Transport and Energy

  • U. Lüttge
  • M. G. Pitman
Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 2 / A)


The general theme of this Section (III) is the control of the various transport processes in the cell. It should be clear from samples given in earlier Sections that the activity of transport processes is modified to meet different conditions of growth or availability of substrates. A problem in this type of study is to distinguish between correlations between, say, uptake and growth and the operation of specific control systems.


Neurospora Crassa Chara Corallina Electrogenic Pump Adenine Nucleotide Level Mineral Salt Absorption 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, E.D.: Adenine nucleotides as universal stoichiometric coupling agents. Advan. Enzyme Regulation 9, 207–219 (1970).CrossRefGoogle Scholar
  2. Barnes, E.M.: Respiration-coupled glucose transport in membrane vesicles from Azotobacter vinelandii. Arch. Biochem. Biophys. 152, 795–799 (1972).Google Scholar
  3. Barnes, E.M., Kaback, H.R.: β-galactoside transport in bacterial membrane preparations: energy coupling via membrane-bound D-lactic dehydrogenase. Proc. Natl. Acad. Sci. U.S. 66, 1190–1198(1970).CrossRefGoogle Scholar
  4. Hill, B.S., Hill, A.E.: ATP-driven chloride pumping and ATPase activity in the Limonium salt gland. J. Membrane Biol. 12, 145–158 (1973).CrossRefGoogle Scholar
  5. Hope, A.B., Walker, N.A.: Physiology of giant algal cells. Cambridge: Cambridge University Press 1975.Google Scholar
  6. Johansen, C, Lüttge, U.: Respiration and photosynthesis as alternative energy sources for chloride uptake by Tradescantia albiflora leaf cells. Z. Pflanzenphysiol. 71, 189–199 (1974).Google Scholar
  7. Kaback, H.R.: Transport. Ann. Rev. Biochem. 39, 561–598 (1970).PubMedCrossRefGoogle Scholar
  8. Kashket, E.R., Wilson, T.H.: Proton-coupled accumulation of galactoside in Streptococcus lactis 7962. Proc. Natl. Acad. Sci. U.S. 70, 2866–2869 (1973).CrossRefGoogle Scholar
  9. Kedem, O.: Criteria of active transport. In: Membrane transport and metabolism. London-New York: Academic Press 1961.Google Scholar
  10. Komor, E.: Proton-coupled hexose transport in Chlorella vulgaris. F.E.B.S. Letters 38, 16–18 (1973).CrossRefGoogle Scholar
  11. Komor, E., Tanner, W.: The nature of the energy metabolite responsible for sugar accumulation in Chlorella vulgaris. Z. Pflanzenphysiol. 71, 115–128 (1974).Google Scholar
  12. Lilley, R. M.C., Hope, A.B.: Adenine nucleotide levels in cells of the marine alga, Griffithsia. Australian J. Biol. Sci. 24, 1351–1354 (1971).Google Scholar
  13. Lundegardh,H.: An electrochemical theory of salt absorption and respiration. Nature 143, 203–204(1939).CrossRefGoogle Scholar
  14. Lundegardh, H.: The translocation of salts and water through wheat roots. Physiol. Plantarum 3, 103–151 (1950).CrossRefGoogle Scholar
  15. Lundegardh, H.: Mechanisms of absorption, transport, accumulation and secretion of ions. Ann. Rev. Plant Physiol. 6, 1–24 (1955).CrossRefGoogle Scholar
  16. Lüttge, U.: Aktiver Transport (Kurzstreckentransport bei Pflanzen). Protoplasmatologia, Vol. VIII/7b. Wien-New York: Springer 1969.Google Scholar
  17. Lüttge, U.: Structure and function of plant glands. Ann. Rev. Plant Physiol. 22, 23–44 (1971 a).CrossRefGoogle Scholar
  18. Lüttge, U.: Localized ion transport in complex systems of higher plants as related to respiration and photosynthesis. Proc. 1st European Biophys. Congr. Baden. (E. Broda, A. Locker and H. Springer-Lederer, eds.), vol. III, p. 353–362, Membranes, transport, p. 119–123. Wien: Verlag der Wiener Medizinischen Akademie 1971b.Google Scholar
  19. Lüttge, U.: Stofftransport der Pflanzen. Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  20. Lüttge, U.: Co-operation of organs in intact higher plants: A review. In: Membrane transport in plants (U. Zimmermann, J. Dainty, eds.) p. 353–362. Berlin-Heidelberg-New York: Springer 1974.Google Scholar
  21. Lüttge, U., Cram, W.J., Laties, G.G.: The relationship of salt stimulated respiration to localized ion transport in carrot tissue. Z. Pflanzenphysiol. 64, 418–426 (1971).Google Scholar
  22. Lüttge, U., Osmond, C.B.: Ion absorption in Atriplex leaf tissue. III. Site of metabolic control of light-dependent chloride secretion to epidermal bladders. Australian J. Biol. Sci. 23, 17–25 (1970).Google Scholar
  23. Macrobbie, E.A.C.: The nature of coupling between light energy and active ion transport in Nitella translucens. Biochim. Biophys. Acta 94, 64–73 (1965).PubMedCrossRefGoogle Scholar
  24. Néel, J.: Les membranes artificielles. La Recherche 5, 33–43 (1974).Google Scholar
  25. Osmond, C.B., Lüttge, U., West, K.R., Pallaghy, C.K., Schacher-Hill, B.: Ion absorption in Atriplex leaf tissue. II. Secretion of ions to epidermal bladders. Australian J. Biol. Sci. 22,797–814(1969).Google Scholar
  26. Robertson, R.N.: Protons, electrons, phosphorylation and active transport. Cambridge: Cambridge University Press 1968.Google Scholar
  27. Slayman, C.L., Long, H.S., Lu, C.Y.-H.: The relationship between ATP and an electrogenic pump in the plasma membrane of Neurospora crassa. J. Membrane Biol. 14, 305–338 (1973).CrossRefGoogle Scholar
  28. Slayman, C.L., Lu, C.Y.-H., Shane, L.: Correlated changes in membrane potential and ATP concentrations in Neurospora. Nature 226, 274–276 (1970).PubMedCrossRefGoogle Scholar
  29. Sutcliffe, J.F.: Mineral salts absorption in plants. Oxford-London-New York-Paris: Pergamon Press 1962.Google Scholar
  30. Walker, N.A., Smith, F.A.: Intracellular pH in Chara corallina measured by DMO distribution. Plant Sci. Letters 4, 125–132 (1975).CrossRefGoogle Scholar
  31. West, I.C., Mitchell, P.: Proton-coupled β-galactoside translocation in non-metabolizing Escherichia coli. J. Bioenergetics 3, 445–462 (1972).CrossRefGoogle Scholar
  32. West, I.C., Mitchell, P.: Stoichiometry of lactose—H+ symport across the plasma membrane of Escherichia coll Biochem. J. 132, 587–592 (1973).PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • U. Lüttge
  • M. G. Pitman

There are no affiliations available

Personalised recommendations