Skip to main content

Deformation Structures in Minerals

  • Chapter

Abstract

Although it is four decades since it was proposed (Orowan, 1934; Polanyi, 1934; Taylor, 1934) that linear defects or dislocations in crystals play a major role in the plastic deformation of crystalline solids, it is little more than two decades since the existence of dislocations in crystals was established and their motions clearly associated with deformation. Direct observation of dislocations and associated deformation structures in very thin specimens by transmission electron microscopy (TEM), initially achieved by Hirsch et al. (1956) and Bollman (1956), has proved to be the most fruitful method of study. It is interesting to note that mineral crystals figured significantly in these early developments; for example, the first observations of surface growth steps at the emergence of screw dislocations on crystal surfaces were made in natural beryl crystals (Griffin, 1950); and some of the classic early TEM studies of dislocations, partial dislocations and stacking faults in layer structures were made on graphite and talc, muscovite and chlorite (Amelinckx and Delavignette, 1960 a, b, 1961), in specimens produced by cleavage. However, largely because of difficulties in producing suitably thin “foils” of minerals with poorly-developed cleavage (Tighe, Chapter 3 of this volume) TEM studies of minerals proceeded slowly until late in the 1960’s.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, H., Haasen, P.: Dislocations and plastic flow in the diamond structure. Solid State Phys. 22, 27–158 (1968).

    Article  CAS  Google Scholar 

  • Amelinckx, S., Delavignette, P.: Observation of dislocations in non-metallic layer structures. Nature 185, 603–604 (1960a).

    Article  CAS  Google Scholar 

  • Amelinckx, S., Delavignette, P.: Direct evidence for the presence of quarter-dislocations in talc monocrystals. Phil. Mag. 5, 533–535 (1960b).

    Article  CAS  Google Scholar 

  • Amelinckx, S., Delavignette, P.: Electron microscope observation of dislocations in talc. J. Appl. Phys. 32, 341–351 (1961).

    Article  CAS  Google Scholar 

  • Amelinckx, S., Gevers, R., Remaut, G., Van Landuyt, J. (eds.): Modern diffraction and imaging techniques in materials science, 745 p. Amsterdam: North Holland Publishing Co. and Elsevier 1970.

    Google Scholar 

  • Ardell, A.J., Christie, J.M., McCormick, J.W.: Dislocation images in quartz and the determination of Burgers vectors. Phil. Mag. 29, 1399–1411 (1974a).

    Article  CAS  Google Scholar 

  • Ardell, A.J., Christie, J.M., Tullis, J.A.: Dislocation substructures in deformed quartz rocks. Cryst. Lattice Defects 4, 275–285 (1973).

    CAS  Google Scholar 

  • Ardell, A.J., McCormick, J.W., Christie, J.M.: Diffraction contrast experiments on quartz using high-order (000l) reflections. Proc. 8th Int. Congress on Electron Microscopy, Canberra, 1, 486–487 (1974b).

    Google Scholar 

  • Ashby, M.F.: A first report on deformation-mechanism maps. Acta Met. 20, 887–897 (1972).

    Article  CAS  Google Scholar 

  • Baeta, R.D., Ashbee, K.H.G.: Plastic deformation and fracture of quartz at atmospheric pressure. Phil. Mag. 15, 931–938 (1967).

    Article  CAS  Google Scholar 

  • Baeta, R.D., Ashbee, K.H.G.: Slip systems in quartz: I. Experiments. Am. Mineralogist 54, 1551–1573 (1969a).

    CAS  Google Scholar 

  • Baeta, R.D., Ashbee, K.H.G.: Slip systems in quartz: II. Interpretation. Am. Mineralogist 54, 1574–1582 (1969b).

    CAS  Google Scholar 

  • Baeta, R.D., Ashbee, K.H.G.: Mechanical deformation of quartz, Parts 1 and 2. Phil. Mag. 22, 624–635 (1970).

    Google Scholar 

  • Baeta, R.D., Ashbee, K.H.G.: Transmission electron microscopy studies of plastically deformed quartz. Phys. Stat. Sol. (a) 18, 155–170 (1973).

    Article  CAS  Google Scholar 

  • Balderman, M.A.: The effect of strain rate and temperature on the yield point of hydrolytically weakened synthetic quartz. J. Geophys. Res. 79, 1647–1652 (1974).

    Article  CAS  Google Scholar 

  • Barber, D.J., Wenk, H.-R.: The micro structure of experimentally deformed limestones. J. Mater. Sci. 8, 500–508 (1973).

    Article  CAS  Google Scholar 

  • Blacic, J.D.: Effect of water on the experimental deformation of olivine. In: Flow and fracture of rocks. Geophys. Monogr. 16, 109–115 (1972).

    Article  Google Scholar 

  • Blacic, J.D., Christie, J.M.: Dislocation substructure of experimentally deformed olivine. Contrib. Mineral. Petrol. 42, 141–146 (1973).

    Article  CAS  Google Scholar 

  • Boland, J.N., Hobbs, B.E.: Microfracturing processes in experimentally deformed peridotite. Int. J. Rock Mech. Min. Sci. and Geomech. Abstr. 10, 623–626 (1973).

    Article  Google Scholar 

  • Boland, J.N., McLaren, A.C., Hobbs, B.E.: Dislocations associated with optical features in naturally-deformed quartz. Contrib. Mineral. Petrol. 30, 53–63 (1971).

    Article  CAS  Google Scholar 

  • Bollman, W.: Interference effects in electron microscopy of thin crystal foils. Phys. Rev. 103, 1588–1589(1956).

    Google Scholar 

  • Bragg, W.L.: Atomic structure of minerals, 292 p. Ithaca, N.Y.: Cornell Univ. Press 1937.

    Google Scholar 

  • Brown, W.L., Morimoto, N., Smith, J.V.: A structural explanation of the polymorphism and transitions in MgSiO3. J. Geol. 69, 609–616 (1961).

    Article  CAS  Google Scholar 

  • Carter, N.L., Avé Lallemant, H.G.: High temperature flow of dunite and peridotite. Geol. Soc. Am. Bull. 81, 2181–2202 (1970).

    Article  CAS  Google Scholar 

  • Carter, N.L., Christie, J.M., Griggs, D.T.: Experimental deformation and recrystallization of quartz. J. Geol. 72, 687–733 (1964).

    Article  CAS  Google Scholar 

  • Christie, J.M., Ardell, A.J.: Substructures of deformation lamellae in quartz. Geology 2, 405–408 (1974).

    Article  Google Scholar 

  • Christie, J.M., Green, H.W.: Several new slip mechanisms in quartz. Trans. Am. Geophys. Union 45, 103(1964).

    Google Scholar 

  • Christie, J.M., Griggs, D.T., Carter, N.L.: Experimental evidence of basal slip in quartz. J. Geol. 72, 734–756(1964).

    Article  Google Scholar 

  • Christie, J.M., Griggs, D.T., Heuer, A.H., Nord, G.L., Radcliffe, S.V., Lally, J.S., Fisher, R.M.: Electron petrography of Apollo 14 and 15 breccias and shock-produced analogs. Proc. 4th Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 4, 1, 365–382 (1973).

    Google Scholar 

  • Coe, R.S.: The thermodynamic effect of shear stress on the ortho-clino inversion in enstatite. Contrib. Mineral. Petrol. 26, 247–264 (1970).

    Article  CAS  Google Scholar 

  • Coe, R.S., Kirby, S.H.: The orthoenstatite to clinoenstatite transformation by shearing and reversion by annealing; mechanism and potential applications. Contrib. Mineral. Petrol. 52, 29–56 (1975).

    Article  CAS  Google Scholar 

  • Coe, R.S., Müller, W.F.: Crystallographic orientation of clinoenstatite produced by deformation of orthoenstatite. Science 180, 64–66 (1973).

    Article  CAS  Google Scholar 

  • Cottrell, A.H.: Dislocations and plastic flow in crystals. 223 p. Fair Lawn, New Jersey: Oxford Univ. Press 1953.

    Google Scholar 

  • Friedel, Jacques: Dislocations, 491 p. Oxford: Pergamon Press 1964.

    Google Scholar 

  • Goetze, C., Kohlstedt, D.L.: Laboratory study of dislocation climb and diffusion in olivine. J. Geophys. Res. 78, 5961–5971 (1973).

    Article  Google Scholar 

  • Green, H.W., Radcliffe, S.V.: Deformation processes in the upper mantle. In: Flow and fracture of rocks. Geophys. Monogr. 16, 139–156 (1972 a).

    Article  Google Scholar 

  • Green, H.W., Radcliffe, S.V.: The nature of deformation lamellae in silicates. Geol. Soc. Am. Bull. 83, 847–852 (1972 b).

    Article  CAS  Google Scholar 

  • Griffin, L.J.: Observation of unimolecular growth steps on crystal surfaces. Phil. Mag. 41, 196–199 (1950).

    CAS  Google Scholar 

  • Griggs, D.T.: Deformation of rocks under high confining pressures. J. Geol. 44, 541–577 (1936).

    Article  Google Scholar 

  • Griggs, D.T.: Hydrolytic weakening of quartz and other silicates. Geophys. J. Roy. Astron. Soc. 14, 19–31 (1967).

    Article  CAS  Google Scholar 

  • Griggs, D.T.: A model of hydrolytic weakening in quartz. J. Geophys. Res. 79, 1653–1661 (1974).

    Article  CAS  Google Scholar 

  • Griggs, D.T., Blacic, J.D.: Quartz: Anomalous weakness of synthetic crystals. Science 147, 292–295 (1965).

    Article  CAS  Google Scholar 

  • Griggs, D.T., Handin, J. (eds.): Rock deformation. Geol. Soc. Am. Mem. 79, 382 p. (1960).

    Google Scholar 

  • Griggs, D.T., Turner, F.J., Heard, H.: Deformation of rocks at 500° C to 800° C. In: Rock deformation (eds. D.T. Griggs, J. Handin). Geol. Soc. Am. Mem. 79, 39–104 (1960).

    CAS  Google Scholar 

  • Head, A.K.: The invisibility of dislocations. In: Physics of strength and plasticity (ed. A.S. Argon), p. 65–73. Cambridge, Mass.: M.I.T. Press 1969.

    Google Scholar 

  • Head, A.K., Humble, P., Clarebrough, L.M., Morton, A.J., Forwood, C.T.: Computed electron micrographs and defect identification, 400 p. Amsterdam: North-Holland Pub. Co. 1973.

    Google Scholar 

  • Heard, H.C., Borg, I.Y., Carter, N.L., Raleigh, C.B.: Flow and fracture of rocks. Geophys. Monogr. 16, 352 p. (1972).

    Google Scholar 

  • Heuer, A.H., Christie, J.M., Lally, J.S., Nord, G.L.: Electron petrographic study of some Apollo 17 breccias. Proc. 5th Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 5, 1, 275–286(1974).

    CAS  Google Scholar 

  • Hirsch, P.B., Horne, R.W., Whelan, M.J.: Direct observations of the arrangement and motion of dislocations in aluminium. Phil. Mag. 1, 677–688 (1956).

    Article  CAS  Google Scholar 

  • Hirsch, P.B., Howie, A., Nicholson, R.B., Pashley, D.W., Whelan, M.J.: Electron microscopy of thin crystals, 548 p. Washington: Butterworths 1965.

    Google Scholar 

  • Hirsch, P.B., Howie, A., Whelan, M.J.: A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects. Phil. Trans. Roy. Soc. A252, 499–529 (1960).

    Google Scholar 

  • Hirth, J.P., Lothe, J.: Theory of dislocations. New York: McGraw-Hill Book Co. 1968.

    Google Scholar 

  • Hobbs, B.E.: Recrystallization of single crystals of quartz. Tectonophysics 6, 353–401 (1968).

    Article  Google Scholar 

  • Hobbs, B.E., McLaren, A.C., Paterson, M.S.: Plasticity of single crystals of synthetic quartz. In: Flow and fracture of rocks. Geophys. Monogr. 16, 29–53 (1972).

    Chapter  Google Scholar 

  • Hörz, F., Ahrens, T.J.: Deformation of experimentally shocked biotite. Am. J. Sci. 267, 1213–1229 (1969).

    Article  Google Scholar 

  • Horneman, U., Müller, W.F.: Shock-induced deformation twins in clinopyroxene. Neues Jahrb. Mineral. Monatsh. 6, 247–256 (1971).

    Google Scholar 

  • Howie, A., Whelan, M.J.: Diffraction contrast of electron microscope images of crystal lattice defects. III. Proc. Roy. Soc. (London), Ser. A267, 206–230 (1962).

    Google Scholar 

  • Kirby, S.H., Christie, J.M.: A comparative study of two modes of deformation twinning in diopside. Trans. Am. Geophys. Union 53, 727 (1972).

    Google Scholar 

  • Kirby, S.H., Coe, R.S.: The role of crystal defects in the enstatite inversion. Trans. Am. Geophys. Union 55, 419 (1974).

    Google Scholar 

  • Kirby, S.H., Raleigh, C.B.: Mechanisms of high-temperature, solid-state flow in minerals and ceramics. Tectonophysics 19, 165–194 (1973).

    Article  Google Scholar 

  • Kohlstedt, D.L., Goetze, C.: Low-stress, high-temperature creep in olivine single crystals. J. Geophys. Res. 79, 2045–2051 (1974).

    Article  CAS  Google Scholar 

  • Kohlstedt, D.L., Van der Sande, J.B.: Transmission electron microscopy investigation of the defect structure in four natural orthopyroxenes. Contrib. Mineral. Petrol. 42, 169–180 (1973).

    Article  CAS  Google Scholar 

  • Lally, J.S., Fisher, R.M., Christie, J.M., Griggs, D.T., Heuer, A.H., Nord, G.L., Radcliffe, S.V.: Electron petrography of Apollo 14 and 15 rocks. Proc. 3rd Lunar Sci. Conf. Geochim. Cosmochim. Acta, Suppl. 3, 1, 401–422 (1972).

    CAS  Google Scholar 

  • Leslie, W.C., Stevens, D.W., Cohen, M.: Deformation and transformation structures in shock-loaded iron-base alloys. In: High-strength materials (ed. V.F. Zackay), p. 382–345. New York: J. Wiley and Sons 1965.

    Google Scholar 

  • Liddell, N.A., Phakey, P.P., Wenk, H.-R.: TEM — investigation of some quartzites from the Bergell Alps. Proc. 8th Int. Congress on Electron Microscopy, Canberra 1, 476–477 (1974).

    Google Scholar 

  • McLaren, A.C., Hobbs, B.E.: Transmission electron microscope investigation of some naturally deformed quartzites. In: Flow and fracture of rocks (eds. H.C. Heard, I.Y. Borg, N.L. Carter and C.B. Raleigh). Geophys. Monogr. 16, 55–66 (1972).

    Chapter  Google Scholar 

  • McLaren, A.C., Phakey, P.P.: A transmission electron microscope study of amethyst and citrine. Austr. J. Phys. 18, 135–141 (1965a).

    Article  Google Scholar 

  • McLaren, A.C., Phakey, P.P.: Dislocations in quartz observed by transmission electron microscopy. J. Appl. Phys. 36, 3244–3246 (1965 b).

    Article  Google Scholar 

  • McLaren, A.C., Phakey, P.P.: Transmission electron microscope study of bubbles and dislocations in amethyst and citrine quartz. Austr. J. Phys. 19, 19–24 (1966a).

    CAS  Google Scholar 

  • McLaren, A.C., Phakey, P.P.: Electron microscope study of Brazil twin boundaries in amethyst quartz. Phys. Stat. Sol. 13, 413–422 (1966b).

    Article  CAS  Google Scholar 

  • McLaren, A.C., Phakey, P.P.: Diffraction contrast from Dauphiné twin boundaries in quartz. Phys. Stat. Sol. 31, 723–737 (1969).

    Article  CAS  Google Scholar 

  • McLaren, A.C., Retchford, J.A.: Transmission electron microscope study of the dislocations in plastically deformed synthetic quartz. Phys. Stat. Sol. 33, 657–668 (1969).

    Article  CAS  Google Scholar 

  • McLaren, A.C., Retchford, J.A., Griggs, D.T., Christie, J.M.: Transmission electron microscope study of Brazil twins and dislocations experimentally produced in natural quartz. Phys. Stat. Sol. 19, 631–644 (1967).

    Article  CAS  Google Scholar 

  • McLaren, A.C., Turner, R.G., Boland, J.N., Hobbs, B.E.: Dislocation structure of the deformation lamellae in synthetic quartz. Contrib. Mineral. Petrol. 29, 104–115 (1970).

    Article  CAS  Google Scholar 

  • Morrison-Smith, D.J.: A mechanical and microstructural investigation of the deformation of synthetic quartz crystals. Ph.D. Thesis, Austr. Nat. Univ., 222 p. (1974).

    Google Scholar 

  • Müller, W.F.: Elektronenmikroskopischer Nachweis amorpher Bereiche in stoß wellenbeanspruchtem Quarz. Naturwiss. 56, 279–280 (1969).

    Article  Google Scholar 

  • Müller, W.F., Hornemann, U.: Shock-induced planar deformation structures in experimentally shock-loaded olivines and in olivines from chondritic meteorites. Earth Planet. Sci. Letters 7, 251–264 (1969).

    Article  Google Scholar 

  • Orowan, E.: Zur Kristallplastizität I, II, III. Z. Physik 89, 605–659 (1934).

    Article  Google Scholar 

  • Phakey, P., Dollinger, G., Christie, J.: Transmission electron microscopy of experimentally deformed olivine single crystals. Geophys. Monogr. 16, 117–138 (1972).

    Article  Google Scholar 

  • Polanyi, M.: Über eine Art Gitterstörung, die einen Kristall plastisch machen konnte. Z. Physik. 89, 660–664(1934).

    Article  CAS  Google Scholar 

  • Post, R.L.: The flow laws of Mt. Burnett dunite. Ph.D. dissertation, Univ. of Calif. Los Angeles, 272 p. (1973).

    Google Scholar 

  • Raleigh, C.B.: Glide mechanisms of experimentally deformed minerals. Science 150, 739–741 (1965).

    Article  CAS  Google Scholar 

  • Raleigh, C.B.: Mechanisms of plastic deformation of olivine. J. Geophys. Res. 73, 5391–5406 (1968).

    Article  Google Scholar 

  • Raleigh, C.B., Kirby, S.H.: Creep in the upper mantle. Mineral. Soc. Am. Spec. Paper 3, 113–121 (1970).

    Google Scholar 

  • Raleigh, C.B., Kirby, S.H., Carter, N.L., Avé Lallemant, H.G.: Slip and clinoenstatite transformation as competing rate processes in enstatite. J. Geophys. Res. 76, 4011–4022 (1971).

    Article  CAS  Google Scholar 

  • Read, W.T.: Dislocations in crystals, 228 p. New York: McGraw-Hill Book Co. 1953.

    Google Scholar 

  • Stocker, R.L., Ashby, M.F.: On the rheology of the upper mantle. Rev. Geophys. 11, 391–426 (1973).

    Article  Google Scholar 

  • Stöffler, D.: Deformation and transformation of rock-forming minerals by natural and experimental shock processes, I. Fortschr. Mineral. 49, 50–113 (1972).

    Google Scholar 

  • Stöffler, D.: IL Fortschr. Mineral. 51, 256–289 (1974).

    Google Scholar 

  • Taylor, G.I.: The mechanism of plastic deformation of crystals. Proc. Roy. Soc. (London), Ser. A145, 362–387 (1934).

    Google Scholar 

  • Trommsdorff, V., Wenk, H.-R.: Terrestrial metamorphic clinoenstatite in kinks of bronzite crystals. Contrib. Mineral. Petrol. 19, 158–168 (1968).

    Article  Google Scholar 

  • Tullis, J., Christie, J.M., Griggs, D.T.: Microstructures and preferred orientations of experimentally deformed quartzites. Geol. Soc. Am. Bull. 84, 297–314 (1973).

    Article  Google Scholar 

  • Tullis, J., Tullis, T.: Preferred orientation of quartz produced by mechanical Dauphiné twinning. Geophys. Monogr. 16, 67–82 (1972).

    Article  Google Scholar 

  • Turner, F.J., Heard, H., Griggs, D.T.: Experimental deformation of enstatite and accompanying inversion to clino-enstatite. Rep. Int. Geol. Congress 21st Session, Pt. 17, 399–408 (1960).

    Google Scholar 

  • Weertman, J.: Dislocation climb theory of steady-state creep. Am. Soc. Met. Trans. 61, 681–694 (1968).

    CAS  Google Scholar 

  • Weertman, J.: The creep strength of the earth’s mantle. Rev. Geophys. 8, 145–168 (1970).

    Article  Google Scholar 

  • Wenk, H.-R.: Polymorphism of wollastonite. Contrib. Mineral. Petrol. 22, 238–247 (1969).

    Article  CAS  Google Scholar 

  • White, S.: Natural creep deformation of quartzites. Nature Phys. Sci. 234, 175–177 (1971).

    Google Scholar 

  • White, S.: The dislocation structures responsible for the optical effects in some naturally-deformed quartzes. J. Mat. Sci. 8, 490–499 (1973).

    Article  CAS  Google Scholar 

  • White, S., Cosby, A., Evans, P.E.: Dislocations in naturally deformed quartzite. Nature Phys. Sci. 231, 85–86(1971).

    Article  Google Scholar 

  • Zinserling, K., Shubnikov, A.: Über die Plastizität des Quarzes. Z. Krist. 85, 454–461 (1933).

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Christie, J.M., Ardell, A.J. (1976). Deformation Structures in Minerals. In: Wenk, HR. (eds) Electron Microscopy in Mineralogy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66196-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66196-9_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66198-3

  • Online ISBN: 978-3-642-66196-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics