Abstract

The electron microscope and its accessory equipment are being redesigned and developed continuously in order to improve resolution, penetration, and specimen handling facilities. In the early years, considerable effort was expended on lenses, the design of pole pieces, high intensity filament systems, and stable high voltage power supplies. These developments are documented in the conference proceedings of the International and Regional Congresses on Electron Microscopy which have been held since 1948, and will not be discussed in this Chapter. Readers interested in the history of electron microscopy should consult recent reviews by Cosslett (1968), Dupouy (1968, 1974), Gabor (1974), Marton (1968), and Ruska (1974). The present chapter describes techniques for preparing and handling specimens, special microscope stages, and experiments that can be done directly in the transmission electron microscope.

Keywords

Clay Furnace Zirconium Carbide Radium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allinson, D.L.: Environmental cell for use in a high voltage microscope. Proc. 7th Int. Congress on Electron Microscopy, Grenoble, 1, 169–170.Google Scholar
  2. Allinson, D.L., Gosnold, A.W., Loveday, M.S.: A modified environmental cell for use in a high voltage electron microscope. Proc. 5th Europ. Congress on Electron Microscopy, Manchester, 336–337 (1972).Google Scholar
  3. Allpress, J.G., Sanders, J.V., Wadsley, A.D.: Electron microscopy of high temperature Nb2O5 and related phases. Phys. Stat. Sol. 25, 541–550 (1968).CrossRefGoogle Scholar
  4. Amelinckx, S.: The direct observation of dislocations. New York: Academic Press 1964.Google Scholar
  5. Amelinckx, S., Delavignette, P.: Dislocation patterns in graphite. J. Nucl. Mater. 5, 17–66 (1962).CrossRefGoogle Scholar
  6. Bach, H.: Elektronenmikroskopische Durchstrahlungsaufnahmen und Feinbereichselektronenbeugung an A12O3 Keramik. BOSCH Techn. Ber. 1, 10–13 (1964).Google Scholar
  7. Bach, H.: Application of ion sputtering in preparing glasses and their surface layers for electron microscope investigations. J. Non-Cryst. Sol. 3, 1–32 (1970).CrossRefGoogle Scholar
  8. Barber, D.J.: Thin foils of non-metals made for electron microscopy by sputter-etching. J. Mat. Sci. 5, 1–8 (1970).CrossRefGoogle Scholar
  9. Barber, D.J.: Mounting grains to be examined by high resolution electron microscopy. Am. Mineralogist 56, 2152–2155 (1971).Google Scholar
  10. Barber, D.J., Ashworth, J.R.: Electron petrography of shock effects in gas-rich enstatite-achondrite. Contrib. Mineral. Petrol. 49, 149–162 (1975).CrossRefGoogle Scholar
  11. Barber, D.J., Evans, R.G.: Dislocations ordering and antiferromagnetic domains in MnO. Proc. EMSA, p. 522–523. Baton Rouge: Claitor 1970.Google Scholar
  12. Barber, D.J., Farabaugh, E.N.: Dislocations and stacking faults in rutile crystals grown by flame fusion methods. J. Appl. Phys. 36, 2803–2806 (1965).CrossRefGoogle Scholar
  13. Barber, D.J., Frank, F.C., Moss, M., Steeds, J.W., Tsong, I.S.T.: Prediction of ion-bombarded surface topographies using Frank’s kinematic theory of crystal dissolution. J. Mat. Sci. 8, 1030–1040 (1973).CrossRefGoogle Scholar
  14. Barber, D.J., Price, P.B.: Solar flare particle tracks in lunar and meteoric minerals. In: Electron microscopy and analysis (ed. W.C. Nixon), p. 276–279. London: Institute of Physics 1971.Google Scholar
  15. Barber, D.J., Tighe, N.J.: Observations of dislocations and surface features in corundum crystals by electron transmission microscopy. J. Res. Nat. Bur. Std. 69 A, 271–280 (1965).Google Scholar
  16. Beeston, B.E.P.: High voltage microscopy of biological specimens: some practical considerations. J. Micros. 98, 402–416 (1973).CrossRefGoogle Scholar
  17. Booker, G.R., Stickler, R.: Method of preparing silicon and germanium specimens for examination by transmission electron microscopy. Brit. J. Appl. Phys. 13, 446–448 (1962).CrossRefGoogle Scholar
  18. Braillon, P., Mughier, J., Serughetti, J.: Transmission electron microscope observations of the dislocations in calcite single crystals. Cryst. Lat. Defects 5, 73–78 (1974).Google Scholar
  19. Brammer, I.S., Dewey, M.A.P.: Specimen preparation for electron metallography. Oxford: Blackwell Sci. Publ. 1966.Google Scholar
  20. Browning, G.: A new axis-centered stage. In: High voltage microscopy (eds. P.R. Swann, C.J. Humphreys, M.J. Goringe), p. 121–128. London: Academic Press 1974.Google Scholar
  21. Bouchard, M., Worthington, W.L., Jurica, D.J., Swann, P.R.: A high-angle tilting stage for the 650 kV Hitachi microscope. Rev. Sci. Instr. 44, 511–512 (1973).CrossRefGoogle Scholar
  22. Buseck, P.R., Jijima, S.: High resolution electron microscopy of silicates. Am. Mineralogist 59, 1–21 (1974).Google Scholar
  23. Castaing, R., Jouffrey, B.: Effets de bombardements ioniques de courte durée sur des-monocristanse métalliques minces. J. Micros. 1, 201–214 (1962).Google Scholar
  24. Champness, P.E.: Nucleation and growth of iron oxides in olivines (MgFe)2SiO4. Mineral. Mag. 37, 790–800 (1970).CrossRefGoogle Scholar
  25. Champness, P.E., Lorimer, G.W.: Electron microscopic studies of some lunar materials. In: Electron microscopy and analysis (ed. W.C. Nixon), p. 324–327. London: Institute of Physics 1971.Google Scholar
  26. Cosslett, V.E.: The high-voltage electron microscope. Contemp. Phys. 9, 333–354 (1968).CrossRefGoogle Scholar
  27. Doherty, P.E., Leombruno, R.R.: Transmission electron microscopy of glass ceramics. J. Am. Ceram. Soc. 47, 368–370 (1964).CrossRefGoogle Scholar
  28. Drum, C.M.: Electron microscopy of dislocations and other defects in sapphire and in silicon carbide, thinned by sputtering. Phys. Stat. Sol. 9, 635–642 (1965).CrossRefGoogle Scholar
  29. Dupouy, G.: Electron microscopy at very high voltage. Adv. in Opt. and Elec. Microscopy 2, 168–250 (1968).Google Scholar
  30. Dupouy, G.: Megavolt electron microscopy. In: High voltage electron microscopy (eds. P.R. Swann, C.J. Humphreys, M.J. Goringe), p. 441–457. London: Academic Press 1974.Google Scholar
  31. Dupouy, G., Perrier, F.: Observation en microscopie électronique à haute tension.d’àchantil-lons métalliques progessivement amincis par bombardement ionique. Compt. Rend. 261, 4649–4651 (1965).Google Scholar
  32. Evans, T., Phaal, C.: Transmission electron microscopy of diamond. Proc. 5th Int. Congress on Electron Microscopy, Philadelphia, 1 B, 4–5 (1962).Google Scholar
  33. Fisher, R.M., Swann, P.R., Nutting, J.: A new objective pole piece and specimen heating stage for the Elmiskop. Proc. Europ. Reg. Congress on Electron Microscopy, Delft, 1, 131–133 (1960).Google Scholar
  34. Flower, H.M.: High voltage electron microscopy of environmental reactions. J. Micros. 97, 171–190 (1973).CrossRefGoogle Scholar
  35. Flower, H.M.: Environmental gas reaction cells. I. Review. In: High voltage electron microscopy (eds. P.R. Swann, C.J. Humphreys, M.J. Goringe), p. 383–399. London: Academic Press 1974.Google Scholar
  36. Gabor, D.: The history of the electron microscope from ideas to achievements. Proc. 8th Int. Congress on Electron Microscopy, Canberra, 2, 6–12 (1974).Google Scholar
  37. Genty, B.: Amincissement par bombardement ionique d’échantillons métalliques en vue de leur examen au microscope électronique. In: Le bombardement ionique. C.N.R.S., p. 95–104 (1962).Google Scholar
  38. Gilliespie, P., McLaren, A.C., Boland, J.N.: Operating characteristics of an ion bombardment apparatus for thinning non-metals for transmission electron microscopy. J. Mat. Sci. 6, 87–89 (1971).CrossRefGoogle Scholar
  39. Glauert, A.M. (ed.): Practical methods in electron microscopy. Amsterdam: North Holland Publ. Co. 1972.Google Scholar
  40. Goodhew, P.J.: Preparation of carbon fibers for transmission electron microscopy. J. Phys. E. Sci. Inst. 4, 392–394 (1971).CrossRefGoogle Scholar
  41. Goodhew, P.J.: Specimen preparation in materials science. In: Practical methods in electron microscopy (ed. A.M. Glauert), p. 3–180. Amsterdam: North Holland Publ. Co. 1972.Google Scholar
  42. Goodhew, P.J.: The sputtering of rough cylinders: applications to the thinning of fibers for transmission electron microscopy. J. Mat. Sci. 8, 581–589 (1973).CrossRefGoogle Scholar
  43. Hale, K.F., Henderson-Brown, M., Ishida, Y.: In situ dynamic observations of creep deformationin Al-1% Mgat 1MV. Proc. 5thEurop. Congresson Electron Microscopy, Manchester, 350–381 (1972).Google Scholar
  44. Harrison, C.G., Leaver, K.D., Swann, P.R.: A versatile specimen chamber for in situ experiments on magnetic materials. Proc. 5th Europ. Congress on Electron Microscopy, Manchester, 334–335 (1972).Google Scholar
  45. Heerschap, M., DeCat, R.: Direct filming of transient phenomena with a closed TV circuit as viewfinder. Proc. 5th Europ. Congress on Electron Microscopy, Manchester, 170–171 (1972).Google Scholar
  46. Henderson-Brown, M., Loveday, M.S., Hale, K.F., Gibbons, T.B.: Side entry soft straining and heating stages for in situ dynamic experiments in the IMV electron microscope. Proc. 5th Europ. Congress on Electron Microscopy, Manchester, 328–329 (1972).Google Scholar
  47. Heuer, A.H., Firestone, R.F., Snow, J.D., Green, H.W., Howe, R.G., Christie, J.M.: An improved ion-thinning apparatus. Rev. Sci. Instr. 42, 1177–1184 (1971).CrossRefGoogle Scholar
  48. Hirsch, P.B., Home, R.W., Whelan, M.J.: Direct observations of the arrangement and motion of dislocations in aluminium. Phil. Mag. 1, 677–684, Pl 23–24 (1956).CrossRefGoogle Scholar
  49. Hirsch, P.B., Howie, A., Whelan, M.J.: A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects. Phil. Trans. Roy. Soc. London, Ser. A 252, 499–529 (1960).CrossRefGoogle Scholar
  50. Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., Whelan, M.J.: Electron microscopy of thin crystals. London: Butterworths 1965.Google Scholar
  51. Hobbs, L.W.: Preparation of thin films of moisture sensitive crystals for transmission electron microscopy. J. Phys. E. Sci. Inst. 3, 85–89 (1970).CrossRefGoogle Scholar
  52. Hobbs, L.W., Goringe, M.J.: Electron microscopical observations of in situ and external irradiation damage in alkali halide crystals. Proc. 7th Int. Congress on Electron Microscopy, Grenoble, 1, 239–240 (1970).Google Scholar
  53. Hockey, B.J.: Plastic deformation of aluminum oxide by indentation and abrasion. J. Amer. Ceram. Soc. 54, 223–231 (1971).CrossRefGoogle Scholar
  54. Hockey, B.J.: Observations by transmission electron microscopy on the subsurface damage produced in aluminum oxide by mechanical polishing and grinding. Proc. Brit. Ceram. Soc. 20, 95–115 (1972).Google Scholar
  55. Hockey, B.J., Lawn, B.R.: Electron microscopy of microcracking about indentations in aluminium oxide and silicon carbide. J. Mat. Sci., 10, 1275–1284 (1975).CrossRefGoogle Scholar
  56. Holland, L., Hurley, R.E., Laurenson, L.: The operation of a glow discharge ion gun used for specimen thinning. J. Phys. E. Sci. Inst. 4, 198–200 (1971).CrossRefGoogle Scholar
  57. Howie, A., Whelan, M.J.: Diffraction contrast of electron microscope images of crystal lattice defects. II. The development of a dynamical theory. Proc. Roy. Soc. (London), Ser. A 267, 217–237 (1962).Google Scholar
  58. Hudson, B.: The application of stereo-techniques to electron micrographs. J. Micros. 98, 396–401 (1973).CrossRefGoogle Scholar
  59. Hudson, B., Makin, M.J.: The optimum tilt angle for electron stereo microscopy. J. Phys. E. Sci. Inst. 3, 311 (1970).CrossRefGoogle Scholar
  60. Imura, T., Saka, H., Doi, M.: Application of TV-VTR recording system for studying dynamic or transient phenomena by high voltage electron microscopy (HVEM). Proc. 7th Int. Congress on Electron Microscopy, Grenoble, 2, 331–332 (1970).Google Scholar
  61. Imura, T., Yukawa, N., Saka, H., Nohara, A., Noda, R., Ishikawa, I.: In situ dynamic observation of dislocation motion at low and high-temperature by HVEM. In: High voltage electron microscopy (eds. P.R. Swann, C.J. Humphreys, M.J. Goringe), p. 199–205. London: Academic Press 1974.Google Scholar
  62. Joy, T.R.: The electron microscopical observations of aqueous biological specimens. Adv. in Optical and Elec. Microscopy 5, 297–352 (1973).Google Scholar
  63. Kay, D.: Techniques for electron microscopy. Oxford: Blackwell Sci. Publ. 1965.Google Scholar
  64. Keast, D.J.: A chemical thinning technique for the simultaneous preparation of foils for transmission electron microscopy. Application to yttrium aluminum garnet (YAG). J. Sci. Instr. 44, 862–863 (1967).CrossRefGoogle Scholar
  65. Kirkpatrick, H.B., Amelinckx, S.: Device for chemically thinning crystals for transmission electron microscopy. Rev. Sci. Instr. 33, 488–489 (1962).CrossRefGoogle Scholar
  66. Lally, J.S., Fisher, R.M., Christie, J.M., Griggs, D.T., Heuer, A.H., Nord, G.L., Radcliffe, S.V.: Electron petrography of Apollo 15 and 15 rocks. 3rd Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 3, 1, 401–422, MIT Press (1972).Google Scholar
  67. Lehtinen, B., Roberts, W.: In situ observations of precipitation and recrystallization with a 1 MeV electron microscope. J. Micros. 97, 197–208 (1973).CrossRefGoogle Scholar
  68. Lewis, M.H.: Defects in spinel crystals grown by the Verneuil process. Phil. Mag. 14, 1003–1008 (1966).CrossRefGoogle Scholar
  69. Makin, M.J.: Time-lapse cine photography on the EM 7 microscope, and its use in radiation damage studies. In: High voltage electron microscopy (eds. P.R. Swann, C.J. Humphreys and M.J. Goringe), p. 365–369. London: Academic Press 1974.Google Scholar
  70. Marton, L.: Early history of the electron microscope. San Francisco: San Francisco Press 1968.Google Scholar
  71. Mazey, D.J., Nelson, R.S., Barnes, R.S.: Observation of ion bombardment damage in silicon. Phil. Mag. 17, 1146–1161 (1968).CrossRefGoogle Scholar
  72. McLaren, A.C., Phakey, P.P.: Transmission electron microscope study of amethyst and citrine. Australian J. Phys. 18, 135–141 (1965).CrossRefGoogle Scholar
  73. McPartland, J.O.: A high temperature stage for transmission electron microscopy. Proc. 5th Int. Congress for Electron Microscopy, Philadelphia, 1, E3–4 (1962).Google Scholar
  74. Müller, W.F., Wenk, H.-R.: Changes in the domain structure of anorthites induced by heating. Neues Jahrb. Mineral, Monatsh. 1973, 17–26.Google Scholar
  75. Nakahira, M., Uda, M.: Defect structures of clay minerals. Z. Krist. 124, 6 (1967).CrossRefGoogle Scholar
  76. Nankivell, J.F.: The theory of electron stereo microscopy. Optik 2, 171–197 (1963).Google Scholar
  77. Parsons, D.F., Matricardi, V.R., Subjek, J., Udyess, I., Wray, G.: High voltage electron microscopy of wet whole cancer and normal cells. Biochim. Biophys. Acta 290, 110–124 (1972).CrossRefGoogle Scholar
  78. Paulus, M.: Le bombardement ionique, moyen d’étude de la microstructure des matériaux. Spectra 2000, 2, 43–53 (1974).Google Scholar
  79. Paulus, M., Reverchon, F.: Dispositif de bombardement ionique pour préparations micrographiques. J. Phys. Radium 22, 103–107 A (1961).Google Scholar
  80. Paulus, M., Reverchon, F.: Étude des paramètres du bombardement ionique des ferrites. In: Le bombardement ionique, C.N.R.S. 223–234 (1962).Google Scholar
  81. Phakey, P.P., Rachinger, W.A., Orams, H.J., Carmichael, G.G.: Preparation of thin section of selected areas. Proc. 8th Int. Congress on Electron Microscopy, Canberra, 1, 412–413 (1974).Google Scholar
  82. Price, G.L., Venables, J.A.: Apparatus for in situ nucleation studies in the T.E.M. Proc. 5th Europ. Congress in Electron Microscopy, Manchester, 338–339 (1972).Google Scholar
  83. Radcliffe, S.V., Heuer, A.H., Fisher, R.M., Christie, J.M., Griggs, D.T.: High voltage transmission electron microscopy of lunar surface material. Science 167, 638–640 (1970).CrossRefGoogle Scholar
  84. Raether, H.: Thin monocrystals produced by cathodic sputtering. In: Le bombardement ionique. C.N.R.S. 129–135 (1962).Google Scholar
  85. Ramaswamy, V., Butler, E.P., Swann, P.R.: Direct observation of discontinuous precipitation in A1.28 at % Zn. J. Micros. 97, 259–268 (1973).CrossRefGoogle Scholar
  86. Remaut, G., Lagasse, A., Amelinckx, S.: Electron microscopic study of the domain structure in anti-ferromagnetic cobalteous oxide. Phys. Stat. Sol. 7, 497–510 (1964).CrossRefGoogle Scholar
  87. Ruska, E.: Zur Vor-und Frühgeschichte des Elektronenmikroskops. Proc. 8th Int. Congress on Electron Microscopy, Canberra, 1, 1–5 (1974).Google Scholar
  88. Sharp, J.V., Burnay, S.G.: High voltage electron microscopy of fibers. Electron Microscopy and Analysis (ed. W.C. Nixon), p. 28–29. London: Institute of Physics 1971.Google Scholar
  89. Shaw, G.G.: Techniques for transmission electron microscopy of fiber-matrix interfaces in aluminum-alloy-boron composites by ion erosion. Proc. EMSA, p. 204–205. Baton Rouge: Claitor Publ. 1971.Google Scholar
  90. Stringer, R.K., Warble, C.E., Williams, L.S.: Phenomenalogical observations during solid reactions. In: Kinetics of reaction in ionic systems (eds. T.J. Grey, V.D. Frechette). New York: Plenum Press 1969.Google Scholar
  91. Swann, P.R.: A high angle double tilting specimen stage with straining and cooling attachments for the AEI 1 million volt microscope. Proc. 5th Europ. Congress on Electron Microscopy, Manchester, 322–323 (1972 a).Google Scholar
  92. Swann, P.R.: Side-entry single tilt specimen holders for heating and stress corrosion cracking of electron microscope specimens. Proc. 5th Europ. Congress on Electron Microscopy, Manchester, 330–331 (1972b).Google Scholar
  93. Swann, P.R.: High voltage microscope studies of environmental reactions. In: Electron microscopy and structure of metals, p. 878–904. Berkeley: University of California Press 1972c.Google Scholar
  94. Swann, P.R., Lloyd, A.E.: A high angle, double tilting cold stage for the AEI EM7. Proc. EMSA, p. 450–451. Baton Rouge: Claitor Publ. 1974.Google Scholar
  95. Swann, P.R., Swann, G.R.: A tilting cold stage for the AEI EM802. Proc. EMSA, p. 372–373. Baton Rouge: Claitor Publ. Co. 1970.Google Scholar
  96. Swann, P.R., Tighe, N.J.: High voltage microscopy of gas oxide reactions. Jerkon Ann. 155, 497–501 (1971).Google Scholar
  97. Swann, P.R., Thomas, G., Tighe, N.J.: In situ observations of the nitriding of tantalum. J. Micros. 97, 249–258 (1973).CrossRefGoogle Scholar
  98. Thalen, J., Spoelstra, J., van Breemen, J.F.L., Mellema, J.E.: A tilting stage for electron microscopy of biological objects. J. Phys. E. Sci. Inst. 3, 499–500 (1970).CrossRefGoogle Scholar
  99. Thomas, G.: Transmission electron microscopy of metals. New York: Wiley and Sons 1962.Google Scholar
  100. Thomas, L.E., Lentz, S., Fisher, R.M.: Stereoscopic methods in the HVEM. In: High voltage microscopy (eds. P.R. Swann, C.J. Humphreys and M.J. Goringe), p. 255–259. London: Academic Press 1974.Google Scholar
  101. Tighe, N.J.: Jet thinning device for preparation of A12O3 electron microscopy specimens. Rev. Sci. Instr. 35, 520–521 (1964).CrossRefGoogle Scholar
  102. Tighe, N.J.: Microstructure of fine-grain ceramics. In: Ultrafme-grain ceramics, p. 249–258. Syracuse: Syracuse Univ. Press 1970.Google Scholar
  103. Tighe, N.J., Christie, J.M.: Deformation structures in quartz rocks. Proc. EMSA, p. 60–61. Baton Rouge: Claitor Publ. 1969.Google Scholar
  104. Tighe, N.J., Hyman, A.: Transmission electron microscopy of alumina ceramics. In: Aniso-tropy in single-crystal refractory compounds (eds. E.W. Valdiek and S.S. Mersol), p. 121–236. New York: Plenum Press 1968.Google Scholar
  105. Tighe, N.J., Swann, P.R.: Environmental gas reaction cells 2. Direct reduction of haematite. In: High voltage microscopy (eds. P.R. Swann, C.J. Humphreys and M.J. Goringe), p. 391–395. London: Academic Press 1974.Google Scholar
  106. Tighe, N.J., Flower, H.M., Swann, P.R.: An environmental wet cell for high voltage electron microscopy. Proc. EMSA, p. 18–19. Baton Rouge: Claitor Publ. Co. 1973.Google Scholar
  107. Trillat, J.J.: Le bombardement ionique nouvelle méthode d’étude des surfaces. In: Le bombardement ionique. C.N.R.S., p. 113–135, 1962b.Google Scholar
  108. Trillat, J.J.: Le bombardement ionique; théories et applications. C.N.R.S. 1962a. Ionic bombardment, theory and applications. New York: Gordon and Breach 1964.Google Scholar
  109. Trueb, L.R., Barrett, C.S.: Microstructural investigation of Ballas diamond. Am. Mineralogist 57, 1664–1680 (1972).Google Scholar
  110. Valdiek, F.W.: Phase transition and imperfections of titanium dioxide and zirconium dioxide under high pressure. Proc. 6th Int. Congress on Electron Microscopy, Kyoto, 443–444 (1966).Google Scholar
  111. Valdrè, U.: General consideration in specimen stages. Proc. 5th Europ. Congress on Electron Microscopy, Manchester, 317–321 (1972).Google Scholar
  112. Valdrè, U.: Side-entry and top-entry straining stages with double tilting facilities. In: High voltage electron microscopy (eds. C.J. Humphrey and M.J. Goringe), p. 124–128. London: Academic Press 1974.Google Scholar
  113. Valdrè, U., Horne, R.W.: A freeze-drying and low-temperature stage for electron microscopy. Proc. 5th Europ. Congress on Electron Microscopy, Manchester, 332–333 (1972).Google Scholar
  114. Venables, J.A., Ball, D.J., Thomas, G.J.: An electron microscope liquid helium stage for use with accessories. J. Phys. E. Sci. Inst. 1, 121–126 (1968).CrossRefGoogle Scholar
  115. Vesely, D.: In situ deformation of molybdenum thin foils. J. Micros. 97, 191–196 (1973).CrossRefGoogle Scholar
  116. Ward, P.R., Mitchell, R.F.: A facility for electron microscopy of specimens in controlled environments. J. Phys. E. Sci. Inst. 5, 160–162 (1972).CrossRefGoogle Scholar
  117. Washburn, J., Groves, G.W., Kelly, A., Williamson, G.K.: Electron microscope observations of deformed magnesium oxide. Phil. Mag. 5, 991–999 (1960).CrossRefGoogle Scholar
  118. Watson, J.H.L., Heller, W., Schuster, T.: A study of tactoid forming crystals of βFeOOH. Proc. 2nd. Europ. Congress on Electron Microscopy, Delft, 1, 229–234 (1960).Google Scholar
  119. Whelan, M.J.: A high temperature stage for the Elmiskop I. Proc. 4th Int. Conf. on Electron Microscopy, Berlin, 1, 96–100 (1958).Google Scholar
  120. Wicks, B.J., Lewis, M.H.: Direct observations of ferro-electric domains in lithium niobate. Phys. Stat. Sol. 26, 571–576 (1968).CrossRefGoogle Scholar
  121. Wiederhorn, S.M., Hockey, B.J., Roberts, D.E.: Effect of temperature on the fracture of sapphire. Phil. Mag. 28, 783–796 (1973).CrossRefGoogle Scholar
  122. Wilsdorf, H.G.F.: Apparatus for the deformation of foils in an electron microscope. Rev. Sci. Instr. 29, 323–324 (1958).CrossRefGoogle Scholar
  123. Yonts, O.C., Harrison, D.E.: Surface cleaning by cathode sputtering 31, 1583–1584 (1960).Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1976

Authors and Affiliations

  • N. J. Tighe

There are no affiliations available

Personalised recommendations