Skip to main content

Abstract

The phase distributions which have been observed in exsolved minerals often bear a marked resemblance, both in scale and morphology, to the phase distributions which have been observed in metallic alloys. At first this similarity appears anomalous for the cooling rates of naturally occurring minerals are 104 to 106 times slower than those usually encountered in alloys. However, the diffusivities in minerals are typically 104 to 106 times lower than in metals at equivalent temperatures and hence the size of microstructural features, which is to a first approximation proportional to \(\sqrt {Dt}\), where D is the diffusivity and t the time, are similar. This coincidence in the scale of microstructural features is fortunate for, while it is possible to study the development of phase distributions in the laboratory in metallic alloys, it is often not possible for the experimentalist to reproduce the microstructures of naturally exsolved minerals. Care must be taken when comparing simple metallic systems and the structurally and chemically-complex silicates; nevertheless the great wealth of well-documented information on precipitation reactions available in the metallurgical literature can be used to advantage when investigating exsolution in silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, H.I., Laird, C., Kinsman, K.R.: Mechanisms of diffusional growth of precipitate crystals. In: Phase transformations. A.S.M., 313–390 (1970).

    Google Scholar 

  • Aaronson, H.I., Lorimer, G.W., Champness, P.E., Spooner, E.T.C.: On differences between phase transformations (exsolution) in metals and silicates. Chem. Geol. 14, 75–80 (1974).

    Article  CAS  Google Scholar 

  • Ardell, A.J., Nicholson, R.B., Eshelby, J.D.: On the modulated structure of aged Ni-Al alloys. Acta Met. 14, 1295–1309 (1966).

    Article  CAS  Google Scholar 

  • Atlas, L.: The polymorphism of MgSiO3 and solid-state equilibria in the system MgSiO3 — CaMgSi2O6. J. Geol. 60, 125–147 (1952).

    Article  CAS  Google Scholar 

  • Baier, E., Pense, J.: Elektronenmikroskopische Untersuchungen an Labradoren. Naturwissenschaften 44, 110–111 (1957).

    Google Scholar 

  • Bambauer, H.U., Eberhard, E., Viswanathan, K.: The lattice constants and related parameters of “plagioclases (low)”. Schweiz. Mineral. Petrog. Mitt. 47, 351–364 (1967).

    CAS  Google Scholar 

  • Bøggild, O.B.: On the labradorization of the feldspars. Koninkl. Danske Vidensk. Selsk. math.-fys. Medd. 6, 1–79 (1924).

    Google Scholar 

  • Bollmann, W., Nissen, H.-U.: A study of optimal phase boundaries: the case of exsolved alkali feldspars. Acta Cryst. A 24, 546–557 (1968).

    Article  CAS  Google Scholar 

  • Bolton, H.C., Bursill, L.A., McLaren, A.C., Turner, R.G.: On the origin of the colour of labradorite. Phys. Stat. Sol. 18, 221–230 (1966).

    Article  CAS  Google Scholar 

  • Bowen, N.L., Tuttle, O.F.: The system NaAlSi3O8-KAlSi3O8-H2O. J. Geol. 58, 489–511 (1950).

    Article  CAS  Google Scholar 

  • Bown, M.G., Gay, P.: The reciprocal lattice geometry of the plagioclase feldspar structures. Z. Krist. 111, 1–14 (1958).

    Article  CAS  Google Scholar 

  • Bown, M.G., Gay, P.: An X-ray study of exsolution phenomena in the Skaergaard pyroxenes. Mineral. Mag. 32, 379–388 (1960).

    Article  CAS  Google Scholar 

  • Boyd, F.R., Schairer, J.F.: The system MgSiO3-CaMgSi2O6. J. Petrol. 5, 275–309 (1964).

    CAS  Google Scholar 

  • Brown, G.E., Prewitt, C.T., Papike, J.J., Sueno, S.: A comparison of the structures of low and high pigeonite. J. Geophys. Res. 77, 5778–5789 (1972).

    Article  CAS  Google Scholar 

  • Brown, W.L.: X-ray studies in the plagioclases. Part 2. The crystallographic and petrologic significance of peristerite unmixing in the acid plagioclases. Z. Krist. 113, 297–344 (1960).

    Article  CAS  Google Scholar 

  • Brown, W.L., Willaime, C.: An explanation of exsolution orientations and residual strain in cryptoperthites. In: The feldspars (eds. W.S. MacKenzie and J. Zussman) Proc. NATO Adv. Study Inst. p. 440–459. Manchester: University Press 1974.

    Google Scholar 

  • Brown, W.L., Willaime, C., Guillemin, C.: Exsolution selon l’association diagonale dans une cryptoperthite: étude par microscopie électronique et diffraction des rayons X. Bull. Soc. Franç. Minéral. Crist. 95, 429–436 (1972).

    CAS  Google Scholar 

  • Cahn, J.W.: On spinodal decomposition. Acta Met. 9, 795–801 (1961).

    Article  CAS  Google Scholar 

  • Cahn, J.W.: On spinodal decomposition in cubic crystals. Acta Met. 10, 179–184 (1962).

    Article  CAS  Google Scholar 

  • Cahn, J.W.: Spinodal decomposition. Trans. AIME 242, 166–180 (1968).

    CAS  Google Scholar 

  • Carstens, H.: Exsolution in ternary feldspars. I. On the formation of antiperthites. Contrib. Mineral. Petrol. 14, 27–35 (1967).

    Article  CAS  Google Scholar 

  • Chadwick, G.A.: Metallography of phase transformations. London: Butterworths 1972.

    Google Scholar 

  • Champness, P.E., Lorimer, G.W.: An electron microscopic study of a lunar pyroxene. Contrib. Mineral. Petrol. 33, 171–183 (1971).

    Article  CAS  Google Scholar 

  • Champness, P.E., Lorimer, G.W.: Electron microscopic studies of some lunar and terrestrial pyroxenes. Proc. 5th Intl. Materials Symp., p. 1245–1255. Berkeley: University of California Press 1972.

    Google Scholar 

  • Champness, P.E., Lorimer, G.W.: Precipitation (exsolution) in an orthopyroxene. J. Mat. Sci. 8, 467–474 (1973).

    Article  CAS  Google Scholar 

  • Champness, P.E., Lorimer, G.W.: A direct lattice-resolution study of precipitation (exsolution) in orthopyroxene. Phil. Mag. 30, 357–365 (1974).

    Article  CAS  Google Scholar 

  • Christian, J.W.: The theory of transformations in metals and alloys. Oxford: Pergamon Press 1965.

    Google Scholar 

  • Christie, J.M., Lally, J.S., Heuer, A.H., Fisher, R.M., Griggs, D.T., Radcliffe, S.V.: Comparative electron petrography of Apollo 11, Apollo 12 and terrestrial rocks. Proc. 2nd Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 2, 1, 69–89 (1971).

    Google Scholar 

  • Christie, O.H. J., Olsen, A.: Spinodal precipitation in minerals. Review and some new observations. Bull. Soc. Franç. Mineral. Crist. 97, 386–392 (1974).

    Google Scholar 

  • Copley, P.A.: Electron microscope studies of phase transformations in pyroxene minerals. Ph.D. Thesis, Manchester University (1973).

    Google Scholar 

  • Copley, P.A., Champness, P.E., Lorimer, G.W.: Electron petrography of exsolution textures in an iron-rich clinopyroxene. J. Petrol. 15, 41–57 (1974).

    CAS  Google Scholar 

  • Crawford, M.L.: Composition of plagioclase and associated minerals in some schists from Vermont, U.S.A. and South Westland, New Zealand with interferences about the perister-ite solvus. Contrib. Mineral. Petrol. 13, 269–294 (1966).

    Article  CAS  Google Scholar 

  • Dunham, A.C., Copley, P.A., Strasser-King, V.H.: Submicroscopic exsolution lamellae in pyroxenes in the Whin Sill, Northern England. Contrib. Mineral. Petrol. 37, 211–220 (1972).

    Article  CAS  Google Scholar 

  • Evans, B.W.: Coexisting albite and oligoclase in some schists from New Zealand. Am. Mineralogist 49, 173–179 (1964).

    CAS  Google Scholar 

  • Fleet, S.G., Ribbe, P.H.: An electron microscope investigation of a moonstone. Phil. Mag. 8, 1179–1187 (1963).

    Article  CAS  Google Scholar 

  • Fleet, S.G., Ribbe, P.H.: An electron-microscope study of peristerite plagioclases. Mineral. Mag. 35, 165–176 (1965).

    Article  CAS  Google Scholar 

  • Gay, P., Muir, I.D.: Investigation of the feldspars of the Skaergaard intrusion, eastern Greenland. J. Geol. 70, 565–581 (1962).

    Article  CAS  Google Scholar 

  • Gay, P., Smith, J.V.: Phase relations in the plagioclase feldspars: composition range An0 to An70. Acta Cryst. 8, 64–65 (1955).

    Article  CAS  Google Scholar 

  • Gittos, M.F., Lorimer, G.W., Champness, P.E.: An electron microscopic study of precipitation (exsolution) in an amphibole (the hornblende-grunerite system). J. Mat. Sci. 9, 184–192 (1974).

    Article  CAS  Google Scholar 

  • Goldsmith, J.R., Newton, R.C.: An experimental determination of the alkali feldspar solvus. In: The feldspars (eds. W.S. MacKenzie and J. Zussman). Proc. NATO Adv. Study Inst. p. 297–312. Manchester: University Press 1974.

    Google Scholar 

  • Greenwood, G.W.: Particle coarsening. In: The mechanism of phase transformations in crystalline solids. Institute of Metals, 103–110 (1969).

    Google Scholar 

  • Guinier, A.: Structure of age-hardened aluminium-copper alloys. Nature 142, 569–570 (1938).

    Article  CAS  Google Scholar 

  • Hess, H.H.: Pyroxenes of common mafic magmas. Am. Mineralogist 26, 515–535, 573–594 (1941).

    CAS  Google Scholar 

  • Heuer, A.H., Lally, J.S., Christie, J.M., Radcliffe, S.V.: Phase transformation and exsolution in lunar and terrestrial calcic plagioclases. Phil. Mag. 26, 465–482 (1972).

    Article  CAS  Google Scholar 

  • Hilliard, J.E.: Spinodal decomposition. In: Phase transformations. A.S.M., 497–560 (1970).

    Google Scholar 

  • Huttenlocher, H.: Beiträge zur Petrographie des Gesteinzuges Ivrea Verbano. I. Allgemeines. Die gabbroïden Gesteine von Anzola. Schweiz. Mineral. Petrog. Mitt. 22, 326–366 (1942).

    CAS  Google Scholar 

  • Jaeger, E., Huttenlocher, H.: Beobachtungen an basischen Plagioklasen der Ivrea-Zone. Schweiz. Mineral. Petrog. Mitt. 35, 199–203 (1955).

    Google Scholar 

  • Korekawa, M., Jagodzinski, H.: Die Satellitenreflexe des Labradorites. Schweiz. Mineral. Petrogr. Mitt. 47, 269–278 (1967).

    CAS  Google Scholar 

  • Korekawa, M., Nissen, H.-U., Philipp, D.: X-ray and electron microscopic studies of a sodium-rich low plagioclase. Z. Krist. 131, 418–136 (1970).

    Article  CAS  Google Scholar 

  • Laird, C., Aaronson, H.I.: The growth of γ plates in an Al-15% Ag alloy. Acta Met. 17, 505–519 (1969).

    Article  CAS  Google Scholar 

  • Lally, J.S., Fisher, R.M., Christie, J.M., Griggs, D.T., Heuer, A.H., Nord, G.L., Radcliffe, S.V.: Electron petrography of Apollo 14 and 15 rocks. Proc. 3rd Lunar Sci. Conf. Geo-chim. Cosmochim. Acta Suppl. 1, 401–422 (1972).

    CAS  Google Scholar 

  • Laves, F.: The phase relations of the alkali feldspars. II J. Geol. 60, 549–574 (1952).

    CAS  Google Scholar 

  • Laves, F.: The co-existence of two plagioclases in the oligoclase composition range. J. Geol. 62, 409–411 (1954).

    Article  CAS  Google Scholar 

  • Laves, F.: Die Feldspäte, ihre polysynthetischen Verzwilligungen und Phasenbeziehungen. Rend. Soc. Miner. Ital. 16, 37–68 (1960).

    CAS  Google Scholar 

  • Laves, F., Nissen, H.-U., Bollmann, W.: On schiller and submicroscopic lamellae of labrador-ite, (Na, Ca) (Si,Al)4O8. Naturwissenschaften 52, 427–428 (1965).

    Article  CAS  Google Scholar 

  • Lin, T.H., Yund, R.A.: Potassium and sodium self-diffusion in alkali feldspar. Contrib. Mineral. Petrol. 34, 177–184 (1972).

    Article  CAS  Google Scholar 

  • Lorimer, G.W., Champness, P.E.: Combined electron microscopy and analysis of an ortho-pyroxene. Am. Mineralogist 58, 243–248 (1973 a).

    CAS  Google Scholar 

  • Lorimer, G.W., Champness, P.E.: The origin of the phase distribution in two perthitic alkali feldspars. Phil. Mag. 28, 1391–1403 (1973b).

    Article  CAS  Google Scholar 

  • Lorimer, G.W., Nissen, H.-U., Champness, P.E.: High voltage electron microscopy of a deformed plagioclase from an Alpine gneiss. Schweiz. Mineral. Petrog. Mitt. 54, 707–715 (1974).

    CAS  Google Scholar 

  • Luth, W.C., Tuttle, O.F.: The alkali feldspar solvus in the system Na2O-K2O-Al2O3- SiO2-H2O. Am. Mineralogist 51, 1359–1373 (1966).

    CAS  Google Scholar 

  • Luth, W.C., Martin, R.F., Fenn, P.M.: Peralkaline alkali solvi. In: The feldspars (eds. W.S. MacKenzie and J. Zussman). Proc. NATO Adv. Study Inst., p. 297–312. Manchester: University Press 1974.

    Google Scholar 

  • MacKenzie, W.S.: The effect of temperature on the symmetry of high-temperature soda-rich feldspars. Am. J. Sci. Bowen Vol. 250 A, 319–342 (1952).

    Google Scholar 

  • McConnell, J.D.C.: Electron optical study of incipient exsolution and inversion phenomena in the system NaAlSi3O8-KAlSi3O8. Phil. Mag. 19, 221–229 (1969).

    Article  CAS  Google Scholar 

  • McConnell, J.D.C.: Electron-optical study of the fine structure of a schiller labradorite. In: The feldspars (eds. W.S. MacKenzie and J. Zussman). Proc. NATO Adv. Study Inst., p. 478–490. Manchester: University Press 1974a.

    Google Scholar 

  • McConnell, J.D.C.: Analysis of the time-temperature-transformation behaviour of the plagioclase feldspars. In: The feldspars (eds. W.S. MacKenzie and J. Zussman). Proc. NATO Adv. Study Inst., p. 460–477. Manchester: University Press 1974b.

    Google Scholar 

  • McLaren, A.C.: Transmission electron microsopy of the feldspars. In: The feldspars (eds. W.S. MacKenzie and J. Zussman). Proc. NATO Adv. Study Inst., p. 378–424. Manchester: University Press 1974.

    Google Scholar 

  • McLaren, A.C., Marshall, D.B.: Transmission electron microscope study of the domain structures associated with the b-, c-, d-, e- and f-reflections in plagioclase feldspars. Contrib. Mineral. Petrol. 44, 237–249 (1974).

    Article  CAS  Google Scholar 

  • Morimoto, M., Tokonami, M.: Oriented exsolution of augite in pigeonite. Am. Mineralogist 54, 1101–1117 (1969).

    CAS  Google Scholar 

  • Morse, S.A.: Alkali feldspars with water at 5 Kb pressure. J. Petrol. 11, 221–251 (1970).

    CAS  Google Scholar 

  • Nicholson, R.B.: Nucleation at imperfections. In: Phase transformations. A.S.M., 269–309 (1970).

    Google Scholar 

  • Nissen, H.-U.: A study of bytownite plagioclases in amphibolites of the Ivreazone (Italian Alps) and in anorthosites: a new unmixing gap in the low plagioclases. Schweiz. Mineral. Petrog. Mitt. 48, 53–55 (1968).

    Google Scholar 

  • Nissen, H.-U.: Exsolution in bytownite plagioclases. In: The feldspars (eds. W.S. MacKenzie and J. Zussman). Proc. NATO Adv. Study. Inst., p. 491–521. Manchester: University Press 1974.

    Google Scholar 

  • Nissen, H.-U., Bollmann, W.: Doubled kikuchi lines as a means of distinguishing quasi-identical phases. Proc. 4th Europ. Congress on Electron Microscopy, Rome, 321–322 (1968).

    Google Scholar 

  • Nissen, H.-U., Champness, P.E., Cliff, G., Lorimer, G.W.: Chemical evidence for exsolution in a labradorite. Nature Phys. Sci. 245, 135–137 (1973).

    CAS  Google Scholar 

  • Nissen, H.-U., Eggmann, H., Laves, F.: Schiller and submicroscopic lamellae of labradorite. A preliminary report. Schweiz. Mineral. Petrog. Mitt. 47, 289–302 (1967).

    Google Scholar 

  • Nord, G.L., Heuer, A.H., Lally, J.S.: Transmission electron microscopy of substructures of Stillwater bytownites. In: The feldspars (eds. W.S. MacKenzie and J. Zussman). Proc. NATO Adv. Study Inst., p. 522–535. Manchester: University Press 1974.

    Google Scholar 

  • Nord, G.L., Lally, J.S., Heuer, A.H., Christie, J.M., Radcliffe, S.V., Griggs, D.T., Fisher, R.M.: Petrologic study of igneous and metaigneous rocks from Apollo 15 and 16 using high voltage transmission electron microscopy. Proc. 4th Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 4, 1, 953–970 (1973).

    Google Scholar 

  • Olsen, A.: Schiller effects and exsolution in sodium-rich plagioclases. Contrib. Mineral. Petrol. 47, 141–152 (1974).

    Article  CAS  Google Scholar 

  • Orville, P.M.: Alkali ion exchange between vapour and feldspar phases. Am. J. Sci. 261, 283–316 (1963).

    Article  Google Scholar 

  • Orville, P.M.: The “peristerite gap” as an equilibrium between ordered albite and disordered plagioclase solid solution. Bull. Soc. franç. Mineral. Crist. 97, 202–205 (1974).

    Google Scholar 

  • Owen, D.C., McConnell, J.D.C.: Spinodal behaviour in an alkali feldspar. Nature Phys. Sci. 230, 118–119 (1971).

    CAS  Google Scholar 

  • Owen, D.C., McConnell, J.D.C.: Spinodal unmixing in an alkali feldspar. In: The feldspars (eds. W.S. MacKenzie and J. Zussman). Proc. NATO Adv. Study Inst., p. 424–439. Manchester: University Press 1974.

    Google Scholar 

  • Petrovic, R.: Diffusion of alkaliionsinalkali feldspars. In: The feldspars (eds. W.S. MacKenzie and J. Zussman) Proc. NATO Adv. Study Inst., p. 174–182. Manchester: University Press 1974.

    Google Scholar 

  • Preston, G.D.: Structure of age-hardened aluminium-copper alloys. Nature 142, 570 (1938).

    Article  CAS  Google Scholar 

  • Robin, Y.-P.F.: Stress and strain in cryptoperthite lamellae and the coherent solvus of alkali feldspars. Am. Mineralogist 59, 1299–1318 (1974).

    CAS  Google Scholar 

  • Robinson, P., Ross, M., Jaffe, H.W.: Composition of the anthophyllite-gedrite series, comparisons of gedrite and hornblende and the anthophyllite-gedrite solvus. Am. Mineralogist 56, 1005–1041 (1971).

    CAS  Google Scholar 

  • Ross, M., Huebner, J.S., Dowty, E.: Delineation of the one atmosphere augite-pigeonite miscibility gap for pyroxenes from lunar basalt 12021. Am. Mineralogist 58, 619–635 (1973).

    CAS  Google Scholar 

  • Ross, M., Papike, J.J., Shaw, K.W.: Exsolution textures in amphiboles as indicators of subsolidus thermal histories. Mineral. Soc. Am. Spec. Paper 2, 275–299 (1969).

    CAS  Google Scholar 

  • Smith, J.V.: Critical review of synthesis and occurrence of plagioclase feldspars and a possible phase diagram. J. Geol. 80, 505–525 (1972).

    Article  CAS  Google Scholar 

  • Smith, J.V., MacKenzie, W.S.: The alkali feldspars. V. The nature of orthoclase and microcline perthites and observations concerning the polymorphism of potassium feldspar. Am. Mineralogist 44, 1169–1186 (1959).

    CAS  Google Scholar 

  • Smith, P., Parsons, I.: The alkali-feldspar solvus at 1 kilobar water-vapour pressure. Mineral. Mag. 39, 747–767 (1974).

    Article  CAS  Google Scholar 

  • Steiger, R.H., Hart, S.R.: The microcline-orthoclase transition within a contact aureole. Am. Mineralogist 52, 87–116 (1967).

    CAS  Google Scholar 

  • Vander Sande, J.B., Kohlstedt, D.L.: A high-resolution electron microscopy study of exsolution lamellae in enstatite. Phil. Mag. 29, 1041–1049 (1974).

    Article  Google Scholar 

  • Voll, G.P.L.E.: Entmischung von Plagioklasen mit An50-55 zu An18 + An93 (Abs.) Fortschr. Mineral. 49, 61–63 (1971).

    Google Scholar 

  • Voll, G.P.L.E.: Unmixing of An50–55 to An17 + 93 and cellular growth of precipitates. (Abs.) NATO Adv. Study Inst, on Feldspars, 16–17 (1972).

    Google Scholar 

  • Wenk, H.-R., Müller, W.F., Thomas, G.: Antiphase domains in lunar plagioclase. Proc. 4th Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 4, 1, 909–923 (1973).

    CAS  Google Scholar 

  • Wenk, H.-R., Ulbrich, M., Müller, W.F.: Lunar plagioclase: a mineralogical study. Proc. 3rd Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 3, 1, 569–579 (1972).

    CAS  Google Scholar 

  • Willaime, C., Brown, W.L., Gandais, M.: An electron-microscopic and X-ray study of complex exsolution textures in a cryptoperthitic alkali feldspar. J. Mat. Sci. 8, 461–466 (1973).

    Article  CAS  Google Scholar 

  • Willaime, C., Gandais, M.: Study of exsolution in alkali feldspars. Calculation of elastic stresses inducing periodic twins. Phys. Stat. Sol. 9, 529–539 (1972).

    Article  CAS  Google Scholar 

  • Wright, T.L.: The microcline-orthoclase transformation in the contact aureole of the Eldora stock, Colorado. Am. Mineralogist 52, 117–136 (1967).

    CAS  Google Scholar 

  • Yund, R.A., McLaren, A.C., Hobbs, B.E.: Coarsening kinetics of the exsolution microstructure in alkali feldspar. Contrib. Mineral. Petrol. 48, 45–55 (1974).

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Champness, P.E., Lorimer, G.W. (1976). Exsolution in Silicates. In: Wenk, HR. (eds) Electron Microscopy in Mineralogy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66196-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66196-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66198-3

  • Online ISBN: 978-3-642-66196-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics