Skip to main content

Genotypic Variation in Transport

  • Chapter
Transport in Plants II

Part of the book series: Encyclopedia of Plant Physiology ((919,volume 2 / B))

Abstract

Ecologists have recognized for a long time that nature has confronted them with a great number of natural examples where plants are adapted to different nutrient regimes. For instance, mangroves growing in sea water can be contrasted with trees on the non-saline land next to them. The question arises as to why mangroves grow in sea water, and why do they not live further inland in the community of the less salt-tolerant tree species? A second example is given by the strikingly different floras on calcareous and acid soils, respectively. Why are there species which thrive on soils rich in lime and high in pH, whereas others occur only on acid soils low in Ca2+ and pH? Thirdly, serpentine soils bear a sparse yet characteristic flora. These soils are high in Mg2+ and certain heavy metals but contain little Ca2+. Why, on the one hand, is there such a characteristic serpentine flora, and why, on the other hand, are most species not able to exist on serpentine soils? Many more such examples could be added. All of them have in common that their existence follows from variation in the genotype of plants and from adaptation durine the course of evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel, G.H.: Inheritance of the capacity for chloride inclusion and chloride exclusion by soybeans. Crop Sci. 9, 697–698 (1969).

    Google Scholar 

  • Abel, G.H., Mackenzie, A.J.: Salt tolerance of soybean varieties (Glycine max L. Merrill) during germination and later growth. Crop Sci. 4, 157–161 (1964).

    Google Scholar 

  • Albert, R., Kinzel, H.: Unterscheidung von Physiotypen bei Halophyten des Neusiedlerseegebietes (Ă–sterreich). Z. Pflanzenphysiol. 70, 138–157 (1973).

    CAS  Google Scholar 

  • Antonovics, J., Bradshaw, A.D., Turner, R.G.: Heavy metal tolerance in plants. Advan. Ecol. Res. 7, 1–85 (1971).

    Google Scholar 

  • Antonovics, J., Lovett, J., Bradshaw, A.D.: The evolution of adaptation to nutritional factors in populations of herbage plants. In: Isotopes in plant nutrition and physiology, p. 549–567. Vienna: IAEA 1967.

    Google Scholar 

  • Asher, C.J., Ozanne, P.G.: Observations on nutritional variation in capeweed (in preparation).

    Google Scholar 

  • Beevers, L., Hageman, R.H.: Nitrate reduction in higher plants. Ann. Rev. Plant Physiol. 20, 495–522 (1969).

    CAS  Google Scholar 

  • Bernstein, L., Ehlig, C.F., Clark, R.A.: Effect of grape rootstocks on chloride accumulation in leaves. J. Amer. Soc. Hort. Sci. 94, 584–590 (1969).

    Google Scholar 

  • Bradshaw, A.D.: Evolutionary significance of phenotypic plasticity in plants. Advan. Genetics 13, 115–155(1965).

    Google Scholar 

  • Bresch, C., Hausmann, R.: Klassische und molekulare Genetik. 2. Auflage. Berlin-Heidelberg-New York: Springer 1970.

    Google Scholar 

  • Brown, J.C.: Iron chlorosis in soybeans as related to the genotype of rootstock. Soil Sci. 96, 387–394 (1963).

    CAS  Google Scholar 

  • Brown, J.C., Ambler, J.E., Chaney, R.L., Foy, C.D.: Differential responses of plant genotypes to micronutrients. In: Micronutrients in agriculture (J.J. Mortvedt, P.M. Giordano, W.L. Lindsay, eds.), p. 389–418. Madison, Wisconsin: Soil Sci. Soc. Amer. 1972.

    Google Scholar 

  • Brown, J.C., Chaney, R.L., Ambler, J.E.: A new tomato mutant inefficient in the transport of iron. Physiol. Plantarum 25, 48–53 (1971).

    CAS  Google Scholar 

  • Brown, J.C., Holmes, R.S., Tiffin, L.O.: Iron chlorosis in soybeans as related to the genotype of rootstalk. Soil Sci. 86, 75–82 (1958).

    CAS  Google Scholar 

  • Brown, J.C., Jones, W.E.: Differential transport of boron in tomato (Lycopersicon esculentum Mill.). Physiol. Plantarum 25, 279–282 (1971).

    CAS  Google Scholar 

  • Campbell, L.C., Pitman, M.G.: Salinity and plant cells. In: Salinity and water use (T. Talsma, J.R. Philip, eds.), p. 207–224. London: Macmillan Press 1971.

    Google Scholar 

  • Chrispeels, M.J., Varner, J.E.: Hormonal control of enzyme synthesis: on the mode of action of gibberellic acid and abscisin in aleurone layers of barley. Plant Physiol. 42, 1008–1016 (1967).

    PubMed  CAS  Google Scholar 

  • Clark, R.B., Tiffin, L.O., Brown, J.C.: Organic acids and iron translocation in maize genotypes. Plant Physiol. 52, 147–150 (1973).

    PubMed  CAS  Google Scholar 

  • Clarkson, D.T.: Calcium uptake by calcicole and calcifuge species in the genus Agrostis L. J. Ecol. 53, 427–435 (1965).

    Google Scholar 

  • Cram, W.J.: Internal factors regulating nitrate and chloride influx in plant cells. J. Exptl. Bot. 24, 328–341 (1973).

    CAS  Google Scholar 

  • Dewey, D.R.: Breeding crested wheatgrass for salt tolerance. Crop Sci. 2, 403–407 (1962).

    Google Scholar 

  • Durst, F., Mohr, H.: Phytochrome-mediated induction of enzyme synthesis in mustard seedlings (Sinapis alba L.). Naturwissenschaften 53, 531–532 (1966).

    PubMed  CAS  Google Scholar 

  • Ehlig, C.F.: Effects of salinity on four varieties of table grapes grown in sand culture. Proc. Amer. Soc. Hort. Sci. 76, 323–331 (1960).

    CAS  Google Scholar 

  • Ellis, R.J., MacDonald, I.R.: Specificity of cycloheximide in higher plant systems. Plant Physiol. 46, 227–232 (1970).

    PubMed  CAS  Google Scholar 

  • Elzam, O.E., Epstein, E.: Salt relations of two grass species differing in salt tolerance. I. Growth and salt content at different salt concentrations. Agrochimica 13, 187–195 (1969 a).

    CAS  Google Scholar 

  • Elzam, O.E., Epstein, E.: Salt relations of two grass species differing in salt tolerance. II. Kinetics of the absorption of K, Na and Cl by their excised roots. Agrochimica 13, 196–206 (1969b).

    CAS  Google Scholar 

  • Epstein, E.: Mineral metabolism of halophytes. In: Ecological aspects of the mineral nutrition of plants (I.H. Rorison, ed.), p. 345–355. Oxford and Edinburgh: Blackwell Sci. Publ. 1969.

    Google Scholar 

  • Epstein, E.: Mineral nutrition of plants: principles and perspectives. New York-London-Sydney-Toronto: John Wiley and Sons 1972.

    Google Scholar 

  • Epstein, E., Jefferies, R.L.: The genetic basis of selective ion transport in plants. Ann. Rev. Plant Physiol. 15, 169–184 (1964).

    CAS  Google Scholar 

  • Filner, P., Wray, J.L., Varner, J.E.: Enzyme induction in higher plants. Science 165, 358–367 (1969).

    PubMed  CAS  Google Scholar 

  • Foote, B.D., Howell, R.W.: Phosphorus tolerance and sensitivity of soybeans as related to uptake and translocation. Plant Physiol. 39, 610–613 (1964).

    PubMed  CAS  Google Scholar 

  • Foy, C.D., Barber, S.A.: Magnesium absorption and utilization by two inbred lines of corn. Soil Sci. Soc. Amer. Proc. 22, 57–62 (1958).

    CAS  Google Scholar 

  • Foy, C.D., Fleming, A.L., Armiger, W.H.: Differential tolerance of cotton varieties to excess manganese. Agron. J. 61, 690–694 (1969).

    Google Scholar 

  • Foy, C.D., Fleming, A.L., Burns, G.R., Armiger, W.H.: Characterization of differential aluminium tolerance among varieties of wheat and barley. Soil Sci. Soc. Amer. Proc. 31, 513–521 (1967).

    CAS  Google Scholar 

  • Foy, C.D., Fleming, A.L., Gerloff, G.C: Differential aluminium tolerance in two snapbean varieties. Agron. J. 64, 815–818 (1972).

    CAS  Google Scholar 

  • Foy, C.D., Fleming, A.L., Schwartz, J.W.: Opposite aluminium and manganese tolerances of two wheat varieties. Agron. J. 65, 123–126 (1973 a).

    CAS  Google Scholar 

  • Foy, C.D., Gerloff, G.C., Gabelman, W.H.: Differential effects of aluminium on the vegetative growth of tomato cultivars in acid soil and nutrient solution. J. Amer. Soc. Hort. Sci. 98, 427–432 (1973b).

    CAS  Google Scholar 

  • Glasziou, K.T.: Control of enzyme formation and inactivation in plants. Ann. Rev. Plant Physiol. 20, 63–88 (1969).

    CAS  Google Scholar 

  • Greenway, H.: Plant response to saline substrates. I. Growth and ion uptake of several varieties of Hordeum during and after sodium chloride treatment. Australian J. Biol. Sci. 15, 16–38 (1962).

    CAS  Google Scholar 

  • Greenway, H.: Plant response to saline substrates. VII. Growth and ion uptake throughout plant development in two varieties of Hordeum vulgare Australian J. Biol. Sci. 18, 763–779 (1965).

    CAS  Google Scholar 

  • Greenway, H.: Salinity, plant growth, and metabolism. J. Australian Inst. Agr. Sci. 39, 24–34 (1973).

    CAS  Google Scholar 

  • Gregory, R.P.G., Bradshaw, A.D.: Heavy metal tolerance in populations of Agrostis tenuis and other grasses. New Phytologist 64, 131–143 (1965).

    CAS  Google Scholar 

  • Haass, D., Tanner, W.: Regulation of hexose transport in Chlorella vulgaris Characteristics of induction and turnover. Plant Physiol. 53, 14–20 (1974).

    PubMed  CAS  Google Scholar 

  • Hageman, R.H., Flesher, D.: Nitrate reductase activity in corn seedlings as affected by light and nitrate content of nutrient media. Plant Physiol. 35, 700–708 (1960).

    PubMed  CAS  Google Scholar 

  • Hansson, G.: Patterns of ionic influences on sugar beet ATPases. Dissertation, University of Stockholm (1975).

    Google Scholar 

  • Heimer, Y.M., Filner, P.: Regulation of the nitrate assimilation pathway in cultured tobacco cells. III. The nitrate uptake system. Biochim. Biophys. Acta 230, 362–372 (1971).

    PubMed  CAS  Google Scholar 

  • Heimer, Y.M., Wray, J.L., Filner, P.: The effect of tungstate on nitrate assimilation in higher plant tissues. Plant Physiol. 44, 1197–1199 (1969).

    PubMed  CAS  Google Scholar 

  • Hill, A.E., Hill, B.S.: The Limonium salt gland: a biophysical and structural study. Intern. Rev. Cytol. 35, 299–319 (1973a).

    CAS  Google Scholar 

  • Hill, B.S., Hill, A.E.: ATP-driven chloride pumping and ATPase activity in the Limonium salt gland. J. Membrane Biol. 12, 145–158 (1973b).

    CAS  Google Scholar 

  • Hope, A.B., LĂĽttge, U., Ball, E.: Chloride uptake in strains of Scenedesmus obliquus Z. Pflanzenphysiol. 72, 1–10 (1974).

    CAS  Google Scholar 

  • Horak, O., Kinzel, H.: Typen des Mineralstoffwechsels bei den höheren Pflanzen. Ă–sterr. Bot. Z. 119, 475–495 (1971).

    CAS  Google Scholar 

  • Jackson, W.A., Flesher, D., Hageman, R.H.: Nitrate uptake by dark-grown corn seedlings. Some characteristics of apparent induction. Plant Physiol. 51, 120–127 (1973).

    PubMed  CAS  Google Scholar 

  • Jackson, W.A., Volk, R.J., Tucker, T.C.: Apparent induction of nitrate uptake in nitrate-depleted plants. Agron. J. 64, 518–521 (1972).

    CAS  Google Scholar 

  • JaffrĂ©, T., Schmid, M.: Accumulation du nickel par une RubiacĂ©e de Nouvelle-CalĂ©donie. Compt. Rend. 278, 1727–1730 (1974).

    Google Scholar 

  • Jefferies, R.L.: Aspects of salt-marsh ecology with particular reference to inorganic plant nutrition. In: The estuarine environment, p. 61–85. London: Applied Science Publ. 1972.

    Google Scholar 

  • Jowett, D.: Populations of Agrostis spp. tolerant of heavy metals. Nature 182, 816–817 (1958).

    Google Scholar 

  • Kähr, M., Kylin, A.: Effects of divalent cations and oligomycin on membrane ATPases from roots of wheat and oat in relation to salt status and cultivation. In: Membrane transport in plants (U. Zimmermann, J. Dainty, eds.), p. 321–325. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Khan, A.M.: The physiology of salt tolerance in Festuca rubra L. Ph. D. thesis, University of Wales (1972).

    Google Scholar 

  • Kinzel, H.: Zellsaft-Analysen zum pflanzlichen Calcium- und Säurestoffwechsel und zum Problem der Kalk- und Silikatpflanzen. Protoplasma 57, 522–555 (1963).

    CAS  Google Scholar 

  • Kinzel, H.: Ansätze zu einer vergleichenden Physiologie des Mineralstoffwechsels und ihre ökologischen Konsequenzen. Ber. Deut. Bot. Ges. 82, 143–158 (1969).

    CAS  Google Scholar 

  • Kleese, R.A.: Relative importance of stem and root in determining genotypic differences in Sr-89 and Ca-45 accumulation in soybeans (Glycine max L.). Crop Sci. 7, 53–55 (1967).

    CAS  Google Scholar 

  • Kleese, R.A.: Scion control of genotypic differences in Sr and Ca accumulation in soybeans under field conditions. Crop Sci. 8, 128–129 (1968).

    Google Scholar 

  • Kleese, R.A., Smith, L.J.: Scion control of genotypic differences in mineral salts accumulation in soyabean (Glycine max L. Merr.) seeds. Ann. Bot. (London), N.S. 34, 183–188 (1970).

    Google Scholar 

  • Kuiper, P.J.C.: Lipids in grape roots in relation to chloride transport. Plant Physiol. 43, 1367–1371 (1968a).

    PubMed  CAS  Google Scholar 

  • Kuiper, P.J.C.: Ion transport characteristics of grape root lipids in relation to chloride transport. Plant Physiol. 43, 1372–1374 (1968b).

    PubMed  CAS  Google Scholar 

  • Kylin, A., Hansson, G.: Transport of sodium and potassium, and properties of (sodium+potassium)-activated adenosine triphosphatases: possible connection with salt tolerance in plants. In: Proc. 8th Colloq. Intern. Potash Inst., p. 64–68. Berne: Intern. Potash Inst. 1971.

    Google Scholar 

  • Kylin, A., Kähr, M.: The effect of magnesium and calcium ions on adenosine triphosphatases from wheat and oat roots at different pH. Physiol. Plantarum 28, 452–457 (1973).

    CAS  Google Scholar 

  • Läuchli, A., Epstein, E.: Transport of potassium and rubidium in plant roots. The significance of calcium. Plant Physiol. 45, 639–641 (1970).

    PubMed  Google Scholar 

  • Läuchli, A., Epstein, E.: Lateral transport of ions into the xylem of corn roots. I. Kinetics and energetics. Plant Physiol. 48, 111–117 (1971).

    PubMed  Google Scholar 

  • Läuchli, A., Kramer, D., Pitman, M.G., LĂĽttge, U.: Ultrastructure of xylem parenchyma cells of barley roots in relation to ion transport to the xylem. Planta 119, 85–99 (1974a).

    Google Scholar 

  • Läuchli, A., Kramer, D., Stelzer, R.: Ultrastructure and ion localization in xylem parenchyma cells of roots. In: Membrane transport in plants (U. Zimmermann, J. Dainty, eds.), p. 363–371. Berlin-Heidelberg-New York: Springer 1974b.

    Google Scholar 

  • Läuchli, A., LĂĽttge, U., Pitman, M.G.: Ion uptake and transport through barley seedlings: differential effect of cycloheximide. Z. Naturforsch. 28c, 431–434 (1973).

    Google Scholar 

  • Lambowitz, A.M., Slayman, C.W., Slayman, C.L., Bonner, W.D. Jr.: The electron transport components of wild type and poky strains of Neurospora crassa J. Biol. Chem. 247, 1536–1545 (1972a).

    PubMed  CAS  Google Scholar 

  • Lambowitz, A.M., Smith, E.W., Slayman, C.W.: Electron transport in Neurospora mitochondria. Studies on wild type and poky J. Biol. Chem. 247, 4850–4858 (1972 b).

