Rhodopsin in Experimental Membranes: An Approach to Elucidate Its Role in the Process of Phototransduction

  • M. Montal

Abstract

Photoreceptor cells in both vertebrate and invertebrate retinas behave as single quantum detectors. The chemical basis for this light sensitivity has been accounted for by the presence, in these specialized cells, of a chromophore-bearing protein generically known as rhodopsin (WALD, 1968). In the rod cell of the vertebrate retina, rhodopsin has been purified and characterized to a great extent (cf. KROPF, 1972; ABRAHAMSON, FAGER, 1973): rhodopsin is a lipoglycoprotein which constitutes over 80% of the membrane protein in the cell outer segment (ROBINSON, GORDON-WALKER, BOWNDS, 1972; HEITZMAN, 1972; HELLER, LAWRENCE, 1970; STEINEMANN, STRYER, 1973). Its chromophore, retinaldehyde, is covalently attached as a Schiff-base to the ε-amino group of a lysine in the protein moiety, traditionally called opsin (AKHTAR et al., 1967; BOWNDS, 1967). It is well established that the absorption of a light quantum leads to the immediate isomerization of the polyene chromophore from the 11-cis to the transisomeric form (HUBBARD, KROPF, 1958; HUBBARD, BOWNDS, YOSHIZAWA, 1965) and that this primary photochemical event is followed by a sequence of chemical changes (dark thermal reactions) that have been characterized by spectral changes and lifetimes at various temperatures. The final reaction is the hydrolysis of the Schiff base.

Keywords

Permeability Surfactant Hydrocarbon Aldehyde Turbidity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABRAHAMSON, E. W., FAGER, R. S.: The chemistry of vertebrate and invertebrate visual photoreceptor. In: Current Topics in Bioenergetics (ed. D. R. SANADI) Vol. V, pp. 125–200. New York: Academic Press 1973.Google Scholar
  2. ABRAHAMSON, E. W., FAGER, R. S., MASON, W. T.: Comparative properties of vertebrate and invertebrate photoreceptors. Exp. Eye Res. 18, 51–67 (1974).PubMedCrossRefGoogle Scholar
  3. AKHTAR, M., BLOSSE, P. T., DEWHURST, P. B.: The active site of the visual protein, rhodopsin. Chem. Commun. 13, 631–632 (1967).Google Scholar
  4. ANDERSON, C. R., STEVENS, C. F.: Voltage clamp analysis of acetylcholine produced end-plate current fluctuations at frog neuromuscular junction. J. Physiol. (London) 235, 655–691 (1973).Google Scholar
  5. APPLEBURRY, M. L., ZUCKERMAN, D. M., LAMOLA, A. A., JOVIN, T. M.: Rhodopsin purification and recombination with phospholipids assayed by the Metarhodopsin I Metarhodopsin II transition. Biochemistry 13, 3448–3458 (1974).CrossRefGoogle Scholar
  6. BAMBERG, E., LAUGER, P.: Temperature-dependent properties of gramicidin A channels. Biochim. Biophys. Acta (in press).Google Scholar
  7. BAMBERG, E., BOHEIM, G., MONTAL, M.: Unpublished observations, 1973. Bangham, A. D.: Physical structure and behaviour of lipids and lipid enzymes. Adv. Lipid. Res. 1, 65–104 (1963).Google Scholar
  8. BANGHAM, A. D., HILL, M. N., MILLER, N. G. A.: Preparation and use of liposomes as models of biological membranes. In: Methods in Membrane Biology (ed. E. D. Korn) Vol. I, pp. 1–68. New York: Plenum 1974.Google Scholar
  9. BAYLOR, D. A., FUORTES, M. G. F.: Electrical responses of single cones in the retina of the turtle. J. Physiol. (London) 207, 77–92 (1970).Google Scholar
  10. BEAN, R. C., SHEPHERD, W. C., CHAN, H., EICHNER, J. T.: Discrete conductance fluctuations in lipid bilayer protein membranes. J. Gen. Physiol. 53, 741–757 (1969).PubMedCrossRefGoogle Scholar
  11. BONTING, S. L., BANGHAM, A. D.: On the biochemical mechanism of the visual process. In: Biochemistry of the Eye (ed. M. M. Dardenne, J. Nordmann ) pp. 493–513. Basel-New York: Karger 1968.Google Scholar
  12. BOWNDS, D.: Site of attachment of retinal in rhodopsin. Nature (London) 216, 1178–1181 (1967).CrossRefGoogle Scholar
  13. BOWNDS, D., GORDON-WALKER, A., GAIDE-HUGUENIN, A. C., ROBINSON, W.: Characterization and analysis of frog photoreceptor membranes. J. Gen. Physiol. 58, 225–237 (1971).PubMedCrossRefGoogle Scholar
  14. BRANTON, D.: Fracture faces of frozen membranes. Proc. Nat. Acad. Sci. (Washington) 55, 1048–1056 (1966).CrossRefGoogle Scholar
  15. BROWN, H. M., HAGIWARA, S., KOIKE, H., MEECH, R. W.: Electrical characteristics of a barnacle photoreceptor. Fed. Proc. 30, 6978 (1971).Google Scholar
  16. BROWN, J. E., LISMAN, J. E.: An electrogenic sodium-pump in Limulus ventral photoreceptor cells. J. Gen. Physiol. 59, 720–733 (1972).PubMedCrossRefGoogle Scholar
  17. BROWN, J. E., PINTO, L. H.: Ionic mechanism for the photoreceptor potential of the retina of Bufo Marinus. J. Physiol. (London) 236, 575–591 (1974).Google Scholar
  18. CELIS, H., ESTRADA, O., S., MONTAL, M.: Model translocators for divalent and monovalent ion transport in phospholipid membranes. I. The ion permeability induced in lipid bilayers by the antibiotic X537A. J. Membrane Biol. 18, 187–200 (1974).CrossRefGoogle Scholar
  19. CHEN, Y. S., HUBBELL, W. L.: Temperature and light-dependent structural changes in rhodopsin-lipid membranes. Exp. Eye Res. 17, 517–532 (1973).PubMedCrossRefGoogle Scholar
  20. CONE, R. A.: Rotational diffusion of rhodopsin in the visual receptor membrane. Nature (London) 231, 39–43 (1972).Google Scholar
  21. CONE, R. A.: Rhodopsin, visual excitation and membrane viscosity. In: Perspectives in Membrane Biology (eds. S. Estrada, O., C. Gitler). New York: Academic Press, in press.Google Scholar
  22. DAEMEN, F. J. M.: Vertebrate rod outer segment membranes. Biochim. Biophys. Acta 300, 255–288 (1973).PubMedGoogle Scholar
  23. DAEMEN, F. J. M., BONTING, S. L.: Biochemical aspects of the visual process. IV. Aldehydes and cation permeability of artificial phospholipid micelles. Biochim. Biophys. Acta 183, 90–97 (1969).PubMedCrossRefGoogle Scholar
  24. DINGLE, J. T., LUCY, J. A.: Vitamin A, carotenoids and cell function. Biol. Rev. 40, 422–461 (1965).PubMedCrossRefGoogle Scholar
  25. EHRENSTEIN, G., BLUMENTHAL, R., TORRE, R., LECAR, H.: Kinetics of opening and closing of individual excitability inducing material channels in a lipid bilayer. J. Gen. Physiol. 63, 707–721 (1974).PubMedCrossRefGoogle Scholar
  26. EHRENSTEIN, G., LECAR, H., NOSSAL, R.: The nature of the negative resistance in bimolecular lipid membranes containing excitability-inducing material. J. Gen. Physiol. 55, 119–133 (1970).PubMedCrossRefGoogle Scholar
  27. EISENBERG, M., HALL, J. E., MEAD, C. A.: The nature of the voltage-dependent conductance induced by alamethicin in black lipid membranes. J. Membrane Biol. 14, 143–176 (1973).CrossRefGoogle Scholar
  28. EISENMAN, G., KRASNE, S.: The Ion-selectivity of carrier molecules, membranes and enzymes. In: MTP International Review of Science. Biochemistry Series (ed. C. F. FOX) Vol. II. London: Butter-worths, in press.Google Scholar
  29. FALK, G., FATT, P.: Rapid hydrogen ion uptake of rod outer segments and rhodopsin solutions on illumination. J. Physiol. (London) 183, 211–224 (1966).Google Scholar
  30. FALK, G., FATT, P.: Conductance changes produced by light in rod outer segments. J. Physiol. (London) 198, 647–699 (1968).Google Scholar
  31. FALK, G., FATT, P.: Physical changes induced by light in the rod outer segment of vertebrates. In: Photochemistry of Vision. Handbook of Sensory Physiology (ed. H. J. A. DARTNALL) Vol. VII, pt. 1, pp. 200–244. Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  32. FELDBERG, N. T.: The regeneration of rhodopsin following the removal of detergent. Invest. Ophthalmol. 13, 155–157 (1974).Google Scholar
  33. FUORTES, M. G. F., O’BRYAN, P. M.: Generator potentials in invertebrate photoreceptors. In: Physiology of Photoreceptor Organs. Handbook of Sensory Physiology (ed. M. G. F. FUORTES) Vol. VII, pt. 2, pp. 279–319. Berlin-Heidelberg-New York: Springer 1972a.Google Scholar
  34. FUORTES, M. G. F., O’BRYAN, P. M.: Responses to single photons. In: Physiology of Photoreceptor Organs. Handbook of Sensory Physiology (ed. M. G. F. FUORTES) Vol. VII, pt. 2, pp. 321–338. BerlinHeidelberg-New York: Springer 1972b.Google Scholar
  35. GITLER, C., MONTAL, M.: Thin-proteolipid films: A new approach to the reconstitution of biological membranes. Biochem. Biophys. Res. Commun. 47, 1486–1491 (1972a).PubMedCrossRefGoogle Scholar
  36. GITLER, C., MONTAL, M.: Formation of decane-soluble proteolipids; influence of monovalent and divalent cations. FEBS Letters 28, 329–332 (1972b).PubMedCrossRefGoogle Scholar
  37. GORDON, L. G. M., HAYDON, D. A.: The unit conductance channel of alamethicin. Biochim. Biophys. Acta 258, 1014–1018 (1972).Google Scholar
  38. HAGINS, W. A.: Electrical signs of information flow in photoreceptors. Cold Spr. Harb. Symp. Quant. Biol. 30, 403–418 (1965).Google Scholar
  39. HAGINS, W. A.: The visual process: Excitatory mechanisms in the primary receptor cells. Ann. Rev. Biophys. Bioengineer 1, 131–158 (1972).CrossRefGoogle Scholar
  40. HAGINS, W. A., ADAMS, R. G.: Movements of 24Na and 42K in the squid retina. Biol. Bull. 119, 318 (1960).Google Scholar
  41. HAGINS, W. A., PENN, R. D., YOSHIKAMI, S.: Dark current and photo- current in retinal rods. Biophys. J. 10, 380–412 (1970).PubMedCrossRefGoogle Scholar
  42. HAGINS, W. A., YOSHIKAMI, S.: A role for C7 in excitation of retinal rods and cones. Exp. Eye Res. 18, 299–305 (1974).PubMedCrossRefGoogle Scholar
  43. HAGINS, W. A., ZONANA, H., ADAMS, R. G.: Local membrane current in the outer segments of squid photoreceptor. Nature (London) 194, 844–847 (1962).CrossRefGoogle Scholar
  44. HAYDON, D. A., HLADKY, S. B.: Ion-transport across thin-lipid membranes: A critical discussion of mechanisms in selected systems. Quart. Rev. Biophys. 5, 187–282 (1972).CrossRefGoogle Scholar
  45. HEITZMAN, H.: Rhodopsin is the predominant protein of rod outer segment membranes. Nature (London) 235, 114 (1972).Google Scholar
  46. HELLER, J.: Structure of visual pigments. I. Purification, molecular weight and composition of bovine visual pigment 500. Biochemistry 7, 2906–2913 (1968).PubMedCrossRefGoogle Scholar
  47. HELLER, J., LAWRENCE, M. A.: Structure of the glycopeptide from bovine visual pigment 500. Biochemistry 9, 864–869 (1970).PubMedCrossRefGoogle Scholar
  48. HENDRICKS, Th., DAEMEN, F. J. M., BUNTING, S. L.: Biochemical aspects of the visual process. XXV. Light-induced calcium movements in isolated frog rod outer segments. Biochim. Biophys. Acta 345, 468–473 (1974).CrossRefGoogle Scholar
  49. HILLE, B.: Ionic Channels in nerve membranes. Prog. Biophys. Mol. Biol. 21, 1–32 (1970).PubMedCrossRefGoogle Scholar
  50. HLADKY, S. B., HAYDON, D. A.: Discreteness of conductance change in bimolecular lipid membranes in the presence of certain antibiotics. Nature (London) 225, 451–453 (1970).CrossRefGoogle Scholar
  51. HODGKIN, A. L.: The Conduction of the Nervous Impulse. Liverpool: University of Liverpool 1963.Google Scholar
  52. HOLLOWAY, P. W.: A simple procedure for removal of triton X-100 from protein samples. Anal. Biochem. 53, 304–308 (1973).PubMedCrossRefGoogle Scholar
  53. HONG, K., HUBBELL, W. L.: Preparation and properties of phospholipid bilayers containing rhodopsin. Proc. Nat. Acad. Sci. (Washington) 69, 2617–2621 (1972).CrossRefGoogle Scholar
  54. HONG, K., HUBBELL, W. L.: Lipid requirement for rhodopsin regenerability. Biochemistry 12, 4517–4523 (1973).PubMedCrossRefGoogle Scholar
  55. HUBBARD, R.: Geometrical isomerization of vitamin A, retinene and retinene oxime. J. Am. Chem. Soc. 78, 4662–4667 (1956).CrossRefGoogle Scholar
  56. HUBBARD, R., BOWNDS, D., YOSHIZAWA, T.: The chemistry of visual photoreception. Cold Spr. Harb. Symp. Quant. Biol. 30, 301–315 (1965).Google Scholar
  57. HUBBARD, R., KROPF, A.: The action of light on rhodopsin. Proc. Nat. Acad. Sci. (Washington) 44, 130–139 (1958).CrossRefGoogle Scholar
  58. HUBBELL, W. L.: Characterization of rhodopsin in synthetic systems. Acc. Chem. Res. (in press).Google Scholar
  59. INESI, G.: Active transport of calcium ions in sarcoplasmic reticulum membranes. Ann. Rev. Biophys. Bioengineer. 1, 191–210 (1972).CrossRefGoogle Scholar
  60. KAGAWA, Y.: Dissociation and reassembly of the inner mitochondrial membrane. In: Methods in Membrane Biology (ed. E. D. KORN) Vol. I, pp. 201–267. New York: Plenum 1974.Google Scholar
  61. KAGAWA, Y., RACKER, E.: Partial resolution of the enzymes catalyzing oxidative phosphorylation. IX. Reconstruction of oligomycinsensitive adenosine-triphosphatase. J. Biol. Chem. 241, 2467–2474 (1966).PubMedGoogle Scholar
  62. KAGAWA, Y., RACKER, E.: Partial resolution of the enzymes catalyzing oxidative phosphorylation. XXV. Reconstitution of vesicles catalyzing 32pi-adenosine-triphosphatase exchange. J. Biol. Chem. 246, 5477–5487 (1971).Google Scholar
  63. KATZ, B., MILEDI, R.: The statistical nature of the acetylcholine potential and its molecular components. J. Physiol. (London) 224, 665–700 (1972).Google Scholar
  64. KEYNES, R. D., RITCHIE, J. M., ROJAS, E.: The binding of tetrodotoxin to nerve membranes. J. Physiol. (London) 213, 235–254 (1971).Google Scholar
  65. KOBAMOTO, N., TIEN, H. Ti.: Light-induced electrical effects in a retinal bilayer lipid membrane. Biochim. Biophys. Acta 241, 129–146 (1971).PubMedCrossRefGoogle Scholar
  66. KOLB, H. A., LAUGER, P., BAMBERG, E.: Correlation analysis of electrical noise in lipid bilayer membranes: Kinetics of gramicidin A channels. J. Membrane Biol. (in press).Google Scholar
  67. KORENBROT, J. I.: Ionic flux and membrane characteristics of isolated rod outer segments. Exp. Eye Res. 16, 343–355 (1973).PubMedCrossRefGoogle Scholar
  68. KORENBROT, J. I., CONE, R. A.: Dark ionic flux and the effects of light in isolated rod outer segments. J. Gen. Physiol. 60, 20–45 (1972).PubMedCrossRefGoogle Scholar
  69. KROPF, A.: The structure and reactions of visual pigments. In: Physiology of Photoreceptor Organs. Handbook of Sensory Physiology (ed. M. G. F. Fuortes) Vol. VII, pt. 2, pp. 239–278. BerlinHeidelberg-New York: Springer 1972.Google Scholar
  70. LASANSKY, A., MARCHIAFAVA, P. L.: Light-induced resistance changes in retinal rods and cones of the tiger salamander. J. Physiol. (London) 236, 171–191 (1974).Google Scholar
  71. LA TORRE, R., EHRENSTEIN, G., LECAR, H.: Ion-transport through excitability-inducing material (EIM) channels in lipid bilayer membranes. J. Gen. Physiol. 60:72–85 (1972).CrossRefGoogle Scholar
  72. LIEBMAN, P. A.: Light-dependent Ca content of rod outer segment disc membranes. Invest. Ophthalmol. 13, 700–701 (1974).PubMedGoogle Scholar
  73. MARTONOSI, A.: Sarcoplasmic reticulum. IV. Solubilization of microsomal adenosine triphosphatase. J. Biol. Chem. 15, 71–81 (1968).Google Scholar
  74. MATHEWS, R. G., HUBBARD, R., BROWN, P. K., WALD, G.: Tautomeric forms of metarhodopsin. J. Gen. Physiol. 47, 215–240 (1963).CrossRefGoogle Scholar
  75. MILLECCHIA, R., MAURO, A.: The ventral photoreceptor cells of Limulus. III. A voltage-clamp study. J. Gen. Physiol. 54, 331–351 (1969).PubMedCrossRefGoogle Scholar
  76. MONTAL, M.: Asymmetric lipid bilayers. Response to multivalent ions. Biochim. Biophys. Acta 298, 750–754 (1973).PubMedCrossRefGoogle Scholar
  77. MONTAL, M.: Formation of bimolecular membranes from lipid monolayers. In: Biomembranes, Cell Organelles and Membrane Components. Methods in Enzymology (eds. S. FLEISCHER, L. PACKER, R. W. ESTABROOK) Vol. 32. New York: Academic Press 1974.Google Scholar
  78. MONTAL, M.: Lipid-protein assembly and the reconstitution of biological membranes. In: Perspectives in Membrane Biology (eds. S. ESTRADA, O., C. GITLER). New York: Academic Press, in press.Google Scholar
  79. MONTAL, M., KORENBROT, J. I.: Incorporation of rhodopsin proteolipid into bilayer membranes. Nature (London) 246, 219–221 (1973).CrossRefGoogle Scholar
  80. MONTAL, M., MUELLER, P.: Formation of bimolecular membranes from lipid monolayers and a study of their electrical properties. Proc. Nat. Acad. Sci. (Washington) 69, 3561–3566 (1972).CrossRefGoogle Scholar
  81. MUELLER, P., RUDIN, D.O.: Translocators in bimolecular lipid membranes: Their role in dissipative and conservative bioenergytransductions. In: Current Topics in Bioenergetics (ed. D. R. SANADI) Vol. III, pp. 157–249. New York: Academic Press 1969.Google Scholar
  82. OHNISHI, T., EBASHI, S.: The velocity of Ca“-binding of isolated sarcoplasmic reticulum. J. Biochem. (Tokyo) 55, 599–603 (1964).Google Scholar
  83. OSTROY, S. E., ERHARDT, F., ABRAHAMSON, E. W.: Protein configuration changes in the photolysis of rhodopsin. II. The sequence of intermediates in the thermal decay of cattle metarhodopsin in vitro. Biochim. Biophys. Acta 112, 265–277 (1966).PubMedCrossRefGoogle Scholar
  84. OSTWALD, T. J., HELLER, J.: Properties of a magnesium-or calcium-dependent adenosine triphosphatase from frog rod photoreceptor outer segment discs and its inhibition by illumination. Biochemistry 11, 4679–4686 (1972).PubMedCrossRefGoogle Scholar
  85. PENN, R. D., HAGINS, W. A.: Kinetics of photocurrent of retinal rods. Biophys. J. 12, 1073–1094 (1972).PubMedCrossRefGoogle Scholar
  86. PINTO DA SILVA, P., BRANTON, D.: Membrane intercalated particles: The plasma membrane as a planar fluid domain. Chem. Phys. Lipids 20, 265–278 (1972).CrossRefGoogle Scholar
  87. POO, M. M., CONE, R. A.: Lateral diffusion of rhodopsin in Necturus rods. Exp. Eye Res. 17, 503–510 (1974).CrossRefGoogle Scholar
  88. PRESSMAN, B. C.: Carboxylic ionophores as mobile carriers for divalent ions. In: The Role of Membranes in Metabolic Regulation (ed. M. A. MEHLMAN, R. W. HANSON ) pp. 149–164. New York: Academic Press 1972Google Scholar
  89. RACKER, E.: A new procedure for the reconstitution of biologically active phospholipid vesicles. Biochem. Biophys. Res. Commun. 55, 224–230 (1973).PubMedCrossRefGoogle Scholar
  90. RACKER, E., HINKLE, P. C.: Effect of temperature on the function of a proton-pump. J. Membrane Biol. 17, 181–188 (1974).CrossRefGoogle Scholar
  91. RADDING, C. M., WALD, G.: Acid-base properties of rhodopsin and op-sin. J. Gen. Physiol. 39, 909–922 (1956).PubMedCrossRefGoogle Scholar
  92. RAUBACH, R. A., NEMES, P. P., DRATZ, E. A.: Chemical labelling and freeze fracture studies on the localization of rhodopsin in the rod outer segment disk membrane. Exp. Eye Res. 18, 1–12 (1974).PubMedCrossRefGoogle Scholar
  93. RAZIN, S.: Reconstitution of biological membrane. Biochim. Biophys. Acta 265, 241–296 (1972).PubMedGoogle Scholar
  94. ROBINSON, W. E., GORDON-WALKER, A., BOWNDS, D.: Molecular weight of frog rhodopsin. Nature (London) 235, 112–114 (1972).CrossRefGoogle Scholar
  95. ROBINSON, R. A., STOKES, R. H.: Electrolyte Solutions. London: Butterworth 1959.Google Scholar
  96. SACHS, F., LECAR, H.: Acetylcholine noise in tissue culture muscle cells. Nature (London) 246, 214–216 (1973).Google Scholar
  97. SCHADT, M.: Photoresponse of bimolecular lipid’ membranes pigmented with retinal and vitamin A acid. Biochim. Biophys. Acta 323, 351–366 (1973).PubMedCrossRefGoogle Scholar
  98. SHICHI, H.: Conformational aspects of rhodopsin associated with disc membranes. Exp. Eye Res. 17, 533–543 (1973).PubMedCrossRefGoogle Scholar
  99. SHICHI, H., LEWIS, M. S., IRREVERE, F., STONE, A. L.: Biochemistry of visual pigments. I. Purification and properties of bovine rhodopsin. J. Biol. Chem. 244, 529–536 (1969).PubMedGoogle Scholar
  100. SNODDERLY, D. M.: Reversible and irreversible bleaching of rhodopsin in detergent solutions. Proc. Nat. Acad. Sci. (Washington) 57, 1356–1362 (1967).CrossRefGoogle Scholar
  101. SREBRO, R., BEHBEHANI, M.: A stochastic model for discrete waves in the Limulus photoreceptor. J. Gen. Physiol. 58, 267–286 (1971).PubMedCrossRefGoogle Scholar
  102. STARK, G., KETTERER, B., BENZ, R., LAUGER, P.: The rate constants of valinomycin-mediated ion-transport through thin-lipid membranes. Biophys. J. 11, 981–994 (1971).PubMedCrossRefGoogle Scholar
  103. STEINEMANN, A., STRYER, L.: Accessibility of the carbohydrate moiety of rhodopsin. Biochemistry 12, 1499–1502 (1973).PubMedCrossRefGoogle Scholar
  104. STEINEMANN, A., WU, C. W., STRYER, L.: Conformational aspects of rhodopsin and retinal disc membranes. J. Supramol. Struct. 2, 348–353 (1973).CrossRefGoogle Scholar
  105. SZUTS, E. Z., CONE, R. A.: Rhodopsin: Light-activated release of calcium. Fed. Am. Soc. Exp. Biol. Proc. 33, Abstr. 1403 (1974).Google Scholar
  106. TOMITA, T.: Electrical activity of vertebrate photoreceptors. Quart. Rev. Biophys. 3, 179–222 (1970).CrossRefGoogle Scholar
  107. TOYODA, J., NOSAKI, H., TOMITA, T.: Light-induced resistance changes in single photoreceptors of Necturus and Gekko. Vision Res. 9, 453–463 (1969).PubMedCrossRefGoogle Scholar
  108. VAIL, W. J., Papahadjopoulos, D., Moscarello, M. A.: Interaction of a hydrophobic protein with liposomes. Evidence for particles seen in freeze-fracture as being proteins. Biochim. Biophys. Acta 345, 463–467 (1974).CrossRefGoogle Scholar
  109. WALD, G.: The molecular basis of visual excitation. Nature (London) 219, 800–807 (1968).CrossRefGoogle Scholar
  110. WALD, G.: Visual pigments and photoreceptors-review and outlook. Exp. Eye Res. 18, 333–343 (1974).PubMedCrossRefGoogle Scholar
  111. WALD, G., BROWN, P. K.: The role of sulfhydryl groups in the bleaching and synthesis of rhodopsin. J. Gen. Physiol. 35, 797–821 (1952).PubMedCrossRefGoogle Scholar
  112. WALD, G., BROWN, P. K.: The molar extinction of rhodopsin. J. Gen. Physiol. 37, 189–200 (1953).PubMedCrossRefGoogle Scholar
  113. WALD, G., BROWN, P. K., GIBBONS, I. R.: The problem of visual excitation. J. Opt. Soc. Amer. 53, 20–35 (1963).CrossRefGoogle Scholar
  114. WRIGHT, W. E., BROWN, P. K., WALD, G.: Orientation of intermediates in the bleaching of shear-oriented rhodopsin. J. Gen. Physiol. 62, 509–522 (1973).PubMedCrossRefGoogle Scholar
  115. WU, C. W., STRYER, L.: Proximity relationships in rhodopsin. Proc. Nat. Acad. Sci. (Washington) 60, 1104–1108 (1972).CrossRefGoogle Scholar
  116. WULFF, V. J., ADAMS, R. G., LINSCHITZ, H., ABRAHAMSON, E. W.: Effects of flash illumination on rhodopsin in solution. Ann. N.Y. Acad. Sci. 74, 281–290 (1958).CrossRefGoogle Scholar
  117. YOSHIKAMI, S., HAGINS, W. A.: Ionic basis of dark current and photo-current of retinal rods. Biophys. Soc. Ann. Meet. Abstr. 10, 60a (1971).Google Scholar
  118. ZINGSHEIM, H. P., NEHER, E.: The equivalence of fluctuation-analysis and chemical relaxation measurements: A kinetic study of ion-pore formation in thin-lipid membranes. Biophys. Chem. 1, (in press).Google Scholar
  119. ZUCKERMAN, R.: Ionic analysis of photoreceptor membrane currents. J. Physiol. (London) 11a, 333–354 (1973).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • M. Montal
    • 1
  1. 1.Departamento de BioquimicaCentro de Investigación y de Estudios Avanzados del Instituto Politécnico NacionalMéxico 14D.F. México

Personalised recommendations