Advertisement

Membrane Transport: Theoretical Background

  • N. A. Walker
Part of the Encyclopedia of Plant Physiology book series (PLANT, volume 2 / A)

Abstract

It is the aim of this Chapter to set out and to classify the equations that seem most useful to those who work on transport across biological membranes. So that they may be the more confidently used—or rejected—the equations will be accompanied by details of the assumptions upon which they are based. The intention is to be of service; the licence is claimed, which is allowed to some servants, to pass occasional moral judgements.

Keywords

Membrane Transport Giant Axon Permeability Ratio Active Transport System Secondary Active Transport 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Briggs, G. E.: Membrane potential differences in Chara australis. Proc. Roy. Soc. (London), Ser. B 156, 573–577 (1962)CrossRefGoogle Scholar
  2. Dainty, J.: The polar permeability of plant cell membranes to water. Protoplasma 57, 220–228 (1963).CrossRefGoogle Scholar
  3. Dainty, J., Ginzburg, B.Z.: Irreversible thermodynamics and frictional models of membrane processes, with particular reference to the cell membrane. J. Theoret. Biol. 5, 256–265 (1963).CrossRefGoogle Scholar
  4. Dainty, J., Ginzburg, B.Z.: The reflexion coefficient of plant cell membranes for certain solutes. Biochim. Biophys. Acta 79, 129–137 (1964).PubMedGoogle Scholar
  5. Diamond, J.M., Wright, E.M.: Biological membranes: The physical basis of ion and non-electrolyte selectivity. Ann. Rev. Physiol. 31, 581–646 (1969).CrossRefGoogle Scholar
  6. Goldman, D. E.: Potential, impedance and rectification in membranes. J. Gen. Physiol. 27, 37–60 (1943).PubMedCrossRefGoogle Scholar
  7. Hodgkin, A.L., Katz, B.: The effect of sodium ions on the electrical activity of the giant axon of the squid. J. Physiol. (London) 108, 37–77 (1949).Google Scholar
  8. Hodgkin, A. L., Keynes, R.D.: The potassium permeability of a giant nerve fibre. J. Physiol. (London) 128, 61–68 (1955).Google Scholar
  9. Hope, A.B., Walker, N. A.: Ionic relations of cells of Chara australis IV. Membrane potential differences and resistances. Australian J. Biol. Sci. 14, 26–44 (1961).Google Scholar
  10. Hoshiko, T., Lindley, B.D.: Phenomenological description of active transport of salt and water. J. Gen. Physiol. 50, 729–758 (1967).PubMedCrossRefGoogle Scholar
  11. House, C.R.: Water transport in cells and tissues. London: Edward Arnold 1974.Google Scholar
  12. Johnson, F.H., Eyring, H., Polissar, M.J.: The kinetic basis of molecular biology. New York: Wiley and Sons 1954.Google Scholar
  13. Katchalsky, A., Curran, P.D.: Non-equilibrium thermodynamics in biophysics. Cambridge, Mass.: Harvard University Press 1965.Google Scholar
  14. Kedem, O., Essig, A.: Isotope flows and flux ratios in biological membranes. J. Gen. Physiol. 48, 1047–1070 (1965).PubMedCrossRefGoogle Scholar
  15. Kedem, O., Katchalsky, A.: Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246 (1958).PubMedCrossRefGoogle Scholar
  16. Kedem, O., Katchalsky, A.: Permeability of composite membranes. 1, 2 and 3. Trans. Faraday Soc. 59, 1918–1930 (1963)CrossRefGoogle Scholar
  17. Kedem, O., Katchalsky, A.: Permeability of composite membranes. 1, 2 and 3. Trans. Faraday Soc. 59, 1931–1940 (1963).CrossRefGoogle Scholar
  18. Kedem, O., Katchalsky, A.: Permeability of composite membranes. 1, 2 and 3. Trans. Faraday Soc. 59, 1941–1953 (1963).CrossRefGoogle Scholar
  19. Meares, P., Ussing, H. H.: The fluxes of sodium and chloride ions across a cation-exchange resin membrane. 1. Trans. Faraday Soc. 55, 142–155 (1959a).CrossRefGoogle Scholar
  20. Meares, P., Ussing, H.H.: The fluxes of sodium and chloride ions across a cation-exchange resin membrane. 2. Trans. Faraday Soc. 55, 244–254 (1959b).CrossRefGoogle Scholar
  21. Mitchell, P.: Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol. Rev. Cambridge Phil. Soc. 41, 445–502 (1966).CrossRefGoogle Scholar
  22. Mitchell, P.: Translocations through natural membranes. Advan. Enzymol. 29, 33–87 (1967).Google Scholar
  23. Mitchell, P.: Reversible coupling between transport and chemical reactions. In: Membranes and ion transport (E.E. Bittar, ed.), vol. I, p. 192–356. New York: Wiley and Sons 1970.Google Scholar
  24. Mitchell, P., Moyle, J.: Activation and inhibition of mitochondrial adenosinetriphosphatase by various anions. J. Bioenerg. 2, 1–11 (1971).PubMedCrossRefGoogle Scholar
  25. Moreton, R. B.: An investigation of the electrogenic sodium pump in snail neurones, using the constant-field theory. J. Exptl. Biol. 51, 181–201 (1969).Google Scholar
  26. Patlak, C.S., Goldstein, C.A., Hoffman, J.F.: The flow of solute and solvent across a two-membrane system. J. Theoret. Biol. 5, 426–442 (1963).CrossRefGoogle Scholar
  27. Pitman, M.G.: Simulation of Cl- uptake by low-salt barley roots as a test of models of salt uptake. Plant Physiol. 44, 1417–1427 (1969).PubMedCrossRefGoogle Scholar
  28. Sandblom, J. P., Eisenman, G.: Membrane potentials at zero current. The significance of a constant ionic permeability ratio. Biophys. J. 7, 217–242 (1967).PubMedCrossRefGoogle Scholar
  29. Slayman, C.L., Long, W.S., Lu, C.Y.-H.: Electrogenic H+ transport in Neurospora. J. Membrane Biol. 14, 305–338 (1973).CrossRefGoogle Scholar
  30. Spanner, D.C.: The active transport of water under temperature gradients. Symp. Soc. Exptl. Biol. 8, 76–93 (1954).Google Scholar
  31. Spanswick, R.M.: Evidence for an electrogenic pump in Nitella translucens. I. Biochim. Biophys. Acta 288, 73–89 (1972).PubMedCrossRefGoogle Scholar
  32. Spanswick, R.M.: Evidence for an electrogenic pump in Nitella translucens. II. Biochim. Biophys. Acta 332, 387–398 (1974).CrossRefGoogle Scholar
  33. Thain, J.F.: Principles of osmotic phenomena. London: Roy. Inst. Chem. 1967.Google Scholar
  34. Ussing, H. H.: The distinction by means of tracers between active transport and diffusion. Acta Physiol. Scand. 19, 43–56 (1949).CrossRefGoogle Scholar
  35. Walker, N. A., Hope, A.B.: Membrane fluxes in electric conductance in characean cells. Australian J. Biol. Sci. 22, 1179–1195 (1969).Google Scholar
  36. Walker, N. A., Smith, F.A.: Intracellular pH in Chara corallina measured by DMO distribution. Plant Sci. Letters 4, 125–132 (1975).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • N. A. Walker

There are no affiliations available

Personalised recommendations