    PubMed  CAS  Google Scholar 

  • Lambowitz, A.M., Smith, E.W., Slayman, C.W.: Oxidative phosphorylation in Neurospora mitochondria. Studies on wild type, poky and chloramphenicol-induced wild type. J. Biol. Chem. 247, 4859–4865 (1972c).

    PubMed  CAS  Google Scholar 

  • Lane, I.R., Lyon, G.D.: Differential response to salt within the species Festuca rubra B. Sc. Thesis, University of Wales (1966).

    Google Scholar 

  • Lange, O.L., Ziegler, H.: Der Schwermetallgehalt von Flechten aus dem Acarosporeteum sinopicae auf Erzschlackenhalden des Harzes. I. Eisen und Kupfer. Mitt. Flor.-Soz. Arbeitsgem.,N.F. 10, 156–183(1963).

    Google Scholar 

  • Leggett, J.E., Gilbert, W.A.: Magnesium uptake by soybeans. Plant Physiol. 44, 1182–1186 (1969).

    PubMed  CAS  Google Scholar 

  • LĂĽttge, U.: Salt glands. In: Ion transport in plant cells and tissues (D.A. Baker, J.L. Hall, eds.), p. 335–376. Amsterdam-Oxford-New York: North-Holland Publishing Company 1975.

    Google Scholar 

  • LĂĽttge, U., Läuchli, A., Ball, E., Pitman, M.G.: Cycloheximide: a specific inhibitor of protein synthesis and intercellular ion transport in plant roots. Experientia 30, 470–471 (1974).

    PubMed  Google Scholar 

  • LĂĽttge, U., Osmond, C.B.: Ion absorption in Atriplex leaf tissue. III. Site of metabolic control of light-dependent chloride secretion to epidermal bladders. Australian J. Biol. Sci. 23, 17–25(1970).

    Google Scholar 

  • Marcus, A.: Enzyme induction in plants. Ann. Rev. Plant Physiol. 22, 313–336 (1971).

    CAS  Google Scholar 

  • Mathys, W.: Vergleichende Untersuchungen der Zinkaufnahme von resistenten und sensitiven Populationen von Agrostis tenuis Sibth. Flora (Jena) 162, 492–499 (1973).

    CAS  Google Scholar 

  • Minotti, P.L., Williams, D.G., Jackson, W.A.: Nitrate uptake and reduction as affected by calcium and potassium. Soil Sci. Soc. Amer. Proc. 32, 692–698 (1968).

    CAS  Google Scholar 

  • Munns, D.N., Jacobson, L., Johnson, C.M.: Uptake and distribution of manganese in oat plants. II. A kinetic model. Plant Soil 19, 193–204 (1963a).

    Google Scholar 

  • Munns, D.N., Johnson, C.M., Jacobson, L.: Uptake and distribution of manganese in oat plants. I. Varietal variation. Plant Soil 19, 115–126 (1963 b).

    Google Scholar 

  • Munns, D.N., Johnson, C.M., Jacobson, L.: Uptake and distribution of manganese in oat plants. III. An analysis of biotic and environmental effects. Plant Soil 19, 285–295 (1963c).

    CAS  Google Scholar 

  • Nissen, P.: Choline sulfate permease: transfer of information from bacteria to higher plants? Biochem. Biophys. Res. Commun. 32, 696–703 (1968).

    PubMed  CAS  Google Scholar 

  • Nissen, P.: Choline sulfate permease: transfer of information from bacteria to higher plants? II. Induction processes. In: Informative molecules in biological systems (L.G.H. Ledoux, ed.), p. 201–212. Amsterdam: North-Holland Publ. Co. 1971.

    Google Scholar 

  • Nissen, P.: Bacteria-mediated uptake of choline sulfate by plants. Sci. Rep. Agr. Univ. Norway 52, 1–53 (1973).

    Google Scholar 

  • Nissen, P., Benson, A.A.: Active transport of choline sulfate by barley roots. Plant Physiol. 39, 586–589 (1964).

    PubMed  CAS  Google Scholar 

  • Noeske, O., Läuchli, A., Lange, O.L., Vieweg, G.H., Ziegler, H.: Konzentration und Lokalisierung von Schwermetallen in Flechten der Erzschlackenhalden des Harzes. Deut. Bot. Ges., N.F. 4, 67–79 (1970).

    Google Scholar 

  • Pardee, A.B.: Membrane transport proteins. Science 162, 632–637 (1968).

    PubMed  CAS  Google Scholar 

  • Phillips, J.W., Baker, D.E., Clagett, C.O.: Kinetics of P absorption by excised roots and leaves of corn hybrids. Agron. J. 63, 517–520 (1971).

    Google Scholar 

  • Picciurro, G., Brunetti, N.: Assorbimento del sodio (Na22) in radici escisse di alcune varietĂ  di Lycopersicum esculentum Agrochimica 13, 347–357 (1969).

    Google Scholar 

  • Pitman, M.G.: Uptake and transport of ions in barley seedlings. I. Estimation of chloride fluxes in cells of excised roots. Australian J. Biol. Sci. 24, 407–421 (1971).

    CAS  Google Scholar 

  • Pitman, M.G.: Uptake and transport of ions in barley seedlings. III. Correlation between transport to the shoot and relative growth rate. Australian J. Biol. Sci. 25, 905–919 (1972).

    CAS  Google Scholar 

  • Pitman, M.G., LĂĽttge, U., Läuchli, A., Ball, E.: Ion uptake to slices of barley leaves, and regulation of K content in cells of the leaves. Z. Pflanzenphysiol. 72, 75–88 (1974a).

    CAS  Google Scholar 

  • Pitman, M.G., LĂĽttge, U., Läuchli, A., Ball, E.: Action of abscisic acid on ion transport as affected by root temperature and nutrient status. J. Exptl. Bot. 25, 147–155 (1974b).

    CAS  Google Scholar 

  • Pope, D.T., Munger, H.M.: Heredity and nutrition in relation to magnesium deficiency chlorosis in celery. Proc. Amer. Soc. Hort. Sci. 61, 472–480 (1953).

    CAS  Google Scholar 

  • Rains, D.W.: Salt transport by plants in relation to salinity. Ann. Rev. Plant Physiol. 23, 367–388 (1972).

    CAS  Google Scholar 

  • Rains, D.W., Epstein, E.: Preferential absorption of potassium by leaf tissue of the mangrove Avicennia marina: an aspect of halophytic competence in coping with salt. Australian J. Biol. Sci. 20, 847–857 (1967).

    CAS  Google Scholar 

  • Rush, D.W., Epstein, E.: Genotypic responses to salinity: differences between salt sensitive and salt tolerant genotypes of the tomato. Plant Physiol. 57 (1976, in press).

    Google Scholar 

  • Salsac, L.: Absorption du calcium par les racines de fĂ©verole (calcicole) et de lupin jaune (calcifuge). Physiol. VĂ©g. 11, 95–119 (1973).

    CAS  Google Scholar 

  • Schaefer, N., Wildes, R.A., Pitman, M.G.: Inhibition by p-fluorophenylalanine of protein synthesis and of ion transport across the root in barley seedlings. Australian J. Plant Physiol. 2, 61–73 (1975).

    CAS  Google Scholar 

  • Severne, B.C., Brooks, R.R.: A nickel-accumulating plant from Western Australia. Planta 103, 91–94(1972).

    CAS  Google Scholar 

  • Shachar-Hill, B., Hill, A.E.: Ion and water transport in Limonium VI. The induction of chloride pumping. Biochim. Biophys. Acta 211, 313–317 (1970).

    CAS  Google Scholar 

  • Shafer, J., Jr., Baker, J.E., Thompson, J.F.: A Chlorella mutant lacking nitrate reductase. Amer. J. Bot. 48, 896–899 (1961).

    CAS  Google Scholar 

  • Shim, S.C., Vose, P.B.: Varietal differences in the kinetics of iron uptake by excised rice roots. J. Exptl. Bot. 16, 216–232 (1965).

    CAS  Google Scholar 

  • Slayman, C. W.: The genetic control of membrane transport. In: Current topics in membranes and transport (F. Bronner, A. Kleinzeller, eds.), vol. 4, p. 1–174. New York and London: Academic Press 1973.

    Google Scholar 

  • Smith, F.A.: The internal control of nitrate uptake into excised barley roots with differing salt contents. New Phytologist 72, 769–782 (1973).

    CAS  Google Scholar 

  • Snaydon, R.W., Bradshaw, A.D.: Differences between natural populations of Trifolium repens L. in response to mineral nutrients. II. Calcium, magnesium and potassium. J. Appl. Ecol. 6, 185–202(1969).

    Google Scholar 

  • Stelzer, R., Läuchli, A., Kramer, D.: Interzelluläre Transportwege des Chlorids in Wurzeln intakter Gerstepflanzen. Cytobiologie 10, 449–457 (1975).

    CAS  Google Scholar 

  • Steveninck, R.F.M. van, Steveninck, M.E. van: Effects of inhibitors of protein and nucleic acid synthesis on the development of ion uptake mechanisms in beetroot slices (Beta vulgaris) Physiol. Plantarum 27, 407–411 (1972).

    Google Scholar 

  • Tal, M.: Salt tolerance in the wild relatives of the cultivated tomato: responses of Lycopersicon esculentum, L. peruvianum, and L. esculentum minor to sodium chloride solution. Australian J. Agr. Res. 22, 631–638 (1971).

    CAS  Google Scholar 

  • Tal, M., Gavish, U.: Salt tolerance in the wild relatives of the cultivated tomato: water balance and abscisic acid in Lycopersicon esculentum and L. peruvianum under low and high salinity. Australian J. Agr. Res. 24, 353–361 (1973).

    CAS  Google Scholar 

  • Tanner, W.: Light-driven active uptake of 3-O-methylglucose via an inducible hexose uptake system of Chlorella Biochem. Biophys. Res. Commun. 36, 278–283 (1969).

    PubMed  CAS  Google Scholar 

  • Tanner, W., GrĂĽnes, R., Kandler, O.: Spezifität und Turnover des induzierbaren Hexose- Aufnahmesystems von Chlorella Z. Pflanzenphysiol. 62, 376–386 (1970).

    CAS  Google Scholar 

  • Tanner, W., Haass, D., Decker, M., Loos, E., Komor, B., Komor, E.: Active hexose transport in Chlorella vulgaris In: Membrane transport in plants (U. Zimmermann, J. Dainty, eds.), p. 202–208. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  • Tanner, W., Kandler, O.: Die Abhängigkeit der Adaptation der Glucose-Aufnahme von der oxydativen und der photosynthetischen Phosphorylierung bei Chlorella vulgaris Z. Pflanzenphysiol. 58, 24–32 (1967).

    CAS  Google Scholar 

  • Tiku, B.L., Snaydon, R.W.: Salinity tolerance within the grass species Agrostis stolonifera L. Plant Soil 35, 421–431 (1971).

    Google Scholar 

  • Turner, R.G.: Heavy metal tolerance in plants. In: Ecological aspects of the mineral nutrition of plants (LH. Rorison, ed.), p. 399–410. Oxford and Edinburgh: Blackwell Sci. Publ. 1969.

    Google Scholar 

  • Vose, P.B.: Varietal differences in plant nutrition. Herbage Abstr. 33, 1–13 (1963).

    Google Scholar 

  • Waisel, Y.: Biology of halophytes. New York and London: Academic Press 1972.

    Google Scholar 

  • Wall, J.R., Andrus, C.F.: The inheritance and physiology of boron response in the tomato. Amer. J. Bot. 49, 758–762 (1962).

    CAS  Google Scholar 

  • Wann, E.V., Hills, W.A.: The genetics of boron and iron transport in the tomato. J. Heredity 64, 370–371 (1973).

    CAS  Google Scholar 

  • Warner, R.L., Hageman, R.H., Dudley, J.W., Lambert, R.J.: Inheritance of nitrate reductase activity in Zea mays L. Proc. Natl. Acad. Sci. U.S. 62, 785–792 (1969).

    CAS  Google Scholar 

  • Weiss, M.G.: Inheritance and physiology of efficiency in iron utilization in soybeans. Genetics 28, 253–268 (1943).

    PubMed  CAS  Google Scholar 

  • Wu, L., Bradshaw, A.D.: Aerial pollution and the rapid evolution of copper tolerance. Nature 238, 167–169 (1972).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Läuchli, A. (1976). Genotypic Variation in Transport. In: Lüttge, U., Pitman, M.G. (eds) Transport in Plants II. Encyclopedia of Plant Physiology, vol 2 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66230-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66230-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66232-4

  • Online ISBN: 978-3-642-66230-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics