Advertisement

Transport Processes in Leaves

  • U. Lüttge
  • M. G. Pitman
  • W. D. Jeschke
  • T. C. Hsiao
Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 2 / B)

Abstract

Transport is an important feature of the contact between plants and their environment. In many lower plants, the plant body, or the population of cells is predominantly of a single type and this cell type mediates all the exchanges between the plant and its environment. This is partly the reason why certain algal cells (Part A, Chap. 6) and fungal hyphae (Part A, Chap. 7) have become standard systems for study of transport processes (e.g. Chara, Chlorella, Neurospora).

Keywords

Guard Cell Leaf Cell Stomatal Opening Stomatal Aperture Ionic Relation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gale, J., Poljakoff-Mayber, A.: Interrelations between growth and photosynthesis of salt bush (Atriplex halimus L.) grown in saline media. Australian J. Biol. Sei. 23, 937–945 (1970).Google Scholar
  2. Hatrick, A.A., Bowling, D.J.F.: A study of the relationship between root and shoot metabolism. J. Exptl. Bot. 24, 607–613 (1973).Google Scholar
  3. Lüttge, U.: Co-operation of organs in intact higher plants: A review. In: Membrane transport in plants (U. Zimmermann, J. Dainty, eds.). Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  4. Pitman, M.G.: Uptake and transport of ions in barley seedlings. III. Correlation between transport to the shoot and relative growth rate. Australian J. Biol. Sci. 25, 905–919 (1972).Google Scholar
  5. Pitman, M.G., Lüttge, U., Läuchli, A., Ball, E.: Ion uptake to slices of barley leaves, and regulation of K content in cells of the leaves. Z. Pflanzenphysiol. 72, 75–88 (1974a).Google Scholar
  6. Pitman, M.G., Lüttge, U., Läuchli, A., Ball, E.: Action of abscisic acid on ion transport as affected by root temperature and nutrient status. J. Exptl. Bot. 25, 147–155 (1974b).Google Scholar
  7. Smith, R.C., Epstein, E.: Ion absorption by shoot tissue: technique and first findings with excised leaf tissue of corn. Plant Physiol. 39, 338–341 (1964).PubMedGoogle Scholar
  8. Arens, K.: Zur Kenntnis der Karbonatassimilation der Wasserpflanzen. Planta 10, 814–816 (1930).Google Scholar
  9. Arens, K.: Physiologisch polarisierter Massenaustausch und Photosynthese bei submersen Wasserpflanzen I. Planta 20, 621–658 (1933).Google Scholar
  10. Arens, K.: Physiologisch polarisierter Massenaustausch und Photosynthese bei submersen Wasserpflanzen II. Die Ca(HCO3)2 Assimilation. Jahrb. Wiss. Bot. 83, 513–560 (1936).Google Scholar
  11. Arisz, W.H.: Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis I. The active uptake of chlorine; II. Analysis of the transport of chlorine; III. Discussion of the transport and uptake. Vacuole secretion theory. Proc. Koninkl. Ned. Akad. Wetenschap. 50, 1019–1032, 1235–1245 (1947a, b);Google Scholar
  12. Arisz, W.H.: Uptake and transport of chlorine by parenchymatic tissue of leaves of Vallisneria spiralis I. The active uptake of chlorine; II. Analysis of the transport of chlorine; III. Discussion of the transport and uptake. Vacuole secretion theory. Proc. Koninkl. Ned. Akad. Wetenschap. 51, 25–32 (1948).Google Scholar
  13. Arisz, W.H.: Active uptake, vacuole secretion and plasmatic transport of chloride ions in leaves of Vallisneria spiralis. Acta Botan. Neerl. 1, 506–516 (1953).Google Scholar
  14. Arisz, W.H.: Influence of inhibitors on the uptake and the transport of chloride ions in leaves of Vallisneria spiralis. Acta Botan. Neerl. 7, 1–32 (1958).Google Scholar
  15. Arisz, W.H.: Influx and efflux by leaves of Vallisneria I. Active uptake and permeability. Protoplasma 57, 5–26 (1963).Google Scholar
  16. Arisz, W.H., Sol, H.H.: Influence of light and sucrose on the uptake and transport of chloride in Vallisneria leaves. Acta Botan. Neerl. 5, 218–247 (1956).Google Scholar
  17. Atkinson, M.R., Findlay, G.P., Hope, A.B., Pitman, M.G., Saddler, H.D.W., West, K.R.: Salt regulation in the mangroves Rhizophora mucronata Lam. and Aegialitis annulata R. Br. Australian J. Biol. Sci. 20, 589–599 (1967).Google Scholar
  18. Bentrup, F.W.: Zellphysiologie, Elektrophysiologie der Zelle. Fortschr. Botan. 33, 51–61 (1971).Google Scholar
  19. Bentrup, F.W., Gratz, H.J., Unbehaun, H.: The membrane potential of Vallisneria leaf cells: Evidence for light-dependent proton permeability changes. In: Ion transport in plants (W.P. Anderson, ed.), p. 171–182. London-New York: Academic Press 1973.Google Scholar
  20. Bernstein, L.: Method for determining solutes in the cell wall of leaves. Plant Physiol. 47, 361–365 (1971).PubMedGoogle Scholar
  21. Bianchetti, R.: Azione della luce sull’assorbimento salino da parte di tessuti clorofilliani in ambiente privo di CO2. Giorn. Botan. Ital. 70, 321–328 (1963).Google Scholar
  22. Bieleski, R.L.: Phosphate pools, phosphate transport and phosphate availability. Ann. Rev. Plant Physiol. 24, 225–252 (1973).Google Scholar
  23. Bollard, E.G.: The use of tracheal sap in the study of apple tree nutrition. J. Exptl. Bot. 4, 363–368 (1953).Google Scholar
  24. Bowen, J.E.: Borate absorption in excised sugarcane leaves. Plant Cell Physiol. 9, 467–478 (1968).Google Scholar
  25. Bowen, J.E.: Absorption of copper, zinc and manganese by sugarcane leaf tissue. Plant Physiol. 44, 255–261 (1969).PubMedGoogle Scholar
  26. Brauner, L.: Die Beeinflussung des Stoffaustausches durch Licht. In: Encyclopedia of plant physiology (W. Ruhland, ed.) vol. II, p. 381–397. Berlin-Heidelberg-New York: Springer 1956.Google Scholar
  27. Brinckmann, E.: Zur Messung des Membranpotentials und dessen lichtabhängigen Änderungen an Blattzellen höherer Landpflanzen. Diss. Darmstadt (1973).Google Scholar
  28. Brinckmann, E., Lüttge, U: Vorübergehende pH-Änderungen im umgebenden Medium intakter grüner Zellen bei Beleuchtungswechsel. Z. Naturforsch. 27b, 277–284 (1972).Google Scholar
  29. Brinckmann, E., Lüttge, U.: Lichtabhängige Membranpotentialschwankungen und deren interzelluläre Weiterleitung bei panaschierten Photosynthese-Mutanten von Oenothera. Planta 119, 47–57 (1974).Google Scholar
  30. Bristow, I.M., Whitcombe, M.: The role of roots in the nutrition of aquatic vascular plants. Amer. J. Bot. 58, 8–13 (1971).Google Scholar
  31. Collander, R.: Die Electrolyt-Permeabilität und Salzakkumulation pflanzlicher Zellen. In: Tabulae biologicae (H. Denzer, V.J. Koningsberger, H.J. Vonk, eds.), vol. 19/2, p. 313–333. Den Haag: Junk 1941.Google Scholar
  32. Crowdy, S.H., Tanton, T.W.: Water pathways in higher plants I. Free space in wheat leaves. J. Exptl. bot. 21, 102–111 (1970).Google Scholar
  33. Denny, P., Weeks, D.C.: Effects of light and bicarbonate on membrane potential in Potamogeton schweinfurthii (Benn.). Ann. Bot. (London), N.S. 34, 483–496 (1970).Google Scholar
  34. Epstein, E.: The essential role of calcium in selective cation transport by plant cells. Plant Physiol. 36, 437–444 (1961).PubMedGoogle Scholar
  35. Epstein, E.: Dual pattern of ion absorption by plant cells and by plants. Nature 212, 1324–1327 (1966).Google Scholar
  36. Felle, H., Bentrup, F. W.: Light-dependent changes of the membrane potential and conductance in Riccia fluitans. In: Membrane transport in plants (J. Dainty, U. Zimmermann, eds.). Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  37. Foote, B.D., Hanson, J.B.: Ion uptake by soybean root tissue depleted of calcium by ethylenedia-minetetraacetic acid. Plant Physiol. 39, 450–460 (1964).PubMedGoogle Scholar
  38. Franke, W.: Mechanisms of foliar penetration of solutes. Ann. Rev. Plant Physiol. 18, 281–300 (1967).Google Scholar
  39. Gessner, F.: Untersuchungen über die Nitrataufnahme der Wasserpflanzen. Intern. Rev. Ges. Hydrobiol. Hydrogr. 43, 211–224 (1943).Google Scholar
  40. Gimmler, H., Urbach, W., Jeschke, W.D., Simonis, W.: Die unterschiedliche Wirkung von Disalicylidenpropandiamin auf die cyclische und nichtcyclische Photophosphorylierung in vivo sowie auf die 14C-Markierung einzelner Photosyntheseprodukte. Z. Pflanzenphysiol. 58, 353–364 (1968).Google Scholar
  41. Good, N.E., Izawa, S.: Inhibition of photosynthesis. In: Metabolic inhibitors (R.M. Höchster, J.H. Quastel, eds.), vol. IV, p. 179–214. New York: Academic Press 1973.Google Scholar
  42. Greenway, H.: Plant responses to saline substrates IV. Chloride uptake by Hordeum vulgare as affected by inhibitors, transpiration and nutrients in the medium. Australian J. Biol. Sci. 18, 249–268 (1965).Google Scholar
  43. Greenway, H., Pitman, M.G.: Potassium retranslocation in seedlings of Hordeum vulgare. Australian J. Biol. Sci. 18, 235–247 (1965).Google Scholar
  44. Grube, K.H.: Über den Zusammenhang von Phosphathaushalt und Photosynthese bei Elodea densa. Planta 42, 279–303 (1953).Google Scholar
  45. Grünsfelder, M.: Die Kinetik der Phosphataufnahme bei Elodea densa. Diss. Würzburg (1971).Google Scholar
  46. Grünsfelder, M., Simonis, W.: Aktive und inaktive Phosphataufnahme in Blattzellen von Elodea densa bei hohen Phosphat-Außenkonzentrationen. Planta 115, 173–186 (1973).Google Scholar
  47. Gutknecht, J.: Salt transport in Valonia: Inhibition of potassium uptake by small hydrostatic pressures. Science 160, 68–70 (1968).PubMedGoogle Scholar
  48. Healey, F.P., Myers, J.: The Kok effect in Chlamydomonas reinhardi. Plant Physiol. 47, 373–379 (1971).PubMedGoogle Scholar
  49. Heber, U.: Conformational changes of chloroplasts induced by illumination of leaves in vivo. Biochim. Biophys. Acta 180, 302–319 (1969).PubMedGoogle Scholar
  50. Heber, U.: Flow of metabolites and compartmentation phenomena in chloroplasts. In: Transport and distribution of matter in cells of higher plants (K. Mothes, E. Müller, A. Nelles, D. Neumann, eds.), vol. b, p. 151–184. Berlin: Akademieverlag 1970.Google Scholar
  51. Heber, U.: Stoichiometry of reduction and phosphorylation during illumination of intact chloroplasts. Biochim. Biophys. Acta 305, 140–152 (1973a).PubMedGoogle Scholar
  52. Heber, U.: Elektronentransport zum Sauerstoff und ATP-Verbrauch in der Photosynthese. Ber. Deut. Botan. Ges. 86, 187–196 (1973b).Google Scholar
  53. Heber, U., Krause, G.: Transfer of carbon, phosphate energy, and reducing equivalents across the chloroplast envelope. In: Photosynthesis and photorespiration (M.D. Hatch, C.B. Osmond, R.O. Slatyer, eds.). New York-London-Sydney-Toronto: Wiley and Sons 1971.Google Scholar
  54. Heber, U., Santarius, K.A.: Compartmentation and reduction of pyridine nucleotides in relation to photosynthesis. Biochim. Biophys. Acta 109, 390–408 (1965).PubMedGoogle Scholar
  55. Heber, U., Santarius, K.A.: Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z. Naturforsch. 25b, 718–728 (1970).Google Scholar
  56. Helder, R.J.: Translocation in Vallisneria spiralis. In: Encyclopedia of plant physiology (W. Ruhland, ed.), vol. XIII, p. 20–43. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  57. Helder, R.J., Boerma, J.: Polar transport of labelled rubidium ions across the leaf of Potamogeton lucens. Acta Botan. Neerl. 21, 211–218 (1972).Google Scholar
  58. Helder, R.J., Boerma, J.: Exchange and polar transport of rubidium ions across the leaves of Potamogeton. Acta Botan. Neerl. 22, 686–693 (1973).Google Scholar
  59. Heldt, H.W.: Adenine nucleotide translocation in spinach chloroplasts. F.E.B.S. Letters 5, 11–17(1969).Google Scholar
  60. Heldt, H.W., Rapley, L.: Specific transport of inorganic phosphate, 3-phosphoglycerate and dihydroxyacetonephosphate, and of dicarboxylates across the inner membrane of spinach chloroplasts. F.E.B.S. Letters 10, 143–148 (1970).Google Scholar
  61. Heller, R., Crignon, C., Scheidecker, D.: Study of the efflux and influx of potassium in cell suspensions of Acerpseudoplatanus and leaf fragments of Hedera helix. In: Ion transport in plants (W.P. Anderson, ed.). London-New York: Academic Press 1973.Google Scholar
  62. Heytler, P.G., Prichard, W.W.: A new class of uncoupling agents—carbonyl cyanide phenyl-hydrazones. Biochem. Biophys. Res. Commun. 7, 272–275 (1962).PubMedGoogle Scholar
  63. Higinbotham, N.: The mineral absorption process in plants. Botan. Rev. 39, 15–69 (1973 a).Google Scholar
  64. Higinbotham, N.: Electropotentials of plant cells. Ann. Rev. Plant Physiol. 24, 25–46 (1973 b).Google Scholar
  65. Higinbotham, N., Etherton, B., Foster, R.J.: Mineral ion contents and cell transmembrane electropotentials of pea and oat seedling tissue. Plant Physiol. 42, 37–46 (1967).PubMedGoogle Scholar
  66. Hill, B.S., Hill, A.E.: ATP-driven chloride pumping and ATPase activity in the Limonium salt gland. J. Membrane Biol. 12, 145–158 (1973a).Google Scholar
  67. Hill, B.S., Hill, A.E.: Enzymatic approaches to the chloride transport in the Limonium salt gland. In: Ion transport in plants (W.P. Anderson, ed.), p. 379–384. London-New York: Academic Press 1973 b.Google Scholar
  68. Hoch, G.E., Owens, O.V.H., Kok, B.: Photosynthesis and respiration. Arch. Biochem. Biophys. 101, 171–180(1963).PubMedGoogle Scholar
  69. Hodges, T.K.: Oligomycin inhibition of ion transport in plant roots. Nature 209, 425–426 (1966).Google Scholar
  70. Hope, A.B., Lüttge, U., Ball, E.: Photosynthesis and apparent proton fluxes in Elodea canadensis. Z. Pflanzenphysiol. 68, 73–81 (1972).Google Scholar
  71. Horton, R.F., Bruce, K.R.: Inhibition by abscisic acid of the light and dark uptake of potassium by slices of Vicia faba leaves. Canad. J. Bot. 50, 1915–1917 (1972).Google Scholar
  72. Ilan, I., Gilad, T., Reinhold, L.: Specific effects of kinetin on the uptake of monovalent cations by sunflower cotyledons. Physiol. Plantarum 24, 337–341 (1971).Google Scholar
  73. Ingold, C.T.: The effect of light on the absorption of salts by Elodea canadensis. New Phytologist 35, 132–141 (1936).Google Scholar
  74. Izawa, S., Winget, G.D., Good, N.E.: Phlorizin, a specific inhibitor of photophosphorylation and phosphorylation-coupled electron transport in chloroplasts. Biochem. Biophys. Res. Commun. 22, 223–226 (1966).PubMedGoogle Scholar
  75. Jacoby, B., Abas, S., Steinitz, B.: Rubidium and potassium absorption by bean-leaf slices compared to sodium absorption. Physiol. Plantarum 28, 209–214 (1973).Google Scholar
  76. Jacoby, B., Dagan, J.: A comparison of two methods of investigating sodium uptake by bean-leaf cells and the vitality of isolated leaf cells. Protoplasma 64, 325–329 (1967).Google Scholar
  77. Jacoby, B., Dagan, J.: Effects of age on sodium fluxes in primary bean leaves. Physiol. Plantarum 22, 29–36 (1969).Google Scholar
  78. Jacoby, B., Plessner, Ora, E.: Some aspects of chloride absorption by bean leaf tissue. Ann. Bot. (London), N.S. 34, 177–182 (1970).Google Scholar
  79. Jeschke, W.D.: Die cyclische und die nichtcyclische Photophosphorylierung als Energiequellen der lichtabhängigen Chloridionenaufnahme bei Elodea. Planta 73, 161–174 (1967).Google Scholar
  80. Jeschke, W.D.: Der Influx von Kaliumionen bei Blättern von Elodea densa, Abhängigkeit vom Licht, von der Kaliumkonzentration und von der Temperatur. Planta 91, 111–128 (1970a).Google Scholar
  81. Jeschke, W.D.: Lichtabhängige Veränderungen des Membranpotentials bei Blattzellen von Elodea densa. Z. Pflanzenphysiol. 62, 158–172 (1970b).Google Scholar
  82. Jeschke, W.D.: Über die Verwendung von 86Rb als Indikator für Kalium, Untersuchungen am lichtgeförderten 42K/K und 86Rb/Rb-Influx bei Elodea densa. Z. Naturforsch. 25b, 624–630 (1970c).Google Scholar
  83. Jeschke, W.D.: Energetic linkages of individual ion fluxes in leaf cells of Elodea densa. In: First European Biophysics Congress (E. Broda, A. Locker, H. Springer-Lederer, eds.). Wien: Verlag Wiener Med. Akad. 1971.Google Scholar
  84. Jeschke, W.D.: The effect of the inhibitor of photophosphorylation Dio-9 and the uncoupler atebrin on the light-dependent Cl- influx of Elodea densa: direct inhibition of membrane transport? Z. Pflanzenphysiol. 66, 379–408 (1972a).Google Scholar
  85. Jeschke, W.D.: The effect of DNP and CCCP on photosynthesis and light-dependent Cl-influx in Elodea densa. Z. Pflanzenphysiol. 66, 409–419 (1972 b).Google Scholar
  86. Jeschke, W.D.: Über den licht-geförderten Influx von Ionen in Blättern von Elodea densa. Vergleich der Influxe von K+- und Cl--Ionen. Planta 103, 164–180 (1972c).Google Scholar
  87. Jeschke, W.D., Simonis, W.: Über die Aufnahme von Phosphat- und Sulfationen durch Blätter von Elodea densa und ihre Beeinflussung durch Licht, Temperatur und Außenkonzentration. Planta 67, 6–32 (1965).Google Scholar
  88. Jeschke, W.D., Simonis, W.: Effect of CO2 on photophosphorylation in vivo as revealed by the light-dependent Cl- uptake in Elodea densa. Z. Naturforsch. 22b, 873–876 (1967).Google Scholar
  89. Jeschke, W.D., Simonis, W.: Über die Wirkung von CO2 auf die lichtabhängige Cl- -Aufnahme bei Elodea densa: Regulation zwischen nichtcyclischer und cyclischer Photophosphorylierung. Planta 88, 157–171(1969).Google Scholar
  90. Johansen, C., Lüttge, U.: Respiration and photosynthesis as alternative energy sources for chloride uptake by Tradescantia albiflora leaf cells. Z. Pflanzenphysiol. 71, 189–199 (1974).Google Scholar
  91. Jones, H.G., Osmond, C.B.: Photosynthesis by thin leaf slices in solution. Australian J. Biol. Sci. 26, 15–24 (1973).Google Scholar
  92. Jyung, W.H., Wittwer, S.H., Bukovac, M.J.: Ion uptake by cells enzymatically isolated from green tobacco leaves. Plant Physiol. 40, 410–414 (1965).PubMedGoogle Scholar
  93. Kaiser, W.: Endogene Photophosphorylierung in isolierten Chloroplasten. Diss. Würzburg (1973).Google Scholar
  94. Kaiser, W., Urbach, W.: Endogene cyclische Photophosphorylierung in isolierten Chloroplasten. Ber. Deut. Botan. Ges. 86, 213–226 (1973).Google Scholar
  95. Kannan, S.: Course of cation accumulation by leaf tissue in Phaseolus vulgaris L. Experientia 26, 552 (1970).PubMedGoogle Scholar
  96. Kannan, S., Wittwer, S.H.: Absorption of iron by enzymatically isolated leaf cells. Physiol. Plantarum 20, 911–919 (1967).Google Scholar
  97. Kappen, L., Ullrich, W.: Verteilung von Chlorid und Zuckern in Blattzellen halophiler Pflanzen bei verschieden hoher Frostresistenz. Ber. Deut. Botan. Ges. 83, 265–275 (1970).Google Scholar
  98. Kholdebarin, B., Oertli, J.J.: Changes of organic acids during salt uptake by barley leaf tissues under light and dark conditions. Z. Pflanzenphysiol. 62, 237–242 (1970).Google Scholar
  99. Kholdebarin, B., Oertli, J.J.: Effects of metabolic inhibitors on salt uptake and organic acid synthesis by leaf tissues in the light and in the dark. Z. Pflanzenphysiol. 66, 352–358 (1972).Google Scholar
  100. Kitasato, H.: The influence of H+ on the membrane potential and ion fluxes in Nitella. J. Gen. Physiol. 52, 60–87 (1968).PubMedGoogle Scholar
  101. Klepper, B., Kaufmann, M.R.: Removal of salt from the xylem sap by leaves and stems of guttating plants. Plant Physiol. 41, 1743–1747 (1966).PubMedGoogle Scholar
  102. Kok, B.: The interrelation of respiration and photosynthesis in green plants. Biochim. Biophys. Acta 3, 625–631 (1949).Google Scholar
  103. Kramer, P.J.: Plant and soil water relationships—a modern synthesis. New York: McGraw-Hill 1969.Google Scholar
  104. Kylin, A.: The apparent free space of Vallisneria leaves. Physiol. Plantarum 10, 732–740 (1957).Google Scholar
  105. Kylin, A.: The accumulation of sulphate in isolated leaves as affected by light and darkness. Botan. Notiser 113, 49–81 (1960a).Google Scholar
  106. Kylin, A.: The influence of the external osmotic conditions upon the accumulation of sulphate in leaves. Physiol. Plantarum 13, 148–154 (1960b).Google Scholar
  107. Kylin, A.: The incorporation of radio-sulphur from external sulphate into different sulphur fractions of isolated leaves. Physiol. Plantarum 13, 366–379 (1960c).Google Scholar
  108. Kylin, A.: The apparent free space of green tissues. Physiol. Plantarum 13, 385–397 (1960d).Google Scholar
  109. Läuchli, A., Lüttge, U.: Untersuchung zur Kinetik der Ionenaufnahme in das Cytoplasma von Mnium-Blattzellen mit Hilfe der Mikroradioautographie und der Röntgenmikrosonde. Planta 83, 80–98 (1968).Google Scholar
  110. Larkum, A.W.D.: Ionic relations of chloroplasts in vivo. Nature 218, 447–449 (1968).Google Scholar
  111. Larkum, A.W.D., Hill, A.E.: Ion and water transport in Limonium V. The ionic status of chloroplasts in the leaf of Limonium vulgare in relation to the activity of salt glands. Biochim. Biophys. Acta 203, 133–138 (1970).PubMedGoogle Scholar
  112. Lookeren Campagne, R.N. van: The action spectrum of the influence of light on chloride absorption in Vallisneria leaves. Proc. Koninkl. Ned. Akad. Wetenshap. C 60, 70–76 (1957a).Google Scholar
  113. Lookeren Campagne, R.N. van: Light-dependent chloride absorption in Vallisneria leaves. Acta Botan. Neerl. 6, 543–582 (1957 b).Google Scholar
  114. Losada, M., Arnon, D.I.: Selective inhibitors of photosynthesis. In: Metabolic inhibitors (R.M. Höchster, J.H. Quastel, eds.), vol. II, p. 559–593. New York-London: Academic Press 1963.Google Scholar
  115. Lowenhaupt, B.: The transport of calcium and other cations in submerged aquatic plants. Biol. Rev. 31, 371–395 (1956).Google Scholar
  116. Lowenhaupt, B.: Active cation transport in submerged aquatic angiosperms I. The effect of light upon the absorption and excretion of calcium by Potamogeton crispus L. leaves. J. Cell. Comp. Physiol. 51, 199–208 (1958a).Google Scholar
  117. Lowenhaupt, B.: Active cation transport in submerged aquatic angiosperms II. Effect of aeration upon the equilibrium content of calcium in Potamogeton crispus L. leaves. J. Cell. Comp. Physiol. 51, 209–219 (1958 b).Google Scholar
  118. Lundegårdh, H.: Salt and respiration. Nature 185, 70–74 (1960).PubMedGoogle Scholar
  119. Lüttge, U.: Aktiver Transport (Kurzstreckentransport) bei Pflanzen. Protoplasmatologia, vol. VIII, 7b. Wien-New York: Springer 1969.Google Scholar
  120. Lüttge, U.: Die photosynthese-abhängige Ionenaufnahme durch die grünen Zellen von Luft-Blättern höherer Pflanzen. Ber. Deut. Botan. Ges. 83, 473–479 (1970).Google Scholar
  121. Lüttge, U.: Proton and chloride uptake in relation to the development of photosynthetic capacity in greening etiolated barley leaves. In: Ion transport in plants (W.P. Anderson, ed.), p. 205–221. London-New York: Academic Press 1973a.Google Scholar
  122. Lüttge, U.: Stofftransport der Pflanzen. Berlin-Heidelberg-New York: Springer 1973b.Google Scholar
  123. Lüttge, U., Ball, E.: Light-independent uncoupler-sensitive ion uptake by green and by pale cells of variegated leaves of higher plants in relation to protein content and chloroplast integrity. Z. Naturforsch. 26b, 158–161 (1971).Google Scholar
  124. Lüttge, U., Ball, E.: Ion uptake by slices from greening etiolated barley and maize leaves. Plant Science Letters 1, 275–280 (1973).Google Scholar
  125. Lüttge, U., Ball, E., Willert, K. von: Gas exchange and ATP levels of green cells of leaves of higher plants as affected by FCCP and DCMU in in vitro experiments. Z. Pflanzenphysiol. 65, 326–335 (1971a).Google Scholar
  126. Lüttge, U., Ball, E., Willert, K. von: A comparative study of the coupling of ion uptake to light reactions in leaves of higher plant species having the C3- and C4-pathway of photosynthesis. Z. Pflanzenphysiol. 64, 336–350 (1971b).Google Scholar
  127. Lüttge, U., Bauer, K.: Evaluation of ion uptake isotherms and analysis of individual fluxes of ions. Planta 80, 52–64 (1968).Google Scholar
  128. Lüttge, U., Pallaghy, C.K.: Light-triggered transient changes of membrane potentials in green cells in relation to photosynthetic electron transport. Z. Pflanzenphysiol. 61, 58–67 (1969).Google Scholar
  129. Lüttge, U., Pallaghy, C.K., Osmond, C.B.: Coupling of ion transport in green cells of Atriplex spongiosa leaves to energy sources in the light and in the dark. J. Membrane Biol. 2, 17–30 (1970).Google Scholar
  130. Lüttge, U., Schöch, E.V., Ball, E.: Can externally applied ATP supply energy to active ion transport mechanisms of intact plant cells? Australian J. Plant Physiol. 1, 211–220 (1974).Google Scholar
  131. MacDonald, L.R.: Effect of vacuum infiltration on photosynthetic gas exchange in leaf tissue. Plant Physiol. 56, 109–112 (1975).PubMedGoogle Scholar
  132. MacDonald, I.R., Macklon, A.E.S.: Anion absorption by etiolated wheat leaves after vacuum infiltration. Plant Physiol. 49, 303–306 (1972).PubMedGoogle Scholar
  133. MacDonald, I.R., Macklon, A.E.S.: Light-enhanced chloride uptake by wheat laminae. A comparison of chopped and vacuum-infiltrated tissue. Plant Physiol. 56, 105–108 (1975).PubMedGoogle Scholar
  134. MacRobbie, E.A.C.: The nature of the coupling between light energy and active ion transport in Nitella translucens. Biochim. Biophys. Acta 94, 64–73 (1965).PubMedGoogle Scholar
  135. MacRobbie, E.A.C.: The active transport of ions in plant cells. Quart. Rev. Biophys. 3, 251–294 (1970).Google Scholar
  136. Marré, E., Forti, G., Bianchietti, R., Parisi, B.: Utilization of photosynthetic chemical energy for metabolic processes different from CO2 fixation. In: La Photosynthese 119, 557–570 (1963).Google Scholar
  137. McCarthy, R. J., Guillory, R. J., Racker, E.: Dio-9, an inhibitor of coupled electron transport and phosphorylation in chloroplasts. J. Biol. Chem. 240, 4822–4823 (1965).Google Scholar
  138. McFarlane, J.C., Berry, W.L.: Cation penetration through isolated leaf cuticles. Plant Physiol. 53, 723–727 (1974).PubMedGoogle Scholar
  139. Morrod, R.S.: A new method for measuring the permeability of plant cell membranes using epidermis-free leaf discs. J. Exptl. Bot. 25, 521–533 (1974).Google Scholar
  140. Netter, H.: Theoretische Biochemie. Berlin-Göttingen-Heidelberg: Springer 1959.Google Scholar
  141. Neumann, J., Jagendorf, A.T.: Dinitrophenol as an uncoupler of photosynthetic phosphorylation. Biochem. Biophys. Res. Commun. 16, 562–567 (1964).PubMedGoogle Scholar
  142. Nissen, P.: Uptake of sulfate by roots and leaf slices of barley: Mediated by single, multiphasic mechanisms. Physiol. Plantarum 24, 315–324 (1971).Google Scholar
  143. Nobel, P.S.: Light-dependent potassium absorption by Pisum sativum leaf fragments. Plant Cell Physiol. 10, 597–605 (1969a).Google Scholar
  144. Nobel, P.S.: Light-induced changes in the ionic content of chloroplasts in Pisum sativum. Biochim. Biophys. Acta 172, 134–143 (1969b).PubMedGoogle Scholar
  145. Nobel, P.S.: Relation of light-dependent potassium uptake by pea leaf fragments to the pK of the accompanying organic acid. Plant Physiol. 46, 491–493 (1970).PubMedGoogle Scholar
  146. Osmond, C.B.: Ion absorption in Atriplex leaf tissue I. Absorption by mesophyll cells. Australian J. Biol. Sci. 21, 1119–1130(1968).Google Scholar
  147. Osmond, C.B., Lüttge, U., West, K.R., Pallaghy, C.K., Shacher-Hill, B.: Ion absorption in Atriplex leaf tissue II. Secretion of ions to epidermal bladders. Australian J. Biol. Sci. 22, 797–814(1969).Google Scholar
  148. Packer, L., Murakami, S., Mehard, C.W.: Ion transport in chloroplasts and plant mitochondria. Ann. Rev. Plant Physiol. 21, 271–304 (1970).Google Scholar
  149. Pallaghy, C.K.: Electron probe microanalysis of potassium and chloride in freeze-substituted leaf sections of Zea mays. Australian J. Biol. Sci. 26, 1015–1034 (1973).Google Scholar
  150. Pallaghy, C.K., Lüttge, U.: Light-induced H+-ion fluxes and bioelectric phenomena in meso-phyll cells of Atriplex spongiosa. Z. Pflanzenphysiol. 62, 417–425 (1970).Google Scholar
  151. Penth, B., Weigl, J.: Unterschiedliche Wirkung von Licht auf die Aufnahme von Chlorid und Sulfat in Limnophila. Abhängigkeit der Lichtwirkung von der Konzentration der Anionen. Z. Naturforsch. 24b, 342–348 (1969a).Google Scholar
  152. Penth, B., Weigl, J.: Wirkung von CCCP auf Anionenaufnahme und ATP-Spiegel in Limnophila gratioloides und Chara foetida. Z. Naturforsch. 24b, 1668–1669 (1969b).Google Scholar
  153. Penth, B., Weigl, J.: Anionen-Influx, ATP-Spiegel und CO2-Fixierung in Limnophila gratioloides und Chara foetida. Planta 96, 212–223 (1971).Google Scholar
  154. Perrin, A.: Contribution a 1’étude de l’organisation et du fonctionnement des hydathodes: Recherches anatomiques, ultrastructurales et physiologiques. Thesis, Lyon 1972.Google Scholar
  155. Philippis, L.F. de, Pallaghy, C.K.: Effect of light on the volume and ion relations of chloroplasts in detached leaves of Elodea densa. Australian J. Biol. Sci. 26, 1251–1265 (1973).Google Scholar
  156. Pierce, W.S., Higinbotham, N.: Compartments and fluxes of K+, Na+, and Cl- in Avena coleoptile cells. Plant Physiol. 46, 666–673 (1970).PubMedGoogle Scholar
  157. Pitman, M.G.: Sodium and potassium uptake by seedlings of Hordeum vulgare. Australian J. Biol. Sci. 18, 10–24 (1965).Google Scholar
  158. Pitman, M.G., Courtice, A.C., Lee, B.: Comparison of potassium and sodium uptake by barley roots at high and low salt status. Australian J. Biol. Sci. 21, 871–881 (1968).Google Scholar
  159. Pitman, M.G., Lüttge, U., Kramer, D., Ball, E.: Free space characteristics of barley leaf slices. Australian J. Plant Physiol. 1, 65–75 (1974a).Google Scholar
  160. Pitman, M.G., Lüttge, U., Läuchli, A., Ball, E.: Ion uptake to slices of barley leaves, and regulation of K content in cells of the leaves. Z. Pflanzenphysiol. 72, 75–88 (1974 b).Google Scholar
  161. Pratt, M.J., Matthews, R.E.F.: Non-uniformities in the metabolism of excised leaves and leaf discs. Planta 99, 21–36 (1971).Google Scholar
  162. Prins, H.B.A.: The effect of DCMU on ion uptake and photosynthesis in leaves of Vallisneria spiralis L. Acta Botan. Need. 19, 813–820 (1970).Google Scholar
  163. Prins, H.B.A.: The action spectrum of photosynthesis and the rubidiumchloride uptake by leaves of Vallisneria spiralis. Proc. Koninkl. Ned. Akad. Wetenschap. C 76, 495–499 (1973).Google Scholar
  164. Prins, H.B.A.: Photosynthesis and ion uptake in leaves of Vallisneria spiralis L., Thesis Groningen (1974).Google Scholar
  165. Rains, D.W.: Light-enhanced potassium absorption by corn leaf tissue. Science 156, 3780 (1967).Google Scholar
  166. Rains, D.W.: Kinetics and energetics of light-enhanced potassium absorption by corn leaf tissue. Plant Physiol. 43, 394–400 (1968).PubMedGoogle Scholar
  167. Rains, D.W., Epstein, E.: Preferential absorption of potassium by leaf tissue of the mangrove Avicennia marina: an aspect of halophytic competence in coping with salt. Australian J. Biol. Sci. 20, 847–857 (1967).Google Scholar
  168. Ramati, A., Eshel, A., Liphschitz, N., Waisel, Y.: Localization of ions in cells of Potamogeton lucens L. Experientia 29, 497–501 (1973).Google Scholar
  169. Raven, J.A.: Photosynthesis and light-stimulated ion transport in Hydrodictyon africanum. In: Transport and distribution of matter in cells of higher plants (K. Mothes, E. Müller, A. Nelles, D. Neumann, eds.), vol. a, p. 145–152. Berlin: Akademieverlag 1968.Google Scholar
  170. Robertson, R.N.: Ion transport and respiration. Biol. Rev. 35, 231–264 (1960).Google Scholar
  171. Robertson, R.N.: Protons, electrons, phosphorylation and active transport. Cambridge: Cambridge University Press 1968.Google Scholar
  172. Robinson, J.B.: Salinity and the whole plant. In: Salinity and water use (T. Talsma, J.R. Philip, eds.), p. 193–206 (1971).Google Scholar
  173. Robinson, J.B., Smith, F.A.: Chloride influx into Citrus leaf slices. Australian J. Biol. Sci. 23, 953–960 (1970).Google Scholar
  174. Scheidecker, D., Jaques, R., Andreopoulos-Renaud, U., Connan, A.: Effet de la lumière sur l’absorption simultanée du calcium par des fragments des feuilles de lierre panaché. Compt. Rend. D 272, 3142–3145 (1971).Google Scholar
  175. Schilde, C.: Zellphysiologie, Elektrophysiologie der Zelle. Fortschr. Botan. 30, 43–56 (1968).Google Scholar
  176. Schöch, E.V., Lüttge, U.: Zur Entstehung einer lichtabhängigen Komponente der Kationenaufnahme bei Blattgewebestreifen mit zunehmendem Zeitabstand von der Präparation. Biochem. Physiol. Pflanzen 165, 345–350 (1974).Google Scholar
  177. Scholander, P.F., Bradstreet, E.D., Hammel, H.T., Hemmingson, E.A.: Sap concentrations in halophytes and some other plants. Plant Physiol. 41, 529–532 (1966).PubMedGoogle Scholar
  178. Sculthorpe, C.D.: The biology of aquatic vascular plants. London: Arnold 1967.Google Scholar
  179. Shtarkshall, R.A., Reinhold, L., Hassadah, H.: Transport of amino acids in barley leaf tissue I. Evidence for a specific uptake mechanism and the influence of “ageing ”on accumulation capacity. J. Exptl. Bot. 21, 915–925 (1970).Google Scholar
  180. Simonis, W., Grube, K.H.: Untersuchungen über den Zusammenhang von Phosphathaushalt und Photosynthese. Z. Naturforsch. 7b, 194 (1952).Google Scholar
  181. Simonis, W., Urbach, W.: Photophosphorylation in vivo. Ann. Rev. Plant Physiol. 24, 89–114 (1973).Google Scholar
  182. Sinclair, J.: Nernst potential measurements on the leaf cells of the moss, Hookeria lucens. J. Exptl. Bot. 18, 594–599 (1967).Google Scholar
  183. Sinclair, J.: The influence of light on the ion fluxes and electrical potential of the leaf cells of the moss, Hookeria lucens. J. Exptl. Bot. 19, 254–263 (1968).Google Scholar
  184. Smith, C.R., Epstein, E.: Ion absorption by shoot tissue: technique and first findings with excised leaf tissue of corn. Plant Physiol. 39, 338–341 (1964a).PubMedGoogle Scholar
  185. Smith, C.R., Epstein, E.: Ion absorption by shoot tissue: kinetics of potassium and rubidium absorption by corn leaf tissue. Plant Physiol. 39, 992–996 (1964b).PubMedGoogle Scholar
  186. Smith, F.A.: The mechanism of chloride transport in Characean cells. New Phytologist 69, 903–917 (1970).Google Scholar
  187. Smith, F.A., Lucas, W.J.: The role of H+ and OH- fluxes in the ionic relations of Characean cells. In: Ion transport in plants (W.P. Anderson, ed.). London-Heidelberg-New York: Springer 1973.Google Scholar
  188. Smith, F.A., Robinson, J.B.: Sodium and potassium influx into Citrus leaf slices. Australian J. Biol. Sci. 24, 861–871 (1971).Google Scholar
  189. Smith, F.A., West, K.R.: A comparison of the effects of metabolic inhibitors on chloride uptake and photosynthesis in Chara australis. Australian J. Biol. Sci. 22, 351–363 (1969).Google Scholar
  190. Sol, H.H.: Pretreatment and chloride uptake in Vallisneria leaves. Acta Botan. Neerl. 7, 131–173 (1958).Google Scholar
  191. Spanswick, R.M.: Electrogenesis in photosynthetic tissues. In: Ion transport in plants (W.P. Anderson, ed.), p. 113–128. London-New York: Academic Press 1973.Google Scholar
  192. Steemann Nielsen, E.: Passive and active transport during photosynthesis in water plants. Physiol. Plantarum 4, 189–198 (1951).Google Scholar
  193. Steemann Nielsen, E.: Uptake of CO2 by the plant. In: Encyclopedia of plant physiology (W. Ruhland, ed.), vol. V, pt. 1, p. 70–84. Berlin-Heidelberg-New York: Springer 1960.Google Scholar
  194. Steinitz, B., Jacoby, B.: Energetics of 22Na+ absorption by bean-leaf slices. Ann. Bot. (London), N.S. 38, 453–457 (1974).Google Scholar
  195. Stenlid, G.: Salt losses and redistribution of salts in higher plants. In: Encyclopedia of plant physiology, vol. IV, p. 615–637. Berlin-Heidelberg-New York: Springer 1958.Google Scholar
  196. Steveninck, R.F.M. van, Chenoweth, A.R.F.: Ultrastructural localization of ions. I. Effect of high external sodium chloride concentrations on the apparent distribution of chloride in leaf parenchyma cells of barley seedlings. Australian J. Biol. Sci. 25, 499–516 (1972).Google Scholar
  197. Steward, F.C., Mott, R.L.: Cells, solutes, and growth: salt accumulation in plants reexamined. Intern. Rev. Cytol. 28, 275–370 (1970).Google Scholar
  198. Steward, F.C., Sutcliffe, J.F.: Plants in relation to inorganic salts. In: Plant physiology (F.C. Steward, ed.), vol. II, p. 253–478. New York-London: Academic Press 1959.Google Scholar
  199. Stocking, C.R., Larson, S.: A chloroplast cytoplasmic shuttle and the reduction of extraplastic NAD. Biochem. Biophys. Res. Commun. 37, 278–282 (1969).PubMedGoogle Scholar
  200. Stocking, C.R., Ongun, A.: The intracellular distribution of some metallic elements in leaves. Amer. J. Bot. 29, 284–289 (1962).Google Scholar
  201. Stokes, M.D., Walker, D.A.: Relative inpermeability of the intact chloroplast envelope to ATP. In: Photosynthesis and photorespiration (M.D. Hatch, C.B. Osmond, R.O. Slatyer, eds.), New York-London-Sydney-Toronto: Wiley and Sons 1971.Google Scholar
  202. Sutcliffe, J.F.: Mineral absorption in plants. Oxford-London-New York-Paris: Pergamon Press 1962.Google Scholar
  203. Torii, K., Laties, G.G.: Dual mechanisms of ion uptake in relation to the vacuolation in corn roots. Plant Physiol. 41, 863–870 (1966).PubMedGoogle Scholar
  204. Tukey, H.B., Jr.: The leaching of substances from plants. Ann. Rev. Plant Physiol. 21, 305–324 (1970).Google Scholar
  205. Ullrich, W.R.: Nitratabhängige nichtcyclische Photophosphorylierung bei Ankistrodesmus braunii in Abwesenheit von CO2 und O2. Planta 100, 18–30 (1971).Google Scholar
  206. Ullrich, W.R., Urbach, W., Santarius, K.A., Heber, U.: Die Verteilung von Orthophosphat auf Piastiden, Cytoplasma und Vacuole in der Blattzelle und ihre Veränderung im Licht-Dunkel-Wechsel. Z. Naturforsch. 20b, 905–910 (1965).Google Scholar
  207. Waisel, Y., Eshel, A.: Localization of ions in the mesophyll cells of the succulent halophyte Suaeda maritima Forssk. by X-ray microanalysis. Experientia 27, 230–232 (1971).PubMedGoogle Scholar
  208. Waisel, Y., Shapira, Z.: Functions performed by roots of some submerged hydrophytes. Israel J. Botany 20, 69–77 (1971).Google Scholar
  209. Weigl, J.: Beweis für die Beteiligung von beweglichen Transportstrukturen (Trägern) beim Ionentransport durch pflanzliche Membranen und die Kinetik des Anionentransportes bei Elodea im Licht und Dunkeln. Planta 75, 327–342 (1967).Google Scholar
  210. Wittwer, S.H., Bukovac, M.J.: The uptake of nutrients through leaf surfaces. In: Handbuch der Pflanzenernährung und Düngung (H. Linser, ed.), vol. I, p. 235–261. Wien-New York: Springer 1969.Google Scholar
  211. Young, M., Sims, A.P.: The potassium relation of Lemna minor L. I. Potassium uptake and plant growth. J. Exptl. Bot. 77, 958–969 (1972).Google Scholar
  212. Young, M., Sims, A.P.: II. The mechanism of potassium uptake. J. Exptl. Bot. 79, 317–327 (1973).Google Scholar
  213. Allaway, W.G.: Accumulation of malate in guard cells of Vicia faba during stomatal opening. Planta 110, 63–70 (1973).Google Scholar
  214. Allaway, W.G., Hsiao, T.C.: Preparation of rolled epidermis of Vicia faba L. so that stomata are the only viable cells: Analysis of guard cell potassium by flame photometry. Australian J. Biol. Sci. 26, 309–318 (1973).Google Scholar
  215. Allaway, W.G., Setterfield, G.: Ultrastructural observations on guard cells of Vicia faba and Allium porrum. Canad. J. Bot. 50, 1405–1413 (1972).Google Scholar
  216. Arntzen, C.J., Haugh, M.F., Bobick, S.: Induction of stomatal closure by Helrninthosporium maydis pathotoxin. Plant Physiol. 52, 569–574 (1973).PubMedGoogle Scholar
  217. Bernstein, L.: Method for determining solutes in the cell walls of leaves. Plant Physiol. 47, 361–365 (1971).PubMedGoogle Scholar
  218. Brown, W.V., Johnson, Sr.C.: The fine structure of the grass guard cell. Amer. J. Bot. 49, 110–115(1962).Google Scholar
  219. Cummins, W.R., Kende, H., Raschke, K.: Specificity and reversibility of the rapid stomatal response to abscisic acid. Planta 99, 347–351 (1971).Google Scholar
  220. Dayanandan, P., Kaufman, P.B.: Stomata in Equisetum. Canad. J. Bot. 51, 1555–1564 (1973).Google Scholar
  221. Epstein, E.: Mineral nutrition of plants: principles and perspectives. New York-London: Wiley and Sons 1972.Google Scholar
  222. Eshel, A., Waisel, Y., Ramati, A.: The role of sodium in stomatal movements of a halophyte: A study by X-ray microanalysis. In: 7th Intl. Colloquium on Plant Analysis and Fertilizer Problems (J. Wehrman, ed.). Hannover, Germany: German Soc. Plant Nutrition 1974.Google Scholar
  223. Evans, L.T., Allaway, W.G.: Action spectrum for the opening of Albizzia julibrissin pinnules, and the role of phytochrome in the closing movements of pinnules and of stomata of Vicia faba. Australian J. Biol. Sci. 25, 885–893 (1972).Google Scholar
  224. Fischer, R.A.: Stomatal physiology with particular reference to the after-effect of water stress and to behavior in epidermal strips. Ph.D. Dissertation, University of California Davis (1967).Google Scholar
  225. Fischer, R.A.: Stomatal opening: role of potassium uptake by guard cells. Science 160, 784–785 (1968 a).PubMedGoogle Scholar
  226. Fischer, R.A.: Stomatal opening in isolated epidermal strips of Vicia faba. I. Response to light and to CO2-free air. Plant Physiol. 43, 1947–1952 (1968 b).PubMedGoogle Scholar
  227. Fischer, R.A.: Role of potassium in stomatal opening in the leaf of Vicia faba. Plant Physiol. 47, 555–558 (1971).PubMedGoogle Scholar
  228. Fischer, R.A.: Aspects of potassium accumulation by stomata of Vicia faba. Australian J. Biol. Sci. 25, 1107–1123(1972).Google Scholar
  229. Fischer, R.A.: The relationship of stomatal aperture and guard-cell turgor pressure in Vicia faba. J. Exptl. Bot. 24, 387–399 (1973).Google Scholar
  230. Fischer, R.A., Hsiao, T.C.: Stomatal opening in isolated epidermal strips of Vicia faba. II. Response to KCl concentration and the role of potassium absorption. Plant Physiol. 43, 1953–1958 (1968).PubMedGoogle Scholar
  231. Fujino, M.: Stomatal movement and active migration of potassium. (In Japanese.) Kaguku 29, 660–661 (1959).Google Scholar
  232. Fujino, M.: Role of adenosinetriphosphate and adenosinetriphosphatase in stomatal movement. Sci. Bull. Fac. Educ. Nagasaki Univ. 18, 1–47 (1967).Google Scholar
  233. Fujino, M., Jinno, N.: The fine structure of the guard cell of Commelina communis L. Sci. Bull. Fac. Educ. Nagasaki Univ. 23, 101–111 (1972).Google Scholar
  234. Glinka, Z., Reinhold, L.: Abscissic acid raises the permeability of plant cells to water. Plant Physiol. 48, 103–105 (1971).PubMedGoogle Scholar
  235. Graham, R.D., Ulrich, A.: Potassium deficiency-induced changes in stomatal behavior, leaf water potentials, and root system permeability in Beta vulgaris L. Plant Physiol. 49, 105–109 (1972).PubMedGoogle Scholar
  236. Habermann, H.M.: Evidence for two photoreactions and possible involvement of phytochrome in light-dependent stomatal opening. Plant Physiol. 51, 543–548 (1973).PubMedGoogle Scholar
  237. Heath, O.V.S.: The water relations of stomatal cells and the mechanisms of stomatal movement. In: Plant physiology, a treatise (F.C. Steward, ed.), vol. II, p. 193–250. New York-London: Academic Press 1959.Google Scholar
  238. Hiron, R.W.P., Wright, S.T.C.: The role of endogenous abscissic acid in the response of plants to stress. J. Exptl. Bot. 24, 769–781 (1973).Google Scholar
  239. Hope, A.B.: Ionic relations of cells of Char a australis. X. Effects of bicarbonate ions on electrical properties. Australian J. Biol. Sci. 18, 789–801 (1965).Google Scholar
  240. Horton, R.F.: Stomatal opening: the role of abscissic acid. Can. J. Botany 49, 583–585 (1971).Google Scholar
  241. Horton, R.F., Moran, L.: Abscissic acid inhibition of potassium influx into stomatal guard cells. Z. Pflanzenphysiol. 66, 193–196 (1972).Google Scholar
  242. Hsiao, T.C.: Plant responses to water stress. Ann. Rev. Plant Physiol. 24, 519–570 (1973a).Google Scholar
  243. Hsiao, T.C.: Effects of water deficit on guard cell potassium and stomatal movement. Plant Physiol. 51, Suppl., 9 (1973b).Google Scholar
  244. Hsiao, T.C., Allaway, W.G., Evans, L.T.: Action spectra for guard cell Rb+ uptake and stomatal opening in Vicia faba. Plant Physiol. 51, 82–88 (1973).PubMedGoogle Scholar
  245. Humble, G.D., Hsiao, T.C.: Specific requirement of potassium for light-activated opening of stomata in epidermal strips. Plant Physiol. 44, 230–234 (1969).PubMedGoogle Scholar
  246. Humble, G.D., Hsiao, T.C.: Light-dependent influx and efflux of potassium of guard cells during stomatal opening and closing. Plant Physiol. 46, 483–487 (1970).PubMedGoogle Scholar
  247. Humble, G.D., Raschke, K.: Stomatal opening quantitatively related to potassium transport. Evidence from electron probe analysis. Plant Physiol. 48, 447–453 (1971).PubMedGoogle Scholar
  248. Iljin, W.S.: Wirkung der Kationen von Salzen auf den Zerfall und die Bildung von Stärke in der Pflanze. Biochem. Z. 132, 494–510 (1922a).Google Scholar
  249. Iljin, W.S.: Physiologischer Pflanzenschutz gegen schädliche Wirkung. Biochem. Z. 132, 526–542 (1922b).Google Scholar
  250. Imamura, S.: Untersuchungen über den Mechanismus der Turgor Schwankung der Spaltöffnungsschließzellen. Jap. J. Bot. 12, 251–346 (1943).Google Scholar
  251. Ketallapper, H.J.: Stomatal physiology. Ann. Rev. Plant Physiol. 14, 249–270 (1963).Google Scholar
  252. Kowallik, W.: Action spectrum for an enhancement of endogenous respiration by light in Chlorella. Plant Physiol. 42, 672–676 (1967).PubMedGoogle Scholar
  253. Kuiper, P.J.C.: Dependence upon wavelength of stomatal movement in epidermal tissue of Senecio odoris. Plant Physiol. 39, 952–955 (1964).PubMedGoogle Scholar
  254. Läuchli, A.: Translocation of inorganic solutes. Ann. Rev. Plant Physiol. 23, 197–218 (1972).Google Scholar
  255. Levitt, J.: The mechanism of stomatal action. Planta 74, 101–118 (1967).Google Scholar
  256. Litz, R.E., Kimmins, W.C.: Plasmodesmata between guard cells and accessory cells. Canad. J. Bot. 46, 1603–1605 (1968).Google Scholar
  257. Livne, A., Vaadia, Y.: Water deficits and hormone relations. In: Water deficits and plant growth (T.T. Kozlowski, ed.), vol. III, p. 255–271. New York-London: Academic Press 1972.Google Scholar
  258. Loveys, B.R., Kriedemann, P.E.: Rapid changes in abscissic acid-like inhibitors following alterations in vine leaf water potential. Physiol. Plantarum 28, 476–479 (1973).Google Scholar
  259. Lüttge, U., Osmond, B., Ball, E., Brinckmann, E., Kinze, G.: Bisulfite compounds as metabolic inhibitors: nonspecific effects on membranes. Plant Cell Physiol. 13, 505–514 (1972).Google Scholar
  260. Lüttge, U., Schöch, E.V., Ball, E.: Can externally applied ATP supply energy to active ion uptake mechanisms of intact plant cells? Australian J. Plant Physiol. 1, 211–220 (1974).Google Scholar
  261. Macallum, A.B.: On the distribution of potassium in animal and vegetable cells. J. Physiol. 32, 95–118(1905).PubMedGoogle Scholar
  262. Mansfield, T.A., Jones, R.J.: Effects of abscissic acid on potassium uptake and starch content of stomatal guard cells. Planta 101, 147–158 (1971).Google Scholar
  263. Maximov, N.A.: The plant in relation to water. A study of the physiological basis of drought resistance. London: Allen and Univin 1929.Google Scholar
  264. Meidner, H., Mansfield, T.A.: Stomatal responses to illumination. Biol. Rev. 40, 483–509 (1965).Google Scholar
  265. Meidner, H., Mansfield, T.A.: Physiology of stomata. New York-London: McGraw-Hill 1968.Google Scholar
  266. Milborrow, B.V.: The chemistry and physiology of abscissic acid. Ann. Rev. Plant Physiol. 25, 259–307 (1974).Google Scholar
  267. Mittelheuser, C.J., van Steveninck, R.F.M.: Stomatal closure and inhibition of transpiration induced by (RS)-abscissic acid. Nature 221, 281–282 (1969).Google Scholar
  268. Mouravteff, I.: Sur les réactions de l’appareil stomatique à l’acide α-hydroxy-2-pyridinemethane sulphonique, inhibiteur de la glycolique oxydase. Compt. Rend. 261, 4487–4489 (1965).Google Scholar
  269. Mouravieff, I.: Microphotométrie des fluctuations de la teneur en amidon des stomates en rapport avec l’ouverture de l’ostiole à la lumière en présence ou en absence de gaz carbonique. Ann. Sci. Nat. Botan. Biol. Végétale 13, 361–368 (1972a).Google Scholar
  270. Mouravieff, I.: Action des solutions d’inhibiteurs du transport actif des ions: l’ouabaine, le salicylaldoxime et le carbonyl cyanide m-chlorophényl hydrazone, sur le mouvement d’ouverture des stomates à la lumière en présence ou en absence de gaz carbonique. Physiol. Vég. 10, 547–551 (1972b).Google Scholar
  271. Nelson, S.D., Mayo, J.M.: The occurrence of functional non-chlorophyllous guard cells in Paphiopedilum spp. Canad. J. Bot. 53, 1–7 (1975).Google Scholar
  272. Pallaghy, C.K.: Electrophysiological studies in guard cells of tobacco. Planta 80, 147–153 (1968).Google Scholar
  273. Pallaghy, C.K.: The effect of Ca++ on the ion specificity of stomatal opening in epidermal strips of Vicia faba. Z. Pflanzenphysiol. 62, 58–62 (1970).Google Scholar
  274. Pallaghy, C.K.: Stomatal movement and potassium transport in epidermal strips of Zea mays: the effect of CO2. Planta 101, 287–295 (1971).Google Scholar
  275. Pallaghy, C.K., Fischer, R.A.: Metabolic aspects of stomatal opening and ion accumulation by guard cells in Vicia faba. Z. Pflanzenphysiol. 71, 332–344 (1974).Google Scholar
  276. Pallas, J.E., Jr., Dilley, R.A.: Photophosphorylation can provide sufficient adenosine 5′- triphosphate to drive K+ movements during stomatal opening. Plant Physiol. 49, 649–650 (1972).PubMedGoogle Scholar
  277. Pallas, J.E., Jr., Mollenhauer, H.H.: Physiological implications of Vicia faba and Nicotiana tabacum guard-cell ultrastructure. Amer. J. Bot. 59, 504–514 (1972).Google Scholar
  278. Pallas, J.E., Wright, B.G.: Organic acid changes in the epidermis of Vicia faba and their implication in stomatal movement. Plant Physiol. 51, 588–590 (1973).PubMedGoogle Scholar
  279. Penny, M.G., Bowling, D.J.F.: A study of potassium gradients in the epidermis of intact leaves of Commelina communis in relation to stomatal opening. Planta 119, 17–25 (1974).Google Scholar
  280. Penny, M.G., Bowling, D.J.F.: Direct determination of pH in the stomatal complex of Commelina. Planta 122, 209–212 (1975).Google Scholar
  281. Raghavendra, A.S., Das, V.S.R.: Control of stomatal opening by cyclic photophosphorylation. Current Sci. (India) 41, 150–151 (1972).Google Scholar
  282. Raschke, K.: Saturation kinetics of the velocity of stomatal closing in response to CO2. Plant Physiol. 49, 229–234 (1972).PubMedGoogle Scholar
  283. Raschke, K.: Stomatal Action. Ann. Rev. Plant Physiol. 26, in press (1975).Google Scholar
  284. Raschke, K., Fellows, M.P.: Stomatal movement in Zea mays: Shuttle of potassium and chloride between guard cells and subsidiary cells. Planta 101, 296–316 (1971).Google Scholar
  285. Raschke, K., Humble, G.D.: No uptake of anions required by opening stomata of Vicia faba: Guard cells release hydrogen ions. Planta 115, 47–57 (1973).Google Scholar
  286. Satter, R.L., Galston, A.W.: Potassium flux: a common feature of Albizzia leaflet movement controlled by phytochrome or endogenous rhythm. Science 174, 518–520 (1971).PubMedGoogle Scholar
  287. Sawhney, B.L., Zelitch, I.: Direct determination of potassium ion accumulation in guard cells in relation to stomatal opening in light. Plant Physiol. 44, 1350–1354 (1969).PubMedGoogle Scholar
  288. Shaw, M., Maclachlan, G.A.: The physiology of stomata. I. Canad. J. Bot. 32, 784–794 (1954).Google Scholar
  289. Singh, A.P., Srivastava, L.M.: The fine structure of pea stomata. Protoplasma 76, 61–82 (1973).Google Scholar
  290. Squire, G.R., Mansfield, T.A.: The action of fusicoccin on stomatal guard cells and subsidiary cells. New Phytologist 73, 433–440 (1974).Google Scholar
  291. Srivastava, L.M., Singh, A.P.: Stomatal structure in corn leaves. J. Ultrastruct. Res. 39, 345–363 (1972).PubMedGoogle Scholar
  292. StÅlfelt, M.G.: Die stomatäre Transpiration und die Physiologie der Spaltöffnungen. In: Encyclopedia of Plant Physiology (W. Ruhland, ed.), vol. III, p. 351–426. Berlin-Heidelberg-New York: Springer 1956.Google Scholar
  293. Stålfelt, M.G.: Die Abhängigkeit des osmotischen Potentials der Stomatazellen vom Wasserzustand der Pflanze. Protoplasma 57, 719–729 (1963).Google Scholar
  294. Stålfelt, M.G.: The role of the epidermal cells in the stomatal movements. Physiol. Plantarum 19, 241–256 (1966).Google Scholar
  295. Thomas, D.A.: The regulation of stomatal aperture in tobacco leaf epidermal strips. I. The effect of ions. Australian J. Biol. Sci. 23, 961–979 (1970a).Google Scholar
  296. Thomas, D.A.: The regulation of stomatal aperture in tobacco leaf epidermal strips. II. The effect of ouabain. Australian J. Biol. Sci. 23, 981–989 (1970b).Google Scholar
  297. Thomson, W.W., Journett, R., De: Studies on the ultrastructure of the guard cells of Opuntia. Amer. J. Bot. 57, 309–316 (1970).Google Scholar
  298. Tromp, J.: Interactions in the absorption of ammonium, potassium, and sodium ions by wheat roots. Acta Botan. Need. 11, 147–192 (1962).Google Scholar
  299. Turner, N.C.: Action of fusicoccin on the potassium balance of guard cells of Phaseolus vulgaris. Amer. J. Bot. 60, 717–725 (1973).Google Scholar
  300. Willmer, C.M., Kanai, R., Pallas, J.E., Jr., Black, C.C., Jr.: Detection of high levels of phosphoenolpyruvate carboxylase in leaf epidermal tissue and its significance in stomatal movements. Life Sci. 12, 151–155 (1973).Google Scholar
  301. Willmer, C.M., Mansfield, I.A.: A critical examination of the use of detached epidermis in studies of stomatal physiology. New Phytologist 68, 363–375 (1969a).Google Scholar
  302. Willmer, C.M., Mansfield, T.A.: Active cation transport and stomatal opening: A possible physiological role of sodium ions. Z. Pflanzenphysiol. 61, 398–400 (1969b).Google Scholar
  303. Willmer, C.M., Mansfield, T.A.: Effects of some metabolic inhibitors and temperature on ion-stimulated stomatal opening in detached epidermis. New Phytologist 69, 983–992 (1970).Google Scholar
  304. Willmer, C.M., Pallas, J.E., Jr.: A survey of stomatal movements and associated potassium fluxes in the plant kingdom. Canad. J. Bot. 51, 37–42 (1973).Google Scholar
  305. Willmer, C.M., Pallas, J.E., Jr.: Stomatal movements and ion fluxes within epidermis of Commelina communis L. Nature 252, 126–127 (1974).PubMedGoogle Scholar
  306. Wright, S.T.C.: An increase in the “Inhibitor-β” content of detached wheat leaves following a period of wilting. Planta 86, 10–20 (1969).Google Scholar
  307. Yamashita, T.: Influence of potassium supply upon properties and movement of the guard cell. Sieboldia Acta Biol. 1, 51–70 (1952).Google Scholar
  308. Zelitch, I.: Environmental and biochemical control of stomatal movement in leaves. Biol. Rev. 40, 463–482 (1965).Google Scholar
  309. Zelitch, I.: Stomatal control. Ann. Rev. Plant Physiol. 20, 329–350 (1969).Google Scholar
  310. Zimmermann, U., Steudle, E.: The pressure-dependence of the hydraulic conductivity, the membrane resistance and membrane potential during turgor pressure regulation in Valonia utricularis. J. Membrane Biol. 16, 331–352 (1974).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • U. Lüttge
  • M. G. Pitman
  • W. D. Jeschke
  • T. C. Hsiao

There are no affiliations available

Personalised recommendations