayasi,T.: Laser-Raman radar. Opto-electronics 4, 101–123 (1972).

    Article  CAS  Google Scholar 

  • Kent,G.S., Keenliside,W., Sandford,M.C.W., Wright,R.W.H.: Laser radar observation of atmospheric tides in the 70–100 km height region. J. Atmos. Terrest. Phys. 34, 373–386 (1972).

    Article  Google Scholar 

  • Kent,G.S., Wright,R.W.: A review of laser radar measurements of atmospheric properties. J. Atmos. Terrest. Phys. 32, 917–943 (1970).

    Article  Google Scholar 

  • Kerker,M.: The scattering of light and other electromagnetic radiation. New York: Academic Press 1969.

    Google Scholar 

  • Ketchum,R.D., JR.: Airborne laser profiling of the arctic pack ice. Remote Sens. Environ. 2, 41–52(1971).

    Google Scholar 

  • Kildall,H., Byer,R.L.: Comparison of laser methods for the remote detection of atmospheric pollutants. Proc. IEEE 59, 1644–1663 (1971).

    Article  Google Scholar 

  • Kim,H.H.: New algae mapping technique by the use of an airborne laser fluorosensor. Appl. Optics 12, 1454–1459 (1973).

    Article  CAS  Google Scholar 

  • Kobayasi,T., Inaba,H.: Spectroscopic detection of SO2 and CO2 molecules in polluted atmosphere by laser-Raman radar technique. Appl. Phys. Letters 17, 139–141 (1970).

    Article  Google Scholar 

  • Laulainen,N.: Minor gases in the earth’s atmosphere: A review and bibliography of their spectra. Nat. Sci. Foundation. Available from National Technical Information Service, U.S. Dept. of Congress, Springfield, Va. (1972).

    Google Scholar 

  • Leonard, D.: Observation of Raman scattering from the atmosphere using a pulsed nitrogen ultraviolet laser. Nature (Lond.) 216, 142–143 (1967).

    Article  CAS  Google Scholar 

  • Lines, J.D.: Dept. National Development, Australia, quoted in Laser Focus (1972).

    Google Scholar 

  • Measures,R.M., Pilon,G.: A study of tuneable laser techniques for remote mapping of specific gaseous constituents of the atmosphere. Opto-electronics 4, 141–153 (1972).

    Article  CAS  Google Scholar 

  • Melfi, S. H.: Remote measurements of the atmosphere using Raman scattering. Appl. Optics 11,1605–1610(1972).

    Google Scholar 

  • Melfi,S.H., Brumfield,M.L., Story,R.W.: Observation of Raman scattering by SO2 in a generating plant stack plume. Appl. Phys. Letters 22, 402–03 (1973).

    Article  CAS  Google Scholar 

  • Melfi, S., Lawrence, J., McCormick, M.: Observations of Raman scattering by water vapor in the atmosphere. Appl. Phys. Letters 15, 295–297 (1969).

    Article  CAS  Google Scholar 

  • Murphy, W.F., Holzer, W., Bernstein, H.J.: Gas phase Raman intensities: a review of “preaser” data. Appl. Spectroscopy 23, 211–218 (1969).

    Article  CAS  Google Scholar 

  • Nakahara,S., Ito,K., Ito,S.: Detection of SO2 and NO2 in stack plume by Raman scattering. Fifth Conference on Laser Radar Studies of the Atmosphere. Williamsburg, VA., 4–6 June (1973).

    Google Scholar 

  • Nakahara,S., Ito,K., Ito,S., Fuke,A., Komatsu,S., Inaba,H., Kobayasi,T.: Detection of sulfur dioxide in stack plume by laser Raman radar. J. Opt. Electr. 4, 169–177 (1972).

    Article  CAS  Google Scholar 

  • Olsen,W.S., Adams,G.W.: A laser profilometer. J. Geophys. Rev. 75, 2185–2187 (1970).

    Article  Google Scholar 

  • Pal,S.R., Carswell,A.I.: Polarization properties of lidar backscattering from clouds. Appl. Optics 12,1530–1535(1973).

    Google Scholar 

  • Penney,C.M., Goldman,L.M., Lapp,M.: Raman scattering cross sections. Nat. Phys. Sci. 235,110–111(1972).

    Google Scholar 

  • Penney,C.M., ST. Peters,R.L., Lapp,M.: Absolute rotational Raman cross sections for N2, O2, and CO2. J. Opt. Soc. Amer.

    Google Scholar 

  • Rothe,K.W., Brinkman,U., Walther,H.: Applications of tuenable dye lasers to air pollution detection: measurement of the atmospheric NO2 concentrations by differential absorption technique. Appl. Phys. (Germany) 3, 115 (1974).

    CAS  Google Scholar 

  • Sandford,M.C.W.: Laser scatter measurements in the mesosphere and above. J. Atmos. Terrest. Phys. 29, 1657–1659 (1967).

    Article  Google Scholar 

  • Sandford,M.C.W., Gibson,A.J.: Laser radar measurements of the atmospheric sodium layer. J. Atmos. Terr. Phys. 32, 1423 (1970).

    Article  CAS  Google Scholar 

  • Schotland,R.M.: The determination of the vertical profile of atmospheric gases by means of a ground based optical radar. In: Proceedings of the Third Symposium on Remote Sensing of the Environmental. Ann Arbor, Univ. of Michigan, 215–224 (1964).

    Google Scholar 

  • Schotland,R.M.: Errors in the lidar measurement of atmospheric gases by differential absorption. J. Appl. Meteor. 13, 71–77 (1974).

    Article  CAS  Google Scholar 

  • Schotland,R.M., Sassen,K., Stone,R.: Observations by lidar of linear depolarization ratios by hydrometeors. J. Appl. Meteor. 10, 1011–1017 (1971).

    Article  Google Scholar 

  • Schule,J.J., Simpson, L.S., Deleonibus,P.S.: A study of fetch-limited wave spectra with an airborne laser. J. Geophys. Res. 76, 4160–4170 (1971).

    Article  Google Scholar 

  • Schuler,C. J., Pike,C.T., Miranda,H. A.: Dye laser probing of the atmosphere using resonant scattering. Appl. Optics 10, 1689 (1971).

    Article  CAS  Google Scholar 

  • Schwiesow,R.L.: Atomic, molecular, particulate, and collective generalized scattering; and Remote spectral sensing of pollutants. In: DERR,V.E. (Ed.): Chapters 10 and 23 of Remote Sensing of the Troposphere. Washington, D.C.: U.S. Gov’t Printing Office 1972.

    Google Scholar 

  • Stansbury,E.J., Crawford, M.F., Welsh, H.L.: Determination of rates of change of polarization from Raman and Rayleigh intensities. Canad. J. Phys. 31, 954–961 (1953).

    Article  CAS  Google Scholar 

  • St. Peters,R.L., Silverstein,S.D., Lapp,M., Penney,C.M.: Resonant Raman scattering or resonance fluorescence in I2 vapor. Phys. Rev. Letters 30, 191–192 (1973).

    Article  Google Scholar 

  • Strauch,R.G., Cupp,R., Derr,V.E.: Atmospheric temperature measurement using Raman backscatter. Appl. Optics 10, 2665–2669 (1972).

    Article  Google Scholar 

  • Strauch,R.G., Derr,V.E., Cupp,R.E.: Atmospheric water vapor measurements by Raman lidar. Remote Sens. of Env. 2 (1972).

    Google Scholar 

  • Thurston, A.D., Knight,R.W.: Characterization of crude and residual-type oils by fluorescence spectroscopy. Env. Sci. Tech. 5, 64–69 (1971).

    Article  Google Scholar 

  • Uthe,E.E.: Lidar observations of the urban aerosol structure. Bull. Amer. Meteor. Soc. 53, 358–360(1972).

    Google Scholar 

  • Van De Hulst, J.C.: Light scattering by small particles. New York: John Wiley 1957.

    Google Scholar 

  • Vickers,R.S., Chan,P.W., Johnsen,R.E.: Laser excited Raman and fluorescence spectra of some important pesticides. Spectroscopy Letters 6, 131–137 (1973).

    Article  CAS  Google Scholar 

  • Viezee, W., Collis,R.T.H., Lawrence, J. D.: An investigation of mountain waves with lidar observations. J. Appl. Meteor. 12, 140–148 (1973).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Collis, R.T.H., Russell, P.B. (1976). Laser Applications in Remote Sensing. In: Schanda, E. (eds) Remote Sensing for Environmental Sciences. Ecological Studies, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66236-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66236-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66238-6

  • Online ISBN: 978-3-642-66236-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics