Skip to main content

Transport in Symbiotic Systems Fixing Nitrogen

  • Chapter
Transport in Plants II

Part of the book series: Encyclopedia of Plant Physiology ((919,volume 2 / B))

Abstract

The fixation of nitrogen by associations involving plants is taxonomically widespread and of considerable importance ecologically or agricultural006y in the provision of organically-bound nitrogen to other organisms. Seven main groupings of symbioti-cally paired organisms may be involved (Table 6.1), blue-green algae, Actinomycetes and Rhizobium functioning as the microsymbionts fixing nitrogen, plants representing any of the major taxa acting as the various non-fixing macrosymbiont. The list in Table 6.1 is by no means exhaustive. Only those symbioses in which it appears to have been demonstrated conclusively that fixation contributes materially to the normal nitrogen nutrition of the association are included. The “loose” associations of rhizosphere and phyllosphere between N-fixing bacteria and higher plants, and the casual endophytism of blue-green algae recorded for a variety of cryptogams (see, for example, Lhotsky, 1946), are deemed to fall outside the scope of present discussion, despite their intrinsic interest in considerations of the evolution of symbiotic systems. Also, the various examples of angiosperm leaf nodules (Pavetta, Psychotria, Ardisia) mycorrhiza, arbuscular-vesicular mycorrhiza, proteoid roots of various Proteaceae and the nodules formed by fungi or Actinomycetes on certain Gymno-sperms (Podocarpus) are omitted, since the evidence now seems to be that, if fixation occurs at all in these, it fails to reach physiologically significant proportions.

Table 6.1 Symbiotic systems involving plants capable of fixing nitrogen

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, E.K., Allen, O.N.: Nonleguminous plant symbiosis. Proc. Biol. Colloq. Microbiol. Soil Fertility. Oregon State University, Oregon, USA, 77–106 (1964).

    Google Scholar 

  • Allen, J.D., Silvester, W.B., Kalin, M.: Streptomyces associated with root nodules of Coriaria in New Zealand. New Zealand J. Bot. 4, 57–65 (1966).

    Google Scholar 

  • Angulo, A.F., Van Dijk, C., Quispel, A.: Symbiotic interactions in non-leguminous root nodules with special reference to alder. In: Nitrogen fixation and the biosphere. Intern. Synthesis Meeting. Intern. Biological Programme. Cambridge: Cambridge University Press (in press).

    Google Scholar 

  • Aprison, M.H., Magee, W.E., Burris, R.H.: Nitrogen fixation by excised soy-bean root nodules. J. Biol. Chem. 208, 29–39 (1954).

    PubMed  CAS  Google Scholar 

  • Bach, M.K., Magee, W.E., Burris, R.H.: Translocation of photosynthetic products to soybean nodules and their role in nitrogen fixation. Plant Physiol. 33, 118–124 (1958).

    PubMed  CAS  Google Scholar 

  • Batham, E.J.: Vascular anatomy of New Zealand species of Gunnera. Trans. Roy. Soc. New Zealand 73, 209–216 (1943).

    Google Scholar 

  • Becking, J.H.: Nitrogen fixation by non-leguminous plants. In: Symposium nitrogen in soil. Dutch Nitrogenous Fertilizer Review 12, 47–74 (1968).

    Google Scholar 

  • Becking, J.H.: Plant endophyte symbiosis in non-leguminous plants. Plant Soil 32, 611–654 (1970).

    CAS  Google Scholar 

  • Bednar, T.W., Holm-Hansen, O.: Biotin liberation by the alga Coccomyxa sp. and by Chlorella pyrenoidosa. Plant Cell Physiol. (Tokyo) 5, 297–303 (1964).

    CAS  Google Scholar 

  • Bergersen, F.J.: The quantitative relationship between nitrogen fixation and the acetylene reduction assay. Australian J. Biol. Sci. 23, 1015–1025 (1970).

    CAS  Google Scholar 

  • Bergersen, F.J.: Biochemistry of nitrogen fixation in legumes. Ann. Rev. Plant Physiol. 22, 121–140(1971).

    CAS  Google Scholar 

  • Bergersen, F.J., Kennedy, G.S., Wittman, W.: Nitrogen fixation in coralloid roots of Macrozamia communis L. Johnson. Australian J. Biol. Sci. 18, 1135–1142 (1965).

    CAS  Google Scholar 

  • Bergersen, F.J., Turner, G.L.: Nitrogen fixation by the bacteroid fraction of breis of soybean root nodules. Biochim. Biophys. Acta 141, 507–515 (1967).

    PubMed  CAS  Google Scholar 

  • Bond, G.: Quantitative observations on the fixation and transfer of nitrogen in the soya bean, with especial reference to the mechanism of transfer of fixed nitrogen from bacillus to host. Ann. Bot. (London) N.S. 50, 559–578 (1936).

    CAS  Google Scholar 

  • Bond, G.: An isotopic study of the fixation of nitrogen associated with nodulated plants of Alnus, Myrica and Hippophäe. J. Exptl. Bot. 6, 303–311 (1955).

    CAS  Google Scholar 

  • Bond, G.: Some aspects of translocation in root nodule plants. J. Exptl. Bot. 7, 387–394 (1956).

    CAS  Google Scholar 

  • Bond, G.: The development and significance of the root nodules of Casuarina. Ann. Bot. (London) N.S. 21, 373–380 (1957a).

    Google Scholar 

  • Bond, G.: Isotopic studies on nitrogen fixation in non-legume root nodules. Ann. Bot. (London) N.S. 21, 513–521 (1957b).

    Google Scholar 

  • Bond, G.: Fixation of nitrogen in Coriaria myrtifolia. Nature 193, 1103–1104 (1962).

    Google Scholar 

  • Bond, G.: The root nodules of non-leguminous angiosperms. Symp. Soc. Gen. Microbiol. 13, 72–91 (1963).

    Google Scholar 

  • Bond, G.: Isotopic investigations of nitrogen fixation in non-legume root nodules. Nature 204, 600–601 (1964).

    CAS  Google Scholar 

  • Bond, G.: Nitrogen fixation in some non-legume root nodules. Phyton (B. Aires) 24, 57–66 (1967).

    Google Scholar 

  • Bond, G.: Fixation of nitrogen by higher plants other than legumes. Ann. Rev. Plant Physiol. 18, 107–126(1967).

    CAS  Google Scholar 

  • Bond, G.: Root-nodule formation in non-leguminous angiosperms. Plant Soil (special volume), 317–324 (1971 a).

    Google Scholar 

  • Bond, G., Scott, G.D.: An examination of some symbiotic systems for fixation of nitrogen. Ann. Bot. (London) N.S. 19, 67–77 (1955).

    Google Scholar 

  • Bothe, H.: Photosynthetische Stickstoffixierung mit einem zellfreien Extrakt aus der Blaualge Anabaena cylindrica. Ber. Deut. Bot. Ges. 83, 421–432 (1970).

    CAS  Google Scholar 

  • Corby, H.D.L.: The shape of leguminous nodules and the colour of leguminous roots. Plant Soil (special vol.) 305–314 (1971).

    Google Scholar 

  • Dangeard, P.A.: Recherches sur les tubercules radicaux des légumineuses. Le Botaniste, Ser. 16 (Paris) (1926).

    Google Scholar 

  • Delwiche, C.C., Zinke, P.J., Johnson, C.M.: Nitrogen fixation by Ceanothus. Plant Physiol. 40, 1045–1047(1965).

    PubMed  CAS  Google Scholar 

  • Dilworth, M.J.: Dinitrogen fixation. Ann. Rev. Plant Physiol. 25 (1974).

    Google Scholar 

  • Donze, M., Haveman, J., Schiereck, P.: Absence of photosystem 2 in heterocysts of the blue-green alga Anabaena. Biochim. Biophys. Acta 256, 157–161 (1972).

    PubMed  CAS  Google Scholar 

  • Douin, R.: Sur la fixation de l’azote libre par Myxophycees endophytes Cycadacees. Compt. Rend. 236, 956–958 (1953).

    CAS  Google Scholar 

  • Drew, E.A., Smith, D.C.: Studies in the physiology of lichens. VII. The physiology of the Nostoc symbiont of Peltigera polydactyla compared with cultured and free living forms. New Phytologist 66, 379–388 (1967).

    Google Scholar 

  • Dunn, J.H., Wolk, C.P.: Composition of the cellular envelopes of Anabaena cylindrica. J. Bacteriol. 103, 153–158 (1970).

    PubMed  CAS  Google Scholar 

  • Dunn, S.D., Klucas, R.V.: Studies on possible routes of ammonium assimilation in soybean root nodule bacteroids. Canad. J. Microbiol. 19, 1493–1499 (1973).

    CAS  Google Scholar 

  • Fogg, G.E., Stewart, W.D.P.: In situ determinations of biological nitrogen fixation in Antarctica. Br. Antarct. Surv. Bull. 15, 39 (1968).

    Google Scholar 

  • Frazer, H.L.: The occurrence of endodermis in leguminous root nodules and its effect upon nodule function. Proc. Roy. Soc. Edinburgh B 61, 328–343 (1942).

    Google Scholar 

  • Fritsch, F.E.: The structure and reproduction of the Algae, vol. 2. London: Cambridge University Press 1952.

    Google Scholar 

  • Furman, T.: The structure of the root nodules of Ceanothus sanguineus with special reference to endophyte. Amer. J. Bot. 46, 698–703 (1959).

    Google Scholar 

  • Gardner, I.C.: Observations on the fine structure of the endophyte of the root nodules of Alnus glutinosa Gaerten. Arch. Mikrobiol. 51, 365–383 (1965).

    Google Scholar 

  • Gardner, I.C., Bond, G.: Observations on the root nodules of Shepherdia. Canad. J. Bot. 35, 305–314(1957).

    Google Scholar 

  • Gatner, E.M.S., Gardner, I.C.: Observations on the fine structure of the root nodule endophyte of Hippophäe rhamnoides L. Arch. Mikrobiol. 70, 183–196 (1970).

    PubMed  CAS  Google Scholar 

  • Goodchild, D. J., Bergersen, F. J.: Electron microscopy of the infection and subsequent development of soybean nodule cells. J. Bacteriol. 92, 204–213 (1966).

    PubMed  CAS  Google Scholar 

  • Griffiths, H.B., Greenwood, A.D., Millbank, J.W.: The frequency of heterocysts in the Nostoc phycobiont of the lichen Peltigera canina Willd. New Phytologist 71, 11–13 (1972).

    Google Scholar 

  • Grimes, H., Fottrell, P.F.: Enzymes involved in glutamate metabolism in legume root nodules. Nature 212, 295–296 (1966).

    PubMed  CAS  Google Scholar 

  • Grobbelaar, N., Strauss, J.M., Groenewald, E.G.: Non-leguminous seed plants in Southern Africa which fix nitrogen symbolically. Plant Soil (special volume) 325–334 (1971).

    Google Scholar 

  • Gunning, B.E.S., Pate, J.S.: Transfer cells. Plant cells with wall ingrowths, specialized in relation to short distance transport of solutes. Their occurrence, structure and development. Protoplasma 68, 107–133 (1969).

    Google Scholar 

  • Gunning, B.E.S., Pate, J.S., Minchin, F.R., Marks, I.: Quantitative aspects of transfer cell structure in relation to vein loading in leaves and solute transport in legume nodules. Symp. Soc. Exptl. Biol. 28, 87–124 (1974).

    CAS  Google Scholar 

  • Harder, R.: Ernährungsphysiologische Untersuchungen an Cyanophyceen, hauptsächlich dem endophytischen Nostoc punctiforme. Z. Botan. 9, 145–242 (1917).

    Google Scholar 

  • Hardy, R.W.F., Havelka, U.D.: Photosynthate as a major factor limiting N2 fixation by field-grown legumes with emphasis on soybeans. In: Nitrogen fixation and the biosphere. Intern. Synthesis Meeting, Intern. Biol. Programme. Cambridge: Cambridge University Press (in press).

    Google Scholar 

  • Hardy, R.W.F., Holsten, R.P., Jackson, E.K., Burns, R.C.: The acetylene-ethylene assay for nitrogen fixation; laboratory and field evaluation. Plant Physiol. 43, 1185–1207 (1968).

    PubMed  CAS  Google Scholar 

  • Harris, G.P., Morrison, T.M.: Fixation of nitrogen-15 by excised nodules of Coriaria arborea Lindsay. Nature 182, 1812 (1958).

    CAS  Google Scholar 

  • Haystead, A., Dharmawardene, M.W.N., Stewart, W.D.P.: Ammonia assimilation in a nitrogen-fixing blue-green alga. Plant Sci. Letters 1, 439–445 (1973).

    CAS  Google Scholar 

  • Henriksson, E.: Nitrogen fixation by a bacteria-free, symbiotic Nostoc strain isolated from Collema. Physiol. Plantarum 4, 542–545 (1951).

    CAS  Google Scholar 

  • Hill, D.J.: The movement of carbohydrate from the alga to the fungus in the lichen Peltigera polydactyla. New Phytologist 71, 31–39 (1972).

    CAS  Google Scholar 

  • Hill, D.J., Ahmadjian, V.: Relationship between carbohydrate movement and the symbiosis in lichens with green algae. Planta 103, 267–277 (1972).

    CAS  Google Scholar 

  • Hill, D.J., Smith, D.C.: Lichen physiology. XII. The inhibition technique. New Phytologist 71, 15–30(1972).

    CAS  Google Scholar 

  • Hitch, C.J.B., Stewart, W.D.P.: Nitrogen fixation by lichens in Scotland. New Phytologist 72, 509–524 (1973).

    CAS  Google Scholar 

  • Kale, S.R., Bahal, M., Talpasayi, E.R.S.: Wall development and tetrazolium chloride reduction in heterocysts of blue-green algae. Experientia 26, 605–606 (1970).

    PubMed  CAS  Google Scholar 

  • Kennedy, I.R.: Primary products of symbiotic nitrogen fixation. II. Pulselabelling of Serradella nodules with 15N2. Biochim. Biophys. Acta 130, 295–303 (1966).

    PubMed  CAS  Google Scholar 

  • Kershaw, K.A., Millbank, J.W.: Nitrogen metabolism in lichens. II. The partition of cephalo-dial-fixed nitrogen between the mycobiont and phycobionts of Peltigera aphthosa. New Phytologist 69, 75–79(1970).

    CAS  Google Scholar 

  • Kidby, D.K.: Activation of a plant invertase by inorganic phosphate. Plant Physiol. 41, 1139–1144(1966).

    PubMed  CAS  Google Scholar 

  • Lalonde, M., Fortin, J.A.: Microscopie photonique des nodules racinaires axéniques d’ Alnus crispa var. mollis. Canad. J. Microbiol. 19, 1115–1118 (1973).

    CAS  Google Scholar 

  • Lawrence, D.B., Schoenike, R.E., Quispel, A., Bond, G.: The role of Dryas drummondii in vegetation development following ice recession at Glacier Bay, Alaska, with special reference to its nitrogen fixation by root nodules. J. Ecol. 55, 793–813 (1967).

    Google Scholar 

  • Lawrie, A.C., Wheeler, C.T.: The supply of photosynthetic assimilates to nodules of Pisum sativum L. in relation to the fixation of nitrogen. New Phytologist 72, 1341–1348 (1973).

    CAS  Google Scholar 

  • Leach, C.K., Carr, N.G.: Pyruvate: ferredoxin oxidoreductase and its activation by ATP in the blue-green alga Anabaena variabilis. Biochim. Biophys. Acta 245, 165–174 (1971).

    PubMed  CAS  Google Scholar 

  • Leaf, G., Gardner, I.C., Bond, G.: Observations of the composition and metabolism of the nitrogen-fixing root nodules of Alnus. J. Exptl. Bot. 9, 320–331 (1958).

    CAS  Google Scholar 

  • Leaf, G., Gardner, J.C., Bond, G.: Observation on the composition and metabolism of the nitrogen-fixing root nodules of Myrica. Biochem. J. 72, 662 (1959).

    PubMed  CAS  Google Scholar 

  • Lewis, D.H.: Concepts in fungal nutrition and the origin of biotrophy. Biol. Rev. 48, 261–278 (1973).

    Google Scholar 

  • Lex, M., Stewart, W.D.P.: Algal nitrogenase, reductant pools and photosystem I activity. Biochim. Biophys. Acta 292, 436–443 (1973).

    PubMed  CAS  Google Scholar 

  • Lhotsky, S.: The assimilation of free nitrogen in symbiotic Cyanophyceae. Studia bot. čsl. 7, 20–35 (1946).

    Google Scholar 

  • Lyne, R.L., Stewart, W.D.P.: Emerson enhancement of carbon fixation but not of acetylene reduction (nitrogenase activity) in Anabaena cylindrica. Planta 109, 27–38 (1973).

    CAS  Google Scholar 

  • Mague, T.H., Burris, R.H.: Reduction of acetylene and nitrogen by fieldgrown soybeans. New Phytologist 71, 275–286 (1972).

    CAS  Google Scholar 

  • Millbank, J.W., Kershaw, K.A.: Nitrogen metabolism in lichens. I. Nitrogen fixation in the cephalodia of Peltigera aphthosa. New Phytologist 68, 721–729 (1969).

    CAS  Google Scholar 

  • Millbank, J.W., Kershaw, K.A.: Nitrogen metabolism in lichens. III. Nitrogen fixation by internal cephalodia in Lobaria pulmonaria. New Phytologist 69, 595–597 (1970).

    CAS  Google Scholar 

  • Minchin, F.R.: Physiological functioning of the plant: nodule symbiotic system of garden pea (Pisum sativum L. cv. Meteor). Ph. D. Thesis. University of Belfast (1973).

    Google Scholar 

  • Minchin, F.R., Pate, J.S.: The carbon balance of a legume and the functional economy of its root nodules. J. Exptl. Bot. 24, 259–271 (1973).

    CAS  Google Scholar 

  • Minchin, F.R., Pate, J.S.: Diurnal functioning of the legume root nodule. J. Exptl. Bot. 25, 295–308 (1974).

    CAS  Google Scholar 

  • Mishustin, E.N., Shil’nikova, V.K.: Biological fixation of atmospheric nitrogen. London: Macmillan 1971.

    Google Scholar 

  • Molisch, H.: Botanische Beobachtungen in Japan. IX. Über die Symbiose der beiden Lebermoose Plasia pusilla und Cavicularia densa mit Nostoc. Sci. Rep. Tôhoku Univ. (1925).

    Google Scholar 

  • Morrison, T.M.: Fixation of nitrogen-15 by excised nodules of Discaria toumatou Raoul Choix. Nature 189, 945 (1961).

    CAS  Google Scholar 

  • Morrison, T.M., Harris, G.P.: Root nodules in Discaria toumatou Raoul Choix. Nature 182, 1746–1747(1958).

    Google Scholar 

  • Neumann, D. von, Ackermann, M., Jacob, F.: Zur Feinstruktur der endophytischen Cyanophyceen von Gunner a chilensis Lam. Biochemie und Physiologie der Pflanzen 161, 483–498 (1970).

    Google Scholar 

  • Oes, A.: Über die Assimilation des freien Stickstoffs durch Azolla. Z. Botan. 5, 145–163 (1913).

    CAS  Google Scholar 

  • Oghoghorie, C.G.O., Pate, J.S.: Exploration of the nitrogen transport system of a legume using 15N. Planta 104, 35–49 (1972).

    CAS  Google Scholar 

  • Pankow, H., Martens, B.: Über Nostoc sphaericum Vauch. Arch. Mikrobiol. 48, 203–212 (1964).

    Google Scholar 

  • Pate, J.S.: Nodulation studies in legumes. I. The synchronization of host and symbiotic development in the field pea, Pisum arvense L. Australian J. Biol. Sci. 11, 366–381 (1958).

    CAS  Google Scholar 

  • Pate, J.S.: Root exudation studies on the exchange of 14C-labelled organic substances between the roots and shoot of the nodulated legume. Plant Soil. 17, 333–356 (1962).

    CAS  Google Scholar 

  • Pate, J.S.: Movement of nitrogenous solutes in plants. Nitrogen-15 in soil plant studies. Intern. Atomic Energy Agency, Vienna. IAEA-P1–341/13, 165–187 (1971).

    Google Scholar 

  • Pate, J.S.: Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biol. Biochem. 5, 109–119(1973).

    CAS  Google Scholar 

  • Pate, J.S.: Physiology of the reaction of nodulated legumes to environment. In: Nitrogen fixation and the biosphere. Intern. Synthesis Meeting, Intern. Biological Programme. Cambridge: Cambridge University Press (in press).

    Google Scholar 

  • Pate, J.S.: Exchange of solutes between phloem and xylem and circulation in the whole plant. Encyclopedia of plant physiology. New Series. Vol. I Phloem transport, p. 451–473. Berlin-Heidelberg-New York: Springer 1975.

    Google Scholar 

  • Pate, J.S., Gunning, B.E.S.: Transfer cells. Ann. Rev. Plant Physiol. 23, 173–196 (1972).

    Google Scholar 

  • Pate, J.S., Gunning, B.E.S., Briarty, L.G.: Ultrastructure and functioning of the transport system of the leguminous root nodule. Planta 85, 11–34 (1969).

    Google Scholar 

  • Peat, A.: Fine structure of the vegetative thallus of the lichen, Peltigera polydactyla. Arch. Mikrobiol. 61, 212–222 (1968).

    Google Scholar 

  • Peveling, E.: Elektronenoptische Untersuchungen an Flechten. IV. Die Feinstruktur einiger Flechten mit Cyanophyceen-Phycobionten. Protoplasma 68, 209–222 (1969).

    Google Scholar 

  • Peveling, E.: Vesicles in the phycobiont sheath as possible transfer structures between the symbionts in the lichen Lichinia pygmaea. New Phytologist 72, 343–345 (1973).

    Google Scholar 

  • Richardson, D.H.S., Smith, D.C., Lewis, D.H.: Carbohydrate movement between the symbionts of lichens. Nature 214, 879–882 (1967).

    PubMed  CAS  Google Scholar 

  • Robertson, J.G., Taylor, M.P.: Acid and alkaline invertases in roots and nodules of Lupinus angustifolius infected with Rhizobium lupini. Planta 112, 1–6 (1973).

    CAS  Google Scholar 

  • Rogers, R.W., Lange, R.T., Nicholas, D.J.D.: Nitrogen fixation by lichens of arid soil crusts. Nature 209, 96–97 (1966).

    Google Scholar 

  • Roskin, P.A.: Ultrastructure of the host-parasite interaction in the basidiolichen Cora pavonia (Web.) E. Fries. Arch. Mikrobiol. 70, 176–182 (1970).

    Google Scholar 

  • Russell, S.A., Evans, H.J.: The nitrogen-fixing capacity of Ceanothus velutinus. Forest Sci. 12, 164–169 (1966).

    CAS  Google Scholar 

  • Schaede, R.: Über die Blaualgensymbiose von Gunnera. Planta 39, 154–170 (1951).

    Google Scholar 

  • Schaede, R.: Die pflanzlichen Symbiosen. Stuttgart: Gustav Fischer 1962.

    Google Scholar 

  • Scott, G.D.: Further investigations of some lichens for fixation of nitrogen. New Phytologist 55, 111–116(1956).

    CAS  Google Scholar 

  • Scott, G.D.: Studies in lichen symbiosis. I. The relationship between nutrition and moisture in the maintenance of the symbiotic state. New Phytologist 59, 376–391 (1960).

    Google Scholar 

  • Scott, G.D.: Plant symbiosis. London: Edward Arnold 1969.

    Google Scholar 

  • Silver, W.S.: Root nodules symbiosis. I. Endophyte of Myrica cerifera L. J. Bacteriol. 87, 416–421 (1964).

    PubMed  CAS  Google Scholar 

  • Silvester, W.: Nitrogen fixation by Coriaria. Ph. D. Thesis, University of Canterbury, New Zealand (1968).

    Google Scholar 

  • Silvester, W.B.: Endophyte adaptation in Gunnera-Nostoc symbiosis. In: Nitrogen fixation and the biosphere. Intern. Synthesis Meeting, Intern. Biological Programme. Cambridge: Cambridge University Press (in press).

    Google Scholar 

  • Silvester, W.B., Smith, D.R.: Nitrogen fixation by Gunnera-Nostoc symbiosis. Nature 224, 1231 (1969).

    CAS  Google Scholar 

  • Sloger, C., Silver, W.S.: Note on nitrogen fixation by excised root nodules and nodular homogenates of Myrica cerifera L. In: Non-heme iron proteins. Role in energy conservation. (San Pietro ed.). Symposium sponsored by the Charles F. Kettering Res. Lab. Yellow Springs, Ohio, p. 299–302. Yellow Springs, Ohio: Antioch Press 1965.

    Google Scholar 

  • Small, J.G.C., Leonard, D.A.: Translocation of 14C-labelled photosynthate in nodulated legumes as influenced by nitrate nitrogen. Amer. J. Bot. 56, 187–194 (1969).

    CAS  Google Scholar 

  • Smith, D.C.: Transport from symbiotic algae and symbiotic chloroplasts to host cells. Symp. Soc. Exptl. Biol. (1974).

    Google Scholar 

  • Smith, D., Muscatine, L., Lewis, D.: Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis. Biol. Rev. 44, 17–90 (1969).

    PubMed  CAS  Google Scholar 

  • Spratt, E.R.: A comparative account of the root nodules of the Leguminosae. Ann. Bot. (London) 33, 189–199(1919).

    Google Scholar 

  • Stewart, W.D.P.: A quantitative study of fixation and transfer of nitrogen in Alnus. J. Exptl. Bot. 13, 250–256 (1962).

    CAS  Google Scholar 

  • Stewart, W.D.P.: Nitrogen fixation in plants. London: Athlone Press 1968.

    Google Scholar 

  • Stewart, W.D.P., Haystead, A., Pearson, H.W.: Nitrogenase activity in heterocysts of blue-green algae. Nature 224, 226 (1969).

    PubMed  CAS  Google Scholar 

  • Tjepkema, J.D.: Oxygen transport in the soybean nodules and the function of haemoglobin. Ph. D. Thesis. University of Michigan (1971).

    Google Scholar 

  • Tjepkema, J.D., Yocum, C.S.: Respiration and oxygen transport in soybean nodules. Planta 115, 59–72 (1973).

    CAS  Google Scholar 

  • Trinick, M.J.: Symbiosis between Rhizobium and the non-legume, Trema aspera. Nature 244, 459–460 (1973).

    Google Scholar 

  • Van Schreven, D.A.: Some factors affecting the uptake of nitrogen by legumes. In: Nutrition of the legumes, p. 137–163. London: Butterworths 1958.

    Google Scholar 

  • Venkataraman, G.S., Saxena, H.K.: Studies on nitrogen fixation by blue-green algae. IV. Liberation of free amino acids in the medium. Indian J. Agr. Sci. 33, 21–24 (1963).

    CAS  Google Scholar 

  • Virtanen, A.I., Moisio, T., Burris, R.H.: Fixation of nitrogen by nodules excised from illuminated and darkened pea plants. Acta Chem. Scand. 9, 184–186 (1955).

    CAS  Google Scholar 

  • Watanabe, K.: Studien über die Koralloide von Cycas revoluta. Bot. Mag. (Tokyo) 38, 165–187 (1924).

    Google Scholar 

  • Watanabe, A., Kiyohara, T.: Symbiotic blue-green algae of lichens, liverworts and cycads. In: Studies on microalgae and photosynthetic bacteria, p. 189–196. Tokyo: Univ. Tokyo Press 1963.

    Google Scholar 

  • Weare, N.M., Benemann, J.R.: Nitrogen fixation by Anabaena cylindrica. Arch. Mikrobiol. 90, 323–332 (1973).

    CAS  Google Scholar 

  • Webster, S.R., Youngberg, C.T., Wollum, A.G.: Fixation of nitrogen by bitterbrush (Purshia tridentata (Pursh.) D.C.). Nature 216, 392–393 (1967).

    Google Scholar 

  • Wheeler, C.T.: The diurnal fluctuation in nitrogen fixation in the nodules of Alnus glutinosa and Myrica gale. New Phytologist 68, 675–682 (1969).

    Google Scholar 

  • Wheeler, C.T.: The causation of the diurnal changes in nitrogen fixation in the nodules of Alnus glutinosa. New Phytologist 70, 487–495 (1971).

    Google Scholar 

  • Winter, G.: Über die Assimilation des Luftstickstoffs durch endophytische Blaualgen. Beitr. Biol. Pflanz. 23, 295–335 (1935).

    CAS  Google Scholar 

  • Wittmann, W., Bergersen, F.J., Kennedy, G.S.: The coralloid roots of Macrozamia communis L. Johnson. Australian J. Biol. Sci. 18, 1129–1134 (1965).

    Google Scholar 

  • Wolk, C.P.: Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J. Bacteriol. 96, 2138–2143 (1968).

    PubMed  CAS  Google Scholar 

  • Wolk, C.P., Wojciuch, E.: Photoreduction of acetylene by heterocysts. Planta 97, 126–134 (1971).

    CAS  Google Scholar 

  • Wong, P.P., Evans, H.J.: Poly-ß-hydroxybutyrate utilization by soybean (Glycine max Merr.) nodules and assessment of its role in maintenance of nitrogenase activity. Plant Physiol. 47, 750–756 (1971).

    PubMed  CAS  Google Scholar 

  • Yu-Feng Shen, E.: Anabaena azollae and its host Azolla pinnata. Taiwania 7, 1–8 (1960).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Pate, J.S. (1976). Transport in Symbiotic Systems Fixing Nitrogen. In: Lüttge, U., Pitman, M.G. (eds) Transport in Plants II. Encyclopedia of Plant Physiology, vol 2 / B. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66230-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66230-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66232-4

  • Online ISBN: 978-3-642-66230-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics