Advertisement

Vascular Metabolism, Vascular Enzymes, and the Effect of Drugs

  • T. Zemplényi
Part of the Handbuch der experimentellen Pharmakologie / Handbook of Experimental Pharmacology book series (HEP, volume 41)

Abstract

The aim of the study of vascular metabolism is to ascertain whether it plays an essential role in the pathogenesis of vascular disease, especially atherosclerosis; and if so, to find ways to influence vascular metabolism for the prevention and treatment of vascular disease.

Keywords

Lipolytic Activity Arterial Tissue Arterial Smooth Muscle Cell Rabbit Aorta Human Aorta 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdulla, Y. H., Orton, C. C., Adams, C. W. M.: Cholesterol esterification by transacylation in human and experimental atheromatous lesions. J. Atheroscler. Res. 8, 967 (1968).PubMedCrossRefGoogle Scholar
  2. Abdulla, Y. H., Adams, C.W. M., Bayliss, O. B.: The location of lecithin-cholesterol transacylase activity in the atherosclerotic arterial wall. J. Atheroscler. Res. 10, 229 (1969).PubMedCrossRefGoogle Scholar
  3. Adams, C. W. M.: Arteriosclerosis in man, other mammals and birds. Biol. Rev. 39, 372 (1964).PubMedCrossRefGoogle Scholar
  4. Adams, C. W. M.: Vascular histochemistry. London: Lloyd-Luke 1967.Google Scholar
  5. Adams, C. W. M., Bayliss, O. B.: Phospholipids in atherosclerosis: The modification of the cholesterol granuloma by phospholipid. J. path. Bact. 86, 431 (1963).PubMedCrossRefGoogle Scholar
  6. Adams, C. W. M., Morgan, R. S.: Autoradiographic demonstration of cholesterol filtration and accumulation in atheromatous rabbit aorta. Nature (Lond.) 210, 175 (1966).CrossRefGoogle Scholar
  7. Adams, C. W. M., Abdulla, Y. H., Mahler, R. F., Root, M. A.: Lipase, esterase and triglyceride in the ageing human aorta. J. Atheroscler. Res. 9, 87 (1969).PubMedCrossRefGoogle Scholar
  8. Aizawa, Y., Mueller, G. C.: The effect in vivo and in vitro of estrogens on lipid synthesis in the rat uterus. J. biol. Chem. 236, 381 (1961).PubMedGoogle Scholar
  9. Asmussen, E., Knudsen, E. O. E.: Studies in acute but moderate CO poisoning. Acta physiol. scand. 6, 67 (1943).CrossRefGoogle Scholar
  10. Astrup, PL., Kjeldsen, K., Wanstrup, J.: Enhancing influence of carbon monoxide on the development of atheromatosis in cholesterol-fed rabbits. J. Atheroscler. Res. 7, 343 (1967).PubMedCrossRefGoogle Scholar
  11. Banga, I., Baló, I.: Elastomucoproteinase and collagen-mucoproteinase, the mucolytic enzymes of the pancreas. Nature (Lond.) 178, 310 (1965).CrossRefGoogle Scholar
  12. Beaconsfield, P.: Metabolism of the normal cardiovascular wall. 2. The pentose phosphate pathway. Experientia (Basel) 18, 276 (1962).CrossRefGoogle Scholar
  13. Berenson, G. S., Srinivasan, S. R., Dolan, P. F., Radhakrishnamurt, B.: Lipoprotein-acid mucopolysaccharide complexes from fatty streaks of human aorta. Circulation 43, Suppl. II, 20 (1971).Google Scholar
  14. Bickoff, E.M., Spencer, R. R., Knuckles, B. E., Lundin, R.E.: 3’-Methoxycoumestrol from alfalfa: isolation and caracterization. Agricult. Food Chem. 14, 444 (1966).CrossRefGoogle Scholar
  15. Bihari-Varga, M., Simon, J., Gerö, S.: Identification of glycosaminoglycan-beta lipoprotein complexes in the atherosclerotic aorta intima by thermoanalytical methods. Acta Biochem. Biophys. Acad. Sci. Hung. 3, 365 (1968).Google Scholar
  16. Böhm, K.: The flavonoids. A review of their physiology, pharmacodynamics and therapeutic uses. Aulendorf/Württ.: Cantor KG. 1968.Google Scholar
  17. Böttcher, C. J. F.: Phospholipids of atherosclerotic lesions in the human aorta. In: Evolution of the atherosclerotic plaque. Chicago: University of Chicago Press 1963.Google Scholar
  18. Böttcher, C. J. F., Klynstra, F. B.: Acid mucopolysaccharides in human aortic tissue. Their distribution at different stages of atherosclerosis. 7, 301 (1967).Google Scholar
  19. Böttcher, C. J. F., Van Gent, C. M.: Changes in the composition of phospholipid fatty acids associated with altherosclerosis in the human aortic wall. J. Atheroscler. Res. 1, 36 (1961).CrossRefGoogle Scholar
  20. Branwood, A.W., Carr, J.A.: β-Glucuronidase activity of coronary atherosclerotic plaques. Lancet 1960 II, 1254.CrossRefGoogle Scholar
  21. Buddecke, E., Kresse, H.: Mucopolysaccharide und Enzyme des Mucopolysaccharidstoffwechsels im Arterien-und Venengewebe. Angiologica 6, 89 (1969).PubMedGoogle Scholar
  22. Burstein, M., Samaille, J.: Sur un dosage rapide du cholesterol lie aux α-et β-lipoproteines du serum. Clin. chim. Acta 5, 609 (1960).Google Scholar
  23. Caneghem-Van, V. P.: Influence of some hydrosoluble substances with vitamin B activity on the fragility of lysosomes in vitro. Biochem. Pharmacol. 21, 1543 (1972).CrossRefGoogle Scholar
  24. Carpenedo, F., Bortignon, C., Bruni, A., Santi, R.: Effect of quercetin on membrane-linked activities. Biochem. Pharmacol. 18, 1495 (1969).PubMedCrossRefGoogle Scholar
  25. Cavallero, C., Turolla, E.: Istochimica enzimatica delle arterie in rapporto con l’aterosclerosi. Giorn. Gerontol. Suppl. 20, 25 (1960).Google Scholar
  26. Cetta, G., Gerzeli, G., Quartieri, A., Castellani, A. A.: Protective effect of flavonoids on the collagen of lathyritic rats. Experientia (Basel) 27, 1046 (1971).CrossRefGoogle Scholar
  27. Cetta, G., Gerzeli, G., Castellani, A.A.: Effect des flavonoïdes sur le collagène dans le lathyrisme. Paper read at IV th International Angiologic Symposium, Nyon, Switzerland, September 4–6, 1972. Angiologica 9, 235 (1972).Google Scholar
  28. Chance, B., Hollunger, G.: The interaction of energy and electron transfer reactions in mitochondria. J. biol. Chem. 236, 1534 (1961).PubMedGoogle Scholar
  29. Chattopadhyay, D.P.: Influence of experimental atherosclerosis in rabbits on the rate of respiration and glycolysis by aortic tissue slices. Ann. Biochem. exp. Med. 22, 77 (1962).PubMedGoogle Scholar
  30. Chernick, S., Srere, P. A., Chaikoff, I. L.: The metabolism of arterial tissue. II Lipid Synthesis: The formation in vitro of fatty acids and phospholipids by rat artery with 14C and 32P as indicators. J. biol. Chem. 179, 113 (1949).PubMedGoogle Scholar
  31. Chisolm, G.M., Gainer, J., Stoner, G. E., Gainer, J.V., Jr.: Plasma proteins, oxygen transport and atherosclerosis. Atherosclerosis 15, 327 (1972).PubMedCrossRefGoogle Scholar
  32. Chobanian, A.V.: Sterol metabolism in the human arterial intima. Fed. Proc. 26, 262 (1967).Google Scholar
  33. Chobanian, A. V.: Sterol synthesis in the human arterial intima. J. clin. Invest. 47, 595 (1968a).CrossRefGoogle Scholar
  34. Chobanian, A.V.: Effects of sex hormones on phospholipid, RNA, and protein metabolism in the arterial intima. J. Atheroscler. Res. 8, 763 (1968b).PubMedCrossRefGoogle Scholar
  35. Chobanian, A. V., Hollander, W.: Phospholipid synthesis in the human arterial intima. J. clin. Invest. 45, 932 (1966).PubMedCrossRefGoogle Scholar
  36. Chobanian, A.V., Brecher, P.I., Lille, R.D., Wotiz, H.H.: Metabolism of sex hormones in the aortic wall. J. Lipid Res. 9, 701 (1968).PubMedGoogle Scholar
  37. Christensen, S.: Transfer of plasma phospholipid across the aortic intimal surface of cholesterol-fed cockerels. J. Atheroscler. Res. 2, 131 (1962).PubMedCrossRefGoogle Scholar
  38. Christensen, S.: Transfer with labeled cholesterol across the aortic intimal surface of normal and cholesterol-fed cockerels. J. Atheroscler. Res. 4, 151 (1964).PubMedCrossRefGoogle Scholar
  39. Chvapil, M.: Physiology of connective tissue. London: Butterworths; Prague: Czechoslovak Medical Press 1967.Google Scholar
  40. Chvapil, M.: Personal communication.Google Scholar
  41. Citterio, C., Cunego, A.: Determinazione del principio elastolitico nelle arterie cerebrali umani. Giorn. Gerontol. 13, 353 (1965).Google Scholar
  42. Clements, R.S., Jr., Morrison, A.D., Winegrad, A.I.: Polyol pathway in aorta: regulation by hormones. Science 166, 1007 (1969).PubMedCrossRefGoogle Scholar
  43. Comstock, J. P., Udenfriend, S.: Effect of lactate on collagen proline hydroxylase activity in cultured L-929 fibroblasts. Proc. nat. Acad. Sci. (Wash.) 66, 552 (1970).CrossRefGoogle Scholar
  44. Constantinides, P.: Experimental atherosclerosis. Amsterdam: Elsevier 1965.Google Scholar
  45. Cooxson, F.B., Altschul, R., Fedoroff, S.: The effects of alfalfa on serum cholesterol and in modifying or preventing cholesterol-induced atherosclerosis in rabbits. J. Atheroscler. Res. 7, 69 (1967).CrossRefGoogle Scholar
  46. Crockett, R., Dallocchio, M., Razaka, G., Bricaud, H., Broustet, P.: Etude biologique du serum chez le lapin au cours de l’immunisation par antigène aortique. In: Le Rôle De La Paroi Arterielle Dans L’Athérogenèse, p. 463. Paris: Center National De La Recherche Scientifique. 1968.Google Scholar
  47. Cuparencu, B., Tisca, I., Safta, L., Rosenberg, A., Mocan, R., Brief, G. H.: Influence of some psychotropic drugs on the development of experimental atherosclerosis. Cor Vasa 11, 112 (1969).PubMedGoogle Scholar
  48. Cuparencu, B., Mocan, R., Safta, L.: The influence of chlordiazepoxide on the plasma lipoprotein lipase activity and on the lipolytic activity of the aorta in normal and cholesterol fed rabbits. Cor Vasa 12, 248 (1970).Google Scholar
  49. Dalferes, E.R., Jr., Ruiz, H., Kumar, B., Radhakrishnamurthy,B., Berenson,G.S.: Acid mucopolysaccharides of fatty streaks in young, human male aortas. Atherosclerosis 13, 121 (1971).PubMedCrossRefGoogle Scholar
  50. Daly, M. M.: Effects of hypertension on the lipid composition of rat aortic intima-media. Circulation Res. 31, 410 (1972).PubMedGoogle Scholar
  51. Dawson, D.M., Goodfriend, T.L., Kaplan, N.O.: Lactic dehydrogenases: functions of the two types. Science 143, 929 (1964).PubMedCrossRefGoogle Scholar
  52. Day, A. J., Gold-Hurst, P.R. S.: Cholesterol esterase activity of normal and atherosclerotic rabbit aorta. Biochem. biophys. Acta. 116, 169 (1966).Google Scholar
  53. Day, A. J., Wahlqvist, M. L.: Localization by autoradiography of phospholipid synthesis in rabbit atherosclerotic aorta. Exp. Mol. Path. 11, 263 (1969).CrossRefGoogle Scholar
  54. Day, A.J., Wilkinson, G. K.: Incorporation of 14C-labeled acetate into lipid by isolated foam cells and by atherosclerotic arterial intima. Circulation Res. 21, 593 (1967).PubMedGoogle Scholar
  55. Day, A. J., Newman, H. A.I., Zilversmit, D. B.: Synthesis of phospholipid by foam cells isolated from rabbit atherosclerotic lesions. Circulation Res. 19, 122 (1966).Google Scholar
  56. Dayton, S., Hashimoto, S.: Recent advances in molecular pathology: A review: Cholesterol flux and metabolism in arterial tissue and in atheromata. Exp. Mol. Path. 13, 253 (1970).CrossRefGoogle Scholar
  57. Dayton, S., Hashimoto, S.: Origin of cholesteryl oleate and other esterified lipids of rabbit atheroma. Atherosclerosis 12, 371 (1970).PubMedCrossRefGoogle Scholar
  58. Deduve, C., Wattiaux, R.: Function of lysosomes. Ann. Rev. Physiol. 28, 435 (1966).CrossRefGoogle Scholar
  59. De Oliveira, J. M.: The effects of pyridinolcarbamate on experimental arteriosclerosis. In: Shi-Mamoto, T., Numano, F. (Eds.): Atherogenesis. Tokyo: Excerpta Medica Foundation 1969.Google Scholar
  60. Dixon, K.C.: Fatty deposition: A disorder of the cell. Quart. J. exp. Physiol. 43, 139 (1958).PubMedGoogle Scholar
  61. Dunnigan, M.G.: The distrubution of phospholipid within macrophages in human atheromatous plaques. J. Atheroscler. Res. 4, 144 (1964).PubMedCrossRefGoogle Scholar
  62. Dury, A.: Lipolytic activity of aorta of young and old rats and influence of heparin in vivo. J. Gerontol. 16, 114 (1961).PubMedGoogle Scholar
  63. Dyrbye, M., Kirk, J. E.: The beta-glucuronidase activity of aortic and pulmonary artery tissue in individuals of various ages. J. Geront. 11, 33 (1956).PubMedGoogle Scholar
  64. Eisenberg, S., Stein, Y., Stein, O.: Phospholipases in arterial tissue. II Phosphotide acyl-hydrolase and lysophosphatide acylhydrolase activity in human and rat arteries. Biochim. biophys. Acta (Amst.) 164, 205 (1968).Google Scholar
  65. Eisenberg, S., Stein, Y., Stein, O.: Phospholipases in arterial tissue. III. Phosphatide acyl-hydrolase, lysophosphatide acyl-hydrolase and sphingomyelin choline phospohydrolase in rat and rabbit aorta in different age groups. Biochem. biophys. Acta 176, 557 (1969).Google Scholar
  66. Eisenberg, S., Stein, Y., Stein, O.: Phospholipases in arterial tissue. IV. The role of phosphatide acyl hydrolase, lysophosphatide acyl hydrolase, and sphingomyelin choline phosphohydrolase in the regulation of phospholipid composition in the normal human aorta with age. J. clin. Invest. 48, 2320 (1969b).PubMedCrossRefGoogle Scholar
  67. Ernster, L., Lee, C. P.: Energy-linked pyridine nucleotide transhydrogenase. Ann. Rev. Biochem. 33, 738 (1964).CrossRefGoogle Scholar
  68. Felt, V.: The effect of pressure changes on esterification of cholesterol and hydrolysis of cholesterol esters in rat aorta and serum. Experientia (Basel) 27, 1412 (1971).CrossRefGoogle Scholar
  69. Felt, V., Benei, P.: The incorporation of [4–14C] cholesterol into different cholesterol esters of rat aorta in vitro. Biochim. biophys. Acta (Amst.) 176, 435 (1969).Google Scholar
  70. Felt, V., Bene, P.: Cholesterolesterase (veresternde and hydrolysierende) im Blutserum, in der Leber, den Nieren and Aorten bei Entwicklung der Kaninchen-Atherosklerose. Enzym. biol. clin. 11, 511 (1970).Google Scholar
  71. Field, H., Swell, L., Schools, P. E., Treadwell, C. R.: Dynamic aspects of cholesterol metabolism in different areas of the aorta and other tissues of men and their relationship to atherosclerosis. Circulation 22, 547 (1960).PubMedGoogle Scholar
  72. Filipovic, I., Buddecke, E.: Increased fatty acid synthesis of arterial tissue in hypoxia. Europ. J. Biochem. 20, 587 (1971).PubMedCrossRefGoogle Scholar
  73. Filipovic, I., Figura, K. V., Buddecke, E.: Studies of the (+)-catechin action on the metabolism of bovine arterial tissue. Paper read at IVth International Angiologic Symposium, Nyon, Switzerland, September 4–6, 1972. Angiologica 9, 204 (1972).Google Scholar
  74. French, J. E.: Atherosclerosis in relation to the structure and function of the arterial intima. Int. Rev. exp. Pathol. 5, 253 (1966).PubMedGoogle Scholar
  75. Friedman, M., Byers, S. O., Rosenman R. H.: Resolution of aortic atherosclerosis infiltration in rabbit by phosphatide infusion. Proc. Soc. exp. Biol. (N.Y.) 95, 586 (1957).Google Scholar
  76. Frith, C. H., Alexander, A. F., Will, D. H.: Influence of hypoxia on arterial enzymes. Fed. Proc. 30, 481 (1971).Google Scholar
  77. Fuller, G. C., Langer, R. O.: Elevation of aortic proline hydroxylase: A biochemical defect in experimental arteriosclerosis. Science 168, 987 (1970).PubMedCrossRefGoogle Scholar
  78. Fuller, G. C., Miller, E., Farber, T. M., Vanloon, E. J.: Elevation of aortic proline hydroxylase in miniature pigs fed a lipid-rich diet. Fed. Proc. 30, 370 (1971).Google Scholar
  79. Gabor, M.: The anti-inflammatory action of flavonoids. Budapest: Akademia Kiado 1972.Google Scholar
  80. Gajdos, A., Gajdos-Torok, M., Horn, R.: Augmentation du taux hepatique de l’ATP chez le Rat blanc par administration de (+)-catechine. C.R. Soc. Biol. 163, 2089 (1969).Google Scholar
  81. Gaspar-Godfroid, A.: Influence de differents agents denaturants et de la digestion tryptique sur l’activite adenosinetriphosphatasique de la myosine de carotide de bovide. Angiologica 7, 273 (1970).PubMedGoogle Scholar
  82. Geer, J. C., Haust, M. D.: Smooth muscle cells in atherosclerosis. In: Monographs on Atherosclerosis. Vol. 2. Switzerland: S. Karger 1972.Google Scholar
  83. Gerö, S.: Investigations on the role of vascular mucopolysaccarides in the mechanism of lipid deposition. Zool. Soc. London Symp. 11, 169 (1964).Google Scholar
  84. Gerö, S., Gergely, J., Dévényi, T., Viräg, S., Székely, J., Jakob, L.: Inhibitory effect of some mucopolysaccharides on the lipolytic activity of the aorta of animals. Nature (Lond.) 194, 1181 (1962).CrossRefGoogle Scholar
  85. Gerö, S., Bihari-Varga, M., Virág, S., Végh, M.: Investigations on the role of mucopolysaccharides in atherosclerosis. In: Le Role De La Paroi Arterielle Dans L’Atherogenese, p. 789. Paris: Center National De La Recherche Scientifique 1968.Google Scholar
  86. Getz, G. S., Vesselinovitch, D., Wissler, R. W.: A dynamic pathology of atherosclerosis. Amer. J. Med. 46, 657 (1969).CrossRefGoogle Scholar
  87. Gore, I., Larkey, B.J.: Functional activity of aortic mucopolysaccharides. J. Lab. clin. Med. 56, 839 (1960).PubMedGoogle Scholar
  88. Gould, R. G., Jones, R. J., Wissler, R. W.: Lability of labeled cholesterol in human atherosclerotic plaques. Circulation 20, 967 (1959).Google Scholar
  89. Grafnetter, D., Zemplényi, T.: Vergleich der Eigenschaften von Gewebseigenen lipolytischen Enzymen und des »Klärungsfaktors« bei der Inkubation mit lipämischen Serum. Z. Physiol. Chem. 316, 218 (1959).CrossRefGoogle Scholar
  90. Grafnetter, D., Zemplényi, T.: Tissue lipolytic activity in calciferol intoxicated rats. Experientia (Basel) 18, 85 (1962).CrossRefGoogle Scholar
  91. Hadjisky, P., Renais, J., Scebat, L.: Histochimie et histoenzymologie de l’aorte de gallus gallus, jeunes et adultes. Comparaison avec conturnix conturnix. I. Metabolisme glucidique et energetique. Arch. Mal. Coeur, 63, Suppl. 1, 40 (1970a).Google Scholar
  92. Hadjiisky, P., Ranais, J., Scebat, L.: Histochimie et histoenzymologie de l’aorte de gallus gallus, jeunes et adultes. Comparaison avec conturnix conturnix. II. Metabolisme lipidique et protidique. Arch. Mal. Coeur 63, Suppl. 1, 53 (1970b).Google Scholar
  93. Hahn, P.F.: Abolishment of alimentary lipemia following injection of heparin. Science 98, 19 (1943).PubMedCrossRefGoogle Scholar
  94. Haimovici, H., Maier, H.: Fate of aortic homografts in canine atherosclerosis. Arch. Surgery 89, 961 (1964).CrossRefGoogle Scholar
  95. Haimovici, H., Maier, N., Strauss, L.: Fate of aortic homografts in experimental canine atherosclerosis. Study of fresh thoracic implant into abdominal aorta. Arch. Surg. 76, 282 (1958).CrossRefGoogle Scholar
  96. Haimovici, H., Maier, N., Strauss, L.: Role of arterial tissue susceptibility in experimental canine atherosclerosis. J. Atheroscler. Res. 6, 62 (1966).CrossRefGoogle Scholar
  97. Halborg-Sørensen, A., Hansen, A.: Chronic venous insufficiency treated with hydroxyethylrutosides (HR). Angiologia 7, 192 (1970).Google Scholar
  98. Hall, D.A.: The characterization of a new lipolytic enzyme in pancreatic extracts. Biochem. J. 78, 491 (1961).PubMedGoogle Scholar
  99. Hall, D.A.: Elastolysis and Aging. Springfield: Thomas 1964.Google Scholar
  100. Hall, D. A., Czerkawski, J. W.: The reaction between elastase and elastic tissue. 6. The mechanism of elastolysis. Biochem. J. 80, 134 (1961).PubMedGoogle Scholar
  101. Hamoir, G., Gaspar-Godfroid, A., Laszt, L.: Changements d’etat d’agregation et de dissociation de la tonoactomyosine de carotides de bovide sous l’influence de la force ionique et de l’ATP. Angiologica 2, 44 (1965).PubMedGoogle Scholar
  102. Harris, E. D., O’Dell, B. L.: Comparison of soluble and particulate amine oxidases from bovine aorta. Biochem. Biophys. Res. Commun. 48, 1173 (1972).PubMedCrossRefGoogle Scholar
  103. Haruki, F., Kirk, J.E.: Hexosamine-synthesizing enzyme in human arterial tissue. Proc. Soc. exp. Biol. (N. Y.) 118, 479 (1965).Google Scholar
  104. Haust, M. D., More, R.H.: Significance of the smooth muscle cell in atherogenesis. In: Evolution of the atherosclerotic plaque, p. 51. Chicago: Chicago University Press 1963.Google Scholar
  105. Havel, R. J.: Transport and metabolism of chylomiera. Amer. J. clin. Nutr. 6, 662 (1958).PubMedGoogle Scholar
  106. Hayase, K., Miller, B.F.: Lipase activity in the human aorta. J. Lipid Res. 11, 209 (1970).PubMedGoogle Scholar
  107. Hayase, K., Reisher, S., Miller, F. B.: Partial purification and properties on N-acetyl-β-D-gluco-aminidase from human human aortic wall. Fed. Proc. 30, 481 (1971a).Google Scholar
  108. Hayase, K., Reisher, S. R., Miller, B.F.: Evidence suggesting presence of at lease two forms of N-acetyl-B-D Hexosaminidase in human aorta. Circulation 44, 17 (1971b).Google Scholar
  109. Held, E., Buddecke, E.: Nachweis, Reinigung and Eigenschaften einer Chondroitin-4-Sulfatase aus der Aorta des Rindes. Z. physiol. Chem. 348, 1047 (1967).Google Scholar
  110. Held, E., Hoefele, O., Reich, G., Stein, U., Werrier, E., Buddecke, E.: Wirtungssynergismus Chondroitin-4-Sulfat-protein abbauender Enzyme des Arteriengewebes. Z. Klin. Chem. Klin. Biochem. 6, 244 (1968).PubMedGoogle Scholar
  111. Helin, P., Lorenzen, I.: Arteriosclerosis in rabbit aorta induced by systemic hypoxia; Biochemical and morphological studies. Angiology 20, 1 (1969).PubMedCrossRefGoogle Scholar
  112. Helin, P., Lorenzen, I., Carbasch, C., Matthiessen, M. E.: Arteriosclerosis and hypoxia, Part 2 (Biochemical changes in mucopolysaccharides and collagen or rabbit aorta induced by systemic hypoxia.) J. Atheroscler. Res. 9, 295 (1969).PubMedCrossRefGoogle Scholar
  113. Helin, G., Helin, P., Lorenzen, I.: The aortic glycosaminoglycans in arteriosclerosis induced by systemic hypoxia. Atherosclerosis 12, 235 (1970).PubMedCrossRefGoogle Scholar
  114. Hoff, H. F.: A histoenzymatic study of human intracranial atherosclerosis. Amer. J. Path. 67, 583 (1972).PubMedGoogle Scholar
  115. Horn, R., Vondermuhll, M., Comte, M., Grandroques, C.: Action de quelques catechines sur l’activité d’un enzyme (la cytochromeoxydase) de la chaine respiratoire. Experienta (Basel) 26, 1081 (1970).CrossRefGoogle Scholar
  116. Hornàcek, J., Trcka, V., Vejdëlek, Z.: The effect of alfalfa extracts on experimental rabbit atherosclerosis. (In Czech.) Cs. fysiol. 15, 33 (1966).Google Scholar
  117. Hosoda, S., Kirk, J.E.: Vitamin B12 content of human vascular tissue in individuals of various ages. J. Gerontol. 24, 298 (1969).PubMedGoogle Scholar
  118. Howard, A.N.: Recent advances in nutrition and atherosclerosis. In: Jones, R. J. (Ed.): Atherosclerosis: Proceedings of the Second International Symposium. New York-Heidelberg-Berlin: Springer 1970.Google Scholar
  119. Howard, C.F., Jr.: Lipogenesis from [2–14C] glucose and [1–14C] acetate in aorta. J. Lipid Res. 12, 725 (1971).PubMedGoogle Scholar
  120. Howard, C.F., Jr.: Aortic lipogenesis during aerobic and hypoxic incubation. Atherosclerosis 15, 359 (1972).PubMedCrossRefGoogle Scholar
  121. Howard, C.F., Portman, O.W.: Hydrolysis of cholesteryl linoleate by a high speed supernate preparation of rat and monkey aorta. Biochim. biophys. Acta (Amst.) 125, 623 (1966).Google Scholar
  122. Hull, F.E., Whereat, A. F.: The effect of rotenone on the regulation of fatty acid synthesis in heart mitochondria. J. biol. chem. 242, 4023 (1967).PubMedGoogle Scholar
  123. Ito, T.: Tocopherol, non-protein SH and metals in the human aorta. Jap. Circul. J. 33, 25 (1969).CrossRefGoogle Scholar
  124. Janakidevi, K.: Isolation and purification of aortic nuclei and characterization of the nuclear enzymes. Fed. Proc. 30, 482 (1971).Google Scholar
  125. Jelinkova, M., Stuchlikova, E., Hrúza, Z., Deyl, Z., Smrz, M.: Hormonesensitive lipolytic activity of the aorta of different age groups of rats. Exp. Geront. 7, 263 (1972).CrossRefGoogle Scholar
  126. Janda, J., Mrhovâ, O., Urbanovâ, D.: Aortic thermal lesion. Cor Vasa 14, 71 (1972).PubMedGoogle Scholar
  127. Kagan, H.M., Franzblau, C.: Lysyl oxidase of chick aorta. Circulation 44, No. 2, II - 18 (1971).Google Scholar
  128. Kalra, V. K., Brodie, A. F.: a-Glycerol phosphate shuttle and energy-linked transhydrogenase in aortic mitochondria. Biochim.Biophys. Res. Commun. 51, 414 (1973).CrossRefGoogle Scholar
  129. Kato, L., Gozsy, B.: Effets vasculaires des bioflavonoides chez le rat. Bordeaux Med. No.2, 438 (1970).Google Scholar
  130. Kheim, T. F., Kirk, J.E.: Para-aminobenzoic acid and folic acid contents of human vascular tissue. J. Lab. clin. Med. 11, 850 (1970).Google Scholar
  131. Kheim, T., Kirk, J.E.: Thiamine content of human arterial and venous tissue. Fed. Proc. 28, 866 (1969).Google Scholar
  132. Kirk, J.E.: Comparison of enzyme activities of arterial samples from sexually mature men and women. Clin. Chem. 10, 184 (1964).PubMedGoogle Scholar
  133. Kirk, J. E.: Aging in enzyme activities of human arterial tissue. In: Shock, N. W. (Ed.): Perspectives in experimental gerontology, p. 182. Springfield: Thomas 1966.Google Scholar
  134. Kirk, J. E.: Enzymes of the arterial wall. New York-London: Academic Press 1969.Google Scholar
  135. Kirk, J. E.: Free carnitine content and carnitine acetyltransferase activity of human vascular tissue. J. Lab. clin. Med. 11, 892 (1969).Google Scholar
  136. Kirk, J. E., Ritz, E.: The glyceraldehyde-3-phosphate and a-glycerophosphate dehydrogenase activities of arterial tissue in individuals of various ages. J. Gerontol. 22, 427 (1967).PubMedGoogle Scholar
  137. Kirk, J. E., Effersoe, P. G., Chiang, S. P.: The rate of respiration and glycolysis by human and dog aortic tissue. J. Geront. 9, 10 (1954).PubMedGoogle Scholar
  138. Kittinger, G.W., Wexler, B.C., Miller, B.F.: Enzymatic activities in aortas of normal and arteriosclerotic rats. In: Prusik, B., Reinis, Z., Riedel, O. (Eds.): Metabolismus Parietis Vasorum. Prague: State Medical Publ. House 1962.Google Scholar
  139. Kjeldsen, K., Wanstrup, J., Astrup, P.: Enhancing influence of arterial hypoxia on the development of atheromatosis in cholesterol-fed rabbits. J. Atheroscler. Res. 8, 835 (1968).PubMedCrossRefGoogle Scholar
  140. Kjeldsen, K., Astrup, P., Wanstrup, J.: Reversal of rabbit atheromatosis by hyperoxia. J. Atheroscler. Res. 10, 173 (1969).PubMedCrossRefGoogle Scholar
  141. Kjeldsen, K., Astrup, P., Wanstrup, J.: Ultrastructural intimal changes in the rabbit aorta after a moderate carbon monoxide exposure. Atherosclerosis 16, 76 (1972).CrossRefGoogle Scholar
  142. Klimesova, A., Heyrovsky, A.: A note on the actomyosin content of the anterial wall. Atherosclerosis 11, 27 (1970).PubMedCrossRefGoogle Scholar
  143. Korn, E. D.: Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart. J. biol. Chem. 215, 1 (1955).Google Scholar
  144. Korn, E. D.: In: Page, I. H. (Ed.): Chemistry of lipids as related to atherosclerosis, p.169. A symposium. Springfield: C.C. Thomas 1958.Google Scholar
  145. Kothari, H., Miller, B.F., Kritchevsky, D.: Properties of cholesterol ester hydrolase of rat and rabbit aorta. Circulation 43 and 44, Suppl.II, II - 5 (1971).Google Scholar
  146. Kothari, H. V., Miller, B. F., Kritchevsky, D.: Aortic cholesterol esterase: Characteristics of normal rat and rabbit enzyme. Biochim. biophys. Acta (Amst.) 296, 446 (1972).Google Scholar
  147. Kresse, H., Buddecke, E.: Veränderungen in der Aktivität Chondroitinsulfat-Protein abbauender Enzyme (Glykosaminoglykanohydrolasen und Peptidhydrolasen) des Arteriengewebes im Alter und bei Arteriosklerose. Z. klin. Chem. Klin. Biochem. 6, 251 (1968).PubMedGoogle Scholar
  148. Kresse, H., Wessels, G.: Methodische Untersuchungen zum In-Vtro-Stoffwechsel von Rinderarteriengewebe. Z. physiol. Chem. 350, 1605 (1969).Google Scholar
  149. Kresse, H., Filipovic, I., Buddecke, E.: Gesteigerte 14C-Inkorporation in die Triacylglycerine (Triglyceride) des Arteriengewebes bei Sauerstoffmangel. Z. physiol. Chem. 350, 1611 (1969).CrossRefGoogle Scholar
  150. Kresse, H., Filipovic, I., Iserloh, A., Buddecke, E.: Comparative studies on the chemistry and the metabolism of arterial and venous tissue. Angiologica 7, 321 (1970).PubMedGoogle Scholar
  151. Kritchevsky, S.: Cholesterol Metabolism in aorta and in tissue culture. Lipids 7, 305 (1972).PubMedCrossRefGoogle Scholar
  152. Krolek, A., Janousek, V., Serak, L.: Respiratory activity of the vascular wall in experimental atherosclerosis measured by the polarographic method. In: Prusik, B., Reinis, Z., Riedl, O. (Eds.): Metabolismus Parietis Vasorum. Prague: State Medical Publ. House 1962.Google Scholar
  153. Krompecher, I.: Hypoxibiose und Mukopolysaccharide-Bildung in der Differenzierung und Pathologie der Gewebe sowie über den Zusammenhang zwischen Schilddrüsenfunktion und Mukopolysacchariden. Leipzig: Barth 1960.Google Scholar
  154. Kumar, V., Berenson, G. S., Ruiz, H., Dalferes, E. R., Jr., Strong, T. P.: Acid mucopolysaccharides of human aorta. Part 2 (Variation with atherosclerotic involvement) J. Atheroscler. Res. 7, 583 (1967).PubMedCrossRefGoogle Scholar
  155. Kupke, I. R.: Biosynthesis of lipids in perfused dog aorta and coronary artery. I. Incorporation of [2–14C] acetate into the lipids of three aortic layers and of the coronary artery in normal and hyperlipemic dogs. J. Mol. Cell Cardiol. 4, 11 (1972a).PubMedCrossRefGoogle Scholar
  156. Kupke, I.R.: Biosynthesis of lipids in perfused dog aorta and coronary artery. II. Incorporation of 2–14C Acetate into lipids of two aortic layers and of the coronary artery under the influence of nicotine. J. Mol. Cell. Cardiol. 4, 27 (1972b).PubMedCrossRefGoogle Scholar
  157. Kupke, I.R.: Biosynthesis of lipids in perfused dog aorta and coronary artery. III. Incorporation of 2–14C Acetate into sterols and uptake of 3H-cholesterol in three aortic layers and in coronary artery of normal and hyperlipemic dogs and under the influence of nicotine. J. Mol. Cell. Cardiol. 4, 255 (1972c).PubMedCrossRefGoogle Scholar
  158. Lacuara, J. L., Gerschenson, L., Moguilevsky, H. C., Malinow, M. R.: Sexual differences in the esterase activity of the aorta in rats. J. Atheroscler. Res. 3, 496 (1962).CrossRefGoogle Scholar
  159. Laszt, L.: Zur Biochemie der Venewand. In: Die Venose Insuffizienz. Pathophysiologie, Klinik und Therapie. Herausgegeben von K. W. Schneider, p. 9. Baden-Baden-Brüssel: Gerhard Witzstrock 1972a.Google Scholar
  160. Laszt, L.: Bases experimentales pour une pharmacologie des flavonoides. Paper read at IV th International Angiologic Symposium, Nyon, Switzerland, September 4–6, 1972b. Angiologica 9, 193 (1972).Google Scholar
  161. Lazzarini-Robertson, A.: Respiration of human arterial intima and atherogenesis. Fed. Proc. 21, 101 (1962).Google Scholar
  162. Lerres, F. L.: Topography of lipolytic enzymes in various stages of evolution of the atherosclerotic plaques. (Russian) Dokl. Akad. Nauk. SSSR. 165 (5), 1175 (1965a).Google Scholar
  163. Leites, F.L.: Histochemical peculiarities of lipid metabolism and activity of lipolytic enzymes in alloxan diabetes. (Russian) Probl. Endokrinol. Gormonoterap. 11 (3), 88 (1965b).Google Scholar
  164. Lettes, F. L.. Golosvskaya, M.A.: Distribution of lipolytic enzymes in connection with age in man. (Russian) Arkh. Anat. Gistol. Embriol. 51(7), 61(1966).Google Scholar
  165. Leites, F. L., Fuxs, B. B.: Mechanism of increasing the activity of lipolytic enzymes after introduction of lipids into tissues. (Russian) Byul. Exp. Biol. Med. 61 (5), 46 (1966).Google Scholar
  166. Lettes, F. L., Lempert, B.L.: The histochemistry of lipoprotein lipase in the normal organism and in atherosclerosis. Cor et Vasa 10, 120 (1968).Google Scholar
  167. Leites, S. M.: Lipolytic activity of organs and tissue in experimental alloxan diabetes. (Russian) Abhandl. dtsch. Akad. Wiss., Berlin, Kl. Med. 263, 267 (1964).Google Scholar
  168. Leites, S.M., Chow-Su: On some features of lipid metabolism in stress. Vopr Med. Khim. 8, 289 (1962).Google Scholar
  169. Lettes, S.M., Chow-Su: Role of the sympathetic nervous system in mobilization of fats in a state of stress. (Russian) K ortikovisc. Vzaimootn. i Gorm. Regulatzia (Kharkov) 164 (1963).Google Scholar
  170. Lempert, B. L., Leites, F. L.: The role of reduction of lipolytic activity of the wall of the aorta in the pathogenesis of its lipid infiltration. (Russian) Byul. Experim. Biol. Med. 56 (10), 25 (1963).Google Scholar
  171. Lillie, R. D., Chobanian, A. V.: Pathways of glucose metabolism in human and canine arteries. J. clin. Invest. 48, 52a (1968).Google Scholar
  172. Lindy, S., Turto, H., Uitto, J., Helin, P, Lorenzen, I.: Injury and repair in arterial tissue in the rabbit. Circulation Res. 30, 123 (1972).PubMedGoogle Scholar
  173. Litwack, G., Kritchevsky, D.: Actions of hormones on molecular process. New York: J. Wiley & Sons 1964.Google Scholar
  174. Loeven, W. A.: Lypolytic activities of a partially purified enzyme of the elastase complex. Acta Physiol. Pharm. Neerl. 14, 475 (1967).Google Scholar
  175. Loeven, W. A.: The effect of elastoproteinase on experimental atheromatosis in rabbits. Europ. J. Pharmacol. 1, 254 (1967).CrossRefGoogle Scholar
  176. Loeven, W. A.: Elastolytic enzymes in the vessel wall. J. Atheroscler. Res. 9, 35 (1969).PubMedCrossRefGoogle Scholar
  177. Lofland, H. B., Jr., Clarkson, T. B.: Certain metabolic patterns of atheromatous pigeon aortas. Arch. Path. 80, 291 (1965).PubMedGoogle Scholar
  178. Lofland, H. B., St. Clair, R. W., Clarkson, T. B., Bullock, B. C., Lehner, D. M.: Atherosclerosis in cebus monkeys. II. Arterial metabolism. Exp. Mol. Path. 9, 57 (1968).CrossRefGoogle Scholar
  179. Lofland, H.B., Jr., Moury, D.M., Hoffman, C.W., Clarkson, T. B.: Lipid metabolism in pigeon aorta during atherogenesis. J. Lipid. Res. 6, 112 (1965).PubMedGoogle Scholar
  180. Lojda, Z.: Azocoupling reactions in histochemical detection of enzymes. Prague: State Medical Publ. House 1958.Google Scholar
  181. Lojda, Z.: Topochemistry of enzymes in the vascular wall. In: Metabolismus Parietis Vasorum, Prusik, B., Reinis, K., Riedl, O. (Eds.) Prague: State Medical Publ. House 1962, p. 232.Google Scholar
  182. Lojda, Z.: Histochemistry of the vascular wall. International Symposium, Morphology Histochemistry Vascular Wall, Comel, M., Laszt, L. (Eds.), p. 364. Basel-New York: Karger 1966Google Scholar
  183. Lojda, Z., Fric, P.: Lactic Dehydrogenase Isoenzymes in the aortic wall. J. Atheroscler. Res. 6, 264 (1966).PubMedCrossRefGoogle Scholar
  184. Lojda, Z., Zemplényi, T.: Histochemistry of some enzymes of the vascular wall in experimental rabbit atheromatosis. J. Atheroscler. Res. 1, 101 (1961).PubMedCrossRefGoogle Scholar
  185. Loomeiyer, F. J., Ostendorf, J. P.: Oxygen consumption of thoracic aorta of normal and hypercholesterolemic rats. Circulation Res. 7, 466 (1959).Google Scholar
  186. Lorenzen, I., Headings, V.: Vascular connective tissue under the influence of estrogens. Part 2 (Reaction of the aortic wall to noradrenaline-induced injury in female and male rabbits). Acta endocr. (KbH.) 53, 250 (1966).Google Scholar
  187. Maier, N., Haimovici, H.: Oxidative activity of aortic tissue of man, the rabbit, and the dog with special reference to succinic dehydrogenase and cytochrome oxidase. Amer. J. Physiol. 195, 476 (1958).PubMedGoogle Scholar
  188. Maier, N., Haimovici, H.: Oxidative capacity of atherosclerotic tissue of rabbit and dog, with special reference to succinic dehydrogenase and cytochrome oxidase. Circulation Res. 41, 65 (1965).Google Scholar
  189. Maier, N., Rubinstein, L. J., Haimovici, H.: Enzyme histochemistry of the normal and atheroslerotic canine aorta. J. Cardiovasc. Surgery 10, 468 (1969).Google Scholar
  190. Malinoca, M.R.: In vitro effects of estradiol on the aorta of chickens. Circulation Res. 8, 506 (1960).Google Scholar
  191. Malinow, M. R., Moguilevsky, J. A.: The effect of cholesterol feeding and of sex hormones on arterial oxygen uptake in chickens. J. Atheroscl. Res. 1, 417 (1961).CrossRefGoogle Scholar
  192. Malinow, M. R., Moguilevsky, J.A., Bumashny, E.: Influence of the gonads and aortic oxygen uptake in rats. J. Atheroscler. Res. 1, 128 (1961).PubMedCrossRefGoogle Scholar
  193. Malinow, M. R., Moguilevsky, J. A., Lacuara, J. L.: Modification of aortic oxidative enzymes in rats by gonadectomy and substitutive therapy. Circulation Res. 10, 624 (1962).PubMedGoogle Scholar
  194. Malinow, M. R., Perley, A., Mclaughlin, P.: The effects of pyridinolcarbamate on induced atherosclerosis in monkeys. J. Atheroscler. Res. 8, 455 (1968).PubMedCrossRefGoogle Scholar
  195. Malinow, M. R., Maclaughlin, P., Perley, A.: The effects of pyridinolcarbamate on induced atherosclerosis in cynomolgus monkeys (MACACA IRA). Atherosclerosis 15, 31 (1972).PubMedCrossRefGoogle Scholar
  196. Mallov, S.: Aortic lipoprotein lipase activity in relation to species, age, sex, and blood pressure. Circulation Res. 14, 357 (1964).PubMedGoogle Scholar
  197. Mandel, P., Kempf, E.: The pentose phosphate pathway in the degradation of glucose by aortic tissue. J. Atheroscler. Res. 3, 233 (1963).CrossRefGoogle Scholar
  198. Mandel, P., Poirel, G., Simard-Duquesne, N.: Oxygen uptake of normal and atherosclerotic rabbit aortae in mediums of normal and hyperlipaemic sera and plasmas. J. Atheroscler. Res. 6, 463 (1966).PubMedCrossRefGoogle Scholar
  199. Marmorston, J., Moore, F. J., Hopkins, C. E., Kuzma, O.T., Weiner, J.: Clinical studies of longterm estrogen therapy in men with myocardial infarction. Proc. Soc. exp. Biol. (N. Y.) 110, 400 (1962).Google Scholar
  200. Martin, G. J.: Hesperidin and ascorbic acid: Naturally occurring Synergists. Exp. med. Surg. 12, 535 (1954).Google Scholar
  201. Matagne, D., Hamoir, G.: Les enzymes glycolytiques de la veine saphène humaine saine et variqueuse. Action du Venoruton sur ces enzymes. Paper read at IV th International Angiologie Symposium, Nyon, Switzerland, September 4–6, 1972. Angiologica 9, 213 (1972).Google Scholar
  202. Maxwell, L.C., Bohr, D.F., Murphy, R.A.: Arterial actomyosin: effects of ionic strength on ATPase activity and solubility. Am. J. Physiol. 220, 1871 (1971).PubMedGoogle Scholar
  203. Miller, B. F., Aiba, T., Keyes, F. P., Curreri, P. W., Branwood, A. W.: Beta-glucuronidase-activity and its variation with pH in human atherosclerotic arteries. J. Atheroscler. Res. 6, 352 (1966).PubMedCrossRefGoogle Scholar
  204. Miller, B.F., Kothari, H. V.: Increased activity of lysosomal enzymes in human atherosclerotic aortas. Exp. Mol. Path. 10, 288 (1969).CrossRefGoogle Scholar
  205. Morin, R. J.: Effects of estradiol on the in vitro incorporation of Acetate-1–14C into the phospholipids of human peripheral arteries. Experientia (Basel) 26, 829 (1970).CrossRefGoogle Scholar
  206. Morrison, E. S., Scott, R. F., Kroms, M., Pastori, S. J.: A method for isolating aortic mitochondria exhibiting high respiratory control. Biochem. Med. 4, 47 (1970).PubMedCrossRefGoogle Scholar
  207. Morrison, E.S., Scott, R.F., Frick, J., Kroms, M.: Changes in free fatty acid degradation by Krebs pathway in atherosclerotic aorta. Circulation 44, II - 7 (1971).Google Scholar
  208. Morrison, E. S., Scott, R. F., Kroms, M., Frick, J.: Glucose degradation in normal and atherosclerotic aortic intima-media. Atherosclerosis 16, 157 (1972).Google Scholar
  209. Morrison, E. S., Scott, R. F., Kroms, M., Frick, J.: Aortic mitochondrial function in experimentally induced atherosclerosis in swine and rabbits. Biochem. Med. 7, 308 (1973).PubMedCrossRefGoogle Scholar
  210. Möttönen, M., Pantio, M., Nieminen, L.: Enzyme histochemical observations on the effect of pyridinol carbamate on cholesterol-induced atheroslcerosis. Atherosclerosis 15, 77 (1972).PubMedCrossRefGoogle Scholar
  211. Mrhova, O., Zemplényi, T.: The effect of sex and gonadectomy on some aortic enzymes of the rat. Quart. J. exp. Physiol. 50, 289 (1965).PubMedGoogle Scholar
  212. Mrhovà, O., Zemplényi, T., Lojda, Z.: The effect of cholesterol-fat feeding on the activity of rabbit aorta dehydrogenase systems. Quart. J. exp. Physiol. 48, 61 (1963a).PubMedGoogle Scholar
  213. Mrhova, O., Zemplényi, T., Lojda, Z.: The beta-glucuronidase activity of the aorta in early stages of experimental rabbit atherosclerosis. J. Atheroscler. Res. 3, 44 (1963b).PubMedCrossRefGoogle Scholar
  214. Mrhova, O., Shimamoto, T., Numano, F.: The metabolic effect of pyridinolcarbamate in rats. Acta Path. Jap. 22 (2), 353 (1972a).Google Scholar
  215. Mrhovâ, O., Shimamoto, T., Numano, F.: Metabolic effect of pyridinolcarbamate on the vascular wall of rats with hypervitaminosis D. Atherosclerosis 16, I - 8 (1972b).CrossRefGoogle Scholar
  216. Mrhova, O., Grafnetter, D., Janda, J., Linhart, J.: Effect of Atromid-S on the activity of vascular enzymes in rats. Biochem. Pharm. 20, 3069 (1971).PubMedCrossRefGoogle Scholar
  217. Munro, A. F., Rifkind, B. M., Leibescheutz, H. F., Campbell, R. S. F., Howard, B.R.: Effect of cholesterol feeding on the oxygen consumption of aortic tissue from the cockerel and the rat. J. Atheroscler. Res. 1, 296 (1961).PubMedCrossRefGoogle Scholar
  218. Mustard, J. F.: Introduction to the platelet and the artery. In: Jones, R.J. (Ed.): Atherosclerosis, p. 76. New York-Heidelberg-Berlin: Springer 1970.Google Scholar
  219. Murphy, R. A.: Contractile proteins of vascular smooth muscle: Effects of hydrogen and alkali metal actions on actomyosin adenosinetriphosphatase activity. Microvasc. Res. 1, 344 (1969).PubMedCrossRefGoogle Scholar
  220. Nakatani, M., Sasaki, T., Miyazaki, T., Nakamura, M.: Synthesis of phospholipids in arterial walls. J. Atheroscler. Res. 7, 747 (1967).CrossRefGoogle Scholar
  221. Newman, H.A.I., Zilversmit, D. B.: Uptake and release of cholesterol by rabbit atheromatous lesions. Circulation Res. 18, 293 (1966).PubMedGoogle Scholar
  222. Niebes, P.: Influence des flavonoides sur le métabolisme des mucopolysaccharides dans la paroi veineuse. Paper read at IV th International Angiologie Symposium, Nyon, Switzerland, September 4–6,1972. Angiologica. 9, 226 (1972).PubMedGoogle Scholar
  223. Niebes, P., Laszt, L.: Recherches sur l’activite des enzymes dans le metabolisme des mucopoly-saccharides des veines saphenes humaines saines ou variqueuses. Angiologica 8, 7 (1971a).PubMedGoogle Scholar
  224. Niebes, P., Laszt, L.: Influence in vitro d’une serie de flavonoides sur des enzymes du metabolisme des mucopolysaccharides de veines saphenes humaines et bovines. Angiologica 8, 297 (1971b).PubMedGoogle Scholar
  225. Newman, H. A. I., Gray, G. W., Zilversmit, D. B.: Cholesterol ester formation in aortas of cholesterol-fed rabbits. J. Atheroscler. Res. 8, 745 (1968).PubMedCrossRefGoogle Scholar
  226. Newmark, M. Z., Malfer, D. C., Wiese, C. D.: Regulation of arterial metabolism. I. The effects of age and hormonal status upon the utilization of glucose in vitro by rat aorta. Biochim. biophys. Acta (Amst.) 261, 9 (1972).CrossRefGoogle Scholar
  227. Numano, F., Takenobu, K. K. M., Sagara, A., Shimamoto, T.: Comparative studies on the preventative effect of pyridinolcarbamate and estrogen against aortic and coronary atherosclerosis of cholesterol-fed rabbits. Part I: Topographic and pathological studies. Acta path. Jap. 21, 177 (1971).PubMedGoogle Scholar
  228. Numano, F., Katsu, K., Takenobu, M., Sagara, A., Shimamoto, T.: Comparative studies on the preventive effect of pyridinolcarbamate and estrogen against aortic and coronary atherosclerosis of cholesterol-fed rabbits. Part II: Histoenzymatic studies. Acta Path. Jap. 21 193 (1971 b).Google Scholar
  229. Pantesco, V., Viaud, J., Fontaine, R., Mandel, P.: Sur le mode de degradation du glucose par l’aorte de bovides. C.R. Soc. Biol. 151, 1584 (1957).Google Scholar
  230. Parker, R., Ormsby, J.W., Peterson, N.F., Odland, G.F., Williams, R. H.: In vitro studies of phospholipid synthesis in experimental atherosclerosis: possible role of myointimal cells. Circulation Res. 19, 700 (1966).PubMedGoogle Scholar
  231. Patelski, J., Szendzikowski, S.: Influence of cholinesterase inhibitor on lipolytic activity of rat aorta. Acta physiol. polon. 11, 853 (1960).Google Scholar
  232. Patelski, J., Szendzikowski, S.: Lipolytic and esterolytic activity of aorta after prolonged ACTH treatment in rats. Bull. Soc. Amis. Sci. Lettres Poznan. C 11, 37 (1962).Google Scholar
  233. Patelski, J., Waligora, Z., Szulc, S., Bowyer, D.E., Howard, A.N., Gresham, G.A.: Lipolytic enzymes of the aortic wall. Progr. biochem. Pharmacol. Vol.4, p. 287. Basel-New York: Karger 1968.Google Scholar
  234. Patelski, J., Bowyer, D.E., Howard, A.N., Gresham, G. A.: Changes in phospholipase A, lipase and cholesterol esterase activity in aorta in experimental atherosclerosis in the rabbit and rat. J. Atheroscler. Res. 8, 221 (1968).CrossRefGoogle Scholar
  235. Patelski, J., Waligora, Z., Szulc, S.: Demonstration and some properties of the phospholipase A, lipase and cholesterol esterase from the aortic wall. J. Atheroscler. Res. 7, 453 (1967).PubMedCrossRefGoogle Scholar
  236. Patelski, J., Bowyer, D. E., Howard, A.N., Jennings, I.W., Thorne, C. J. R., Gresham, G. A.: Modification of enzyme activities in experimental atherosclerosis in the rabbit. Atherosclerosis 12, 41 (1970).PubMedCrossRefGoogle Scholar
  237. Pautrizel, R., Dallocchio, M., Gandji, F.A., Razaka, G., Crockett, R., Bricaud, H., Brouse-Tet, P.: Une étude des reactions immunes provoqués par des antigènes aortiques. In: Le Rôle De La Paroi Arterielle Dans L’Atherogenèse, p. 353. Paris: Center National De La Recherche Scientifique 1968.Google Scholar
  238. Pick, R.: The effect of pyridinolcarbamate on the induction and regression of aortic and coronary atherosclerosis in cholesterol-fed cockerls. In: Shimamoto, T., Numano, F. (Eds.): Atherogenesis. Tokyo: Excerpta Medica Foundation 1969.Google Scholar
  239. Platt, D.: Nachweis einer Peptidyl-Peptid-Hydrolase (Kollagenase?) in der Aortenwand des Schweins. Klin. Wschr. 48, 1420 (1970).PubMedCrossRefGoogle Scholar
  240. Platt, D., Luboeinski, H. P.: The activities of glycosaminoglycan hydrolases of normal and atherosclerotic human aorta. Angiologica 6, 19 (1969).PubMedGoogle Scholar
  241. Palaty, V., Gustafson, B. K., Friedmann, S. M.: Maintenance of the ionic composition of the incubated artery. Canad. J. Physiol. Pharmacol. 49, 106 (1971).CrossRefGoogle Scholar
  242. Portman, O. W., Alexander, P.: Lysophosphatidylcholine concentrations and metabolism in aortic intima plus inner media: effect of nutritionally induced atherosclerosis. J. Lipid Res. 10, 158 (1969).PubMedGoogle Scholar
  243. Pfterovskÿ, I., Roztobl, K., Hlavova, A., Koleilat, Z., Razgova, L., Oliva, I.: The effect of hydroxyethylrutosides after acute and chronic oral administration in patients with venous diseases. (A double-blind study). Paper read at IV th International Angiologic Symposium, Nyon, Switzerland, September 4–6, 1972. Angiologica 9, 408 (1972).Google Scholar
  244. Pretolani, E.: Biochimica enzimatica delle arterie. Il “complesso” elastasi a livello parietale. Boll. Soc. ital. Biol. Sperm. 44, 1(1968).Google Scholar
  245. Proudlick, J.W., Day, A.J.: Cholesterol esterifying enzymes of atherosclerotic rabbit intima. Biochim. biophys. Acta (Amst.) 260, 716 (1972).Google Scholar
  246. Rachmilewitz, D., Eisenberg, S., Stein, Y., Stein, O.: Phospholipases in Arterial Tissue 1. Sphingomyelin Cholinephosphohydrolase activity in human, dog, guinea pig, rat and rabbit arteries. Biochim. biophys. Acta (Amst.) 144, 624 (1967).Google Scholar
  247. Renais, J., Groult, N., Scebat, L., Lenègre, J.: Pouvoir antigénique et patho ène du tissue arteriel. In: Le Rôle De La Paroi Arterielle Dans L’Athérogenèse. VI, p. 323. Paris: Centre National De La Recherche Scientifique 1968.Google Scholar
  248. Rifkind, B. M., Munro, A. F.: Effect of sexual status on arterial respiration and glycolysis. J. Atheroscler. Res. 3, 268 (1963).PubMedCrossRefGoogle Scholar
  249. Ritz, E.: The pentose cycle in arterial tissue. J. Atheroscler. Res. 8, 445 (1968).PubMedCrossRefGoogle Scholar
  250. Ritz, E., Sanwald, R.: Glucuronic acid cycle in arterial tissue. Exp. Med. 153, 237 (1970).CrossRefGoogle Scholar
  251. Robbins, R. C.: Effect of vitamin C and flavonoids on blood cell aggregation and capillary resistance. Int. Z. Vitaminforsch. 36, 10 (1966).PubMedGoogle Scholar
  252. Robbins, R. C.: Effect of flavonoids on survival time of rats fed thrombogenic or atherogenic regimens. J. Atheroscler. Res. 7, 3 (1967).PubMedCrossRefGoogle Scholar
  253. Robbins, R. C.: Effects of phenyl benzo-pyrone derivatives (flavonoids) on blood cell aggregation: Basis for a concept of mode of action. Clin. Chem. 17, No. 5, 433 (1971).PubMedGoogle Scholar
  254. Robert, B., Legrand, Y., Pignaud, G., Caen, J., Robert, L.: Activité élastionlytique associée aux plaquettes sanguines. Path. Biol. 17, 615 (1969).Google Scholar
  255. Robert, L.: The micromolecular matrix of the arterial wall: Collagen, elastin, mucopolysaccharides. In: Jones, R.J. (Ed.): Atherosclerosis, p. 59. 1970.Google Scholar
  256. Robert, L., Robert, B., Robert, A.M.: Molecular biology of elastin as related to aging and atherosclerosis. Exp. Gerontol. 5, 339 (1970).PubMedCrossRefGoogle Scholar
  257. Robertson, A. L.: Transport of plasma lipoproteins and ultrastructure of human arterial intimacytes in culture. In: Rothblat, G.H., Kritchbvsky, D. (Eds.): Lipid Metabolism in Tissue Culture Cells. The Wistar Institute Symposium Monograph, Number 6. Philadelphia: The Wistar Institute Press 1967.Google Scholar
  258. Robertson, A. L.: Oxygen requirements of the human arterial intima in atherogenesis. Progr. Biochem. Pharmacol. 4, 305 (1968).Google Scholar
  259. Robinson D. S., Harris, P. M.: The production of lipolytic activity in the circulation of the hind limb in response to heparin. Quart. J. exp. Physiol. 44, 80 (1959).PubMedGoogle Scholar
  260. Rodney, G., Swanson, A. L., Wheeler, L. M., Smith, G. N., Worrel, C. S.: The effect of a series of flavonoids on hyaluronidase and some other related enzymes. J. biol. Chem. 183, 739 (1950).Google Scholar
  261. Rouser, G., Solomon, R.D.: Changes in phospholipid composition of human aorta with age. Lipids 4, 232 (1969).PubMedCrossRefGoogle Scholar
  262. Roztocil, K., Fischer, A., Novak, P., Razgovii, L.: The effect of 0-(β-hydroxyethyl)-rutosides (HR) on the peripheral circulation in patients with chronic venous insufficiency. Europ. J. clin. Pharmacol. 3, 243 (1971).CrossRefGoogle Scholar
  263. Rucker, R. B., Goettlich-Riemann, W.: Properties of rabbit aorta amine oxidase Proc. Soc. exp. Biol. (N.Y.) 139, 286 (1972).Google Scholar
  264. Sandner, M., Bourne, G.F.: Histochemistry of atherosclerosis in the rat, dog and man. In: Sandner, M., Bourne, G. E. (Eds.): Atherosclerosis and its origin, p. 515. New York-London: Academic Press 1963.Google Scholar
  265. Sandwald, R., Kirk, J. E.: Beta-hydroxyacyl dehydrogenase in human arterial tissue. Proc. Soc. exp. Biol. (N.Y.) 118, 1088 (1965).Google Scholar
  266. Sbarra, A. J., Gilfillan, R. F., Bardavil, W. A.: The hexose monophosphate pathway in arterial tissue. Biochem. Biophys. Res. Commun. 3, 311 (1960).CrossRefGoogle Scholar
  267. Scebat, L., Renais, J., Iris, L., Groult, N., Lenègre, J.: Lésions arterielles generalisées declenchées chez le lapin par un traumatisme arteriel localise: Rôle possible d’autoanticorps antiaorte. In: Le Rôle De La Paroi Arterielle Dans L’Athérogenèse, p. 425. Paris: Center National De La Recherche Scientifique 1968.Google Scholar
  268. Schoffeniels, E.: Ionic composition of the arterial wall. Angiologica 6, 65 (1969).PubMedGoogle Scholar
  269. Scott, R. F., Morrison, E. S., Kroms, M.: Effect of cold shock on respiration and glycolysis in swine arterial tissue. Amer. J. Physiol. 219, 1363 (1970).PubMedGoogle Scholar
  270. Scott, R. F., Jarmolych, J., Fritz, D. E, Imai, H., Kim, D. N., Morrison, E. S.: Reactions of endothelial and smooth muscle cells in the atherosclerotic lesion. In: Jones, R. J. (Ed.): Atherosclerosis, p. 50. New York-Heidelberg-Berlin: Springer 1970.Google Scholar
  271. Seethanatan, P., Kurup, P.A.: Tissue lactate dehydrogenase isoenzyme patterns in rats fed a hypercholesterolemic diet. Atherosclerosis 12, 393 (1970).CrossRefGoogle Scholar
  272. Shimamoto, T.: Experimental study of atherosclerosis. An attempt at its prevention and treatment. Acta path. jap. 19, 15 (1969).PubMedGoogle Scholar
  273. Shimamoto, T., Numano, F., Fujita, T.: Atherosclerosis-inhibiting effect antibradykinin agent, pyridinolcarbamate. Amer. Heart J. 71, 216 (1966a).PubMedCrossRefGoogle Scholar
  274. Shimamoto, T., Atsumi, T., Numano, F., Fujita, T.: Treatment of atherosclerosis with pyridinolcarbamate. Prog. Biochem. Pharmacol. 4, 216 (1966b).Google Scholar
  275. Shore, M. L., Zilversmit, D. B., Ackerman, R. F.: Plasma phospholipid deposition and aortic phospholipid synthesis in atherosclerosis. Amer. J. Physiol. 181, 527 (1955).PubMedGoogle Scholar
  276. Sityamala, A.G., Nicols, C.W., Jr., Chaikoff, I.L.: The effect of aging on the hydrolysis of cholesterol-7a-HS-oleate by homogenates of chicken aorta. Life Sci. 5, 1191 (1966).CrossRefGoogle Scholar
  277. Sidorenkov, I. V., Sharaev, P. N.: The mechanism of disturbance of mucopolysaccharide and collagen metabolism in experimental atherosclerosis. Cor Vasa 14, 143 (1972).PubMedGoogle Scholar
  278. Siggaard-Andersen, J., Bonde-Petersen, F., Hansen, T.I., Mellemgaard, K.: Plasma volume and vascular permeability during hypoxia and carbon monoxide exposure. Scand. J. clin. Lab. Invest. 22, Suppl. 103, 39 (1968).Google Scholar
  279. Smith, E. B.: The influence of age and atherosclerosis on the chemistry of aortic intima. I. The lipids. J. Atheroscler. Res. 5, 224 (1965).CrossRefGoogle Scholar
  280. Somlyo, A.P., Somlyo, A.V.: Vascular smooth muscle. I. Normal structure, Pathology, biochemistry, and biophysics. Pharmacol. Rev. 20, 197 (1968).PubMedGoogle Scholar
  281. Srinivasan, S. R., Lopez, S., Radhakrishnamurthy, B., Berenson, G. S.: Complexing of serum pre-β and β-lipoproteins and acid mucopolysaccharides. Atherosclerosis 12, 321 (1970).PubMedCrossRefGoogle Scholar
  282. Srinivasan, S., Dolan, P., Radhakrishnamurthy, B., Berenson, G.: Further studies on lipoprotein-acid mucopolysaccharide complexes from human atherosclerotic lesions. Circulation 46, No.4, II -253 (1972).Google Scholar
  283. Stavrou, D., Dahme, E.: Studie zur Arteriosklerosegenese beim Hanford-Miniatur-Schwein unter normalen and experimentellen Bedingungen, Teil 2 (Enzymtopochemische Befunde). Atherosclerosis 14, 169 (1971).PubMedCrossRefGoogle Scholar
  284. St. Clair, R.W., Lofland, H.F., Jr., Prichard, R.W., Clarkson, T.B.: Synthesis of squalene and sterols by isolated segments of human and pigeon arteries. Exp. Mol. Path. 8, 201 (1968a).CrossRefGoogle Scholar
  285. St. Clair, R. W., Lofland, H. B., Jr., Clarkson, T. B.: Composition and synthesis of fatty acids in atherosclerotic aortas of the pigeon. J. Lipid. Res. 9, 739 (1968b).Google Scholar
  286. St. Clair, R.W., Lofland, H.B., Jr., Clarkson, T.B.: Influence of atherosclerosis on the composition, synthesis and esterification of lipids in aortas of squirrel monkeys (Saimiri sciurens). J. Atheroscler. Res. 10, 193 (1969).PubMedCrossRefGoogle Scholar
  287. St. Clair, R. W., Lofland, H. B., Clarkson, T. B.: Influence of duration of cholesterol feeding on esterification of fatty acids by cell-free preparation of pigeon aorta. Circulation Res. 27, 213 (1970).PubMedGoogle Scholar
  288. St. Clair, Clarkson, T. B., Lofland, H. B.: Effects of regression of atherosclerotic lesions on the content and esterification of cholesterol by cell-free preparations of pigeon aorta. Circulation Res. 31, 664 (1972).PubMedGoogle Scholar
  289. St. Clair, R.: Esterification of fatty acids and cholesterol by pigeon aorta. Circulation 41, Suppl. III, p. III - 3 (1970).Google Scholar
  290. Stamler, J., Pick, R., Katz, L.N., Pick, A., Kaplan, B.M., Berkson, D.M., Century, D.: Effectiveness of estrogens for therapy of myocardial infarction in middle-aged men. J. Amer. med. Assn. 183, 632 (1963).Google Scholar
  291. Stefanovich, V., Gore, I., Kajiyama, G., Iwanaga, Y.: The effect of nicotine on dietary atherogenesis in rabbits. Exp. mol. Path. 11, 71 (1969).Google Scholar
  292. Stein, A. A., Rosenblum, J., Leather, R.: Intimai sclerosis in human veins. Arch. Path. 81, 548 (1966).PubMedGoogle Scholar
  293. Stein, O., Stein, Y.: Lipid synthesis and transport in the normal and atherosclerotic aorta. Lab. Invest. 23, No. 5, 556 (1970).PubMedGoogle Scholar
  294. Stein, Y., Stein, O.: Incorporation of fatty acids into lipids of aortic slices of rabbits, dogs, rats, and baboons, J. Atheroscler. Res. 2, 400 (1962).PubMedCrossRefGoogle Scholar
  295. Stein, Y., Stein, O., Shapiro, B.: Enzymic pathways of glyceride and phospholipid synthesis in aortic homogenates. Biochim. biophys. Acta (Amst.) 70, 33 (1963).CrossRefGoogle Scholar
  296. Stein, Y., Eisenberg, S., Stein, O.: Metabolism of lysolecithin by human umbilical and dog carotid arteries. Progr. Biochem. Pharmacol. 4, 253 (1968).Google Scholar
  297. Svejcar, J., Pìíerovskp, L, Linhart, J., Kruml, L.: Content of collagen elastin, and water in walls of the internal saphenour vein in man. Circulation Res. 11, 296 (1962).PubMedGoogle Scholar
  298. Svejcar, J., Piïerovskp, L, Linhart, J., Kruml, J.: Content of collagen, elastin and hexosamine in primary varicose veins. Clin. Sci. 24, 325 (1963).PubMedGoogle Scholar
  299. Szabó, I.K., Cseh, G.: Über die Wechselwirkung zwischen dem Elastase-Komplex and der Lipoproteidlipase der Blutgefäße. Naturwissenschaften 49, 260 (1962).CrossRefGoogle Scholar
  300. Szabó, R., Benkö, S., Szarvas, F., Varga, L.: The lipolytic activity of the heart muscle and the aorta in experimental cholesterol atherosclerosis. Cor Vasa 12, 57 (1970).PubMedGoogle Scholar
  301. Szendzikowski, S.: Histoenzymological investigation of the vascular channel developed after implantation of teritalprestheses into aorta. Folia Histochem. Cytochem. 1, Suppl.I, 149 (1963).Google Scholar
  302. Szendzikowski, S., Patelski, J., Pearse, A. G. E.: The influence of cholinesterase inhibitors on the lipolytic activity of rat aorta. Enzymol. Biol. Clin. 1, 125 ( 1961 1962 ).Google Scholar
  303. Szigeti, I., Pixo, K., Doman, J.: The immunopathological importance of different structural protein antigens of human arterial vessel-wall in heterologous immunization of rabbits compared with immunoserological data of human coronary heart patients. In: Le Role De La Paroi Arterielle Dans L’Atherogenese, p. 493. Paris: Center National De La Recherche Scientifique 1968.Google Scholar
  304. Tararak, E. M.: Alterations in lipolytic enzymatic activity in rabbit aorta in the regressive phase of experimental atherosclerosis. Cor Vasa 10, 135 (1968).PubMedGoogle Scholar
  305. Tsukershtein, O. E.: The effect of sex hormones on the arterial elasticity. Cor Vasa 13, 77 (1971).PubMedGoogle Scholar
  306. Urbanova, D., Přerovsky, I.: Enzymes in the wall of normal and varicose veins. Angiologica 9, 53 (1972).PubMedGoogle Scholar
  307. Wagner, J., Duck, H.: Säulenchromatographische Trennung von Aminoacyl-Oligo-Peptidhydrolasen normaler and arteriosklerotischer Kaninchenaorten. J. Chromatogr. 66, 67 (1972).PubMedCrossRefGoogle Scholar
  308. Waligbra, Z.: Hydrolysis of lecithin by enzymes from the arterial wall. Poznan Towarz. Prayjac. Nauk. 34, 317 (1966).Google Scholar
  309. Wahlqvist, M. L., Day, A. J.: Phospholipid synthesis by foam cells in human atheroma. Exp. Mol. Pathol. 11, 275 (1969).PubMedCrossRefGoogle Scholar
  310. Weiss, H.S., Watson, N.J., Calhoon, T. B.: Respiration of the avian aorta in relation to spontaneous atherosclerosis. Comp. Biochem. Physiol. 38, 675 (1971).CrossRefGoogle Scholar
  311. Wexler, B. C., Judd, J. T.: Increased aortic Beta-Glucuronidase activity with progressively severe arteriosclerosis in female breeder rats. Nature (Lond.) 209, 383 (1966).CrossRefGoogle Scholar
  312. Whereat, A. F.: Oxygen consumption of normal and atherosclerotic intima. Circulation. Res. 9, 571 (1961).PubMedGoogle Scholar
  313. Whereat, A. F.: Lipid biosynthesis in aortic intima from normal and cholesterol-fed rabbits. J. Atheroscler. Res. 4, 272 (1964).PubMedCrossRefGoogle Scholar
  314. Whereat, A. F.: Incorporation of tritium from succinate-2,3–2H into long-chain fatty acids by aortic mitochondria. Proc. Soc. exp. Biol. (N.Y.) 118, 888 (1965).Google Scholar
  315. Whereat, A. F.: Fatty acid synthesis in cell-free system from rabbit aorta. J. Lipid Res. 7, 671 (1966).PubMedGoogle Scholar
  316. Whereat, A. F.: Fatty acid biosynthesis in aorta and heart. In: Paoletti, R., Kritchevsky, D. (Eds.): Advances in Lipid Research, Vol.9, p. 119. New York-London: Academic Press 1971.Google Scholar
  317. Whereat, A. F., Orishimo, M. W., Nelson, J., Phillips, S.: The location of different synthetic systems for fatty acids in inner and outer mitochondrial membranes from rabbit heart. J. biol. Chem. 244, 6498 (1969).PubMedGoogle Scholar
  318. Will, D. H., Frith, C. H., Mcmurtry, I. F.; Maccarter, D. J.: Effects of hypertension and hypoxemia on arterial metabolism and structure. Advanc. exp. Med. Biol. 22, 185 (1972).Google Scholar
  319. Willoughby, D. A., Lykke, A. W. J., Ryan, G. B.: A study of the antiinflammatory action of pyridinolcarbamate (anginin). In: Shimamoto, T., Numano, F. (Eds.): Atherogenesis. Tokyo: Excerpta Medica Foundation 1969.Google Scholar
  320. Wissler, R. W.: The arterial medial cell, smooth muscle or multifunctional mesenchyme.2 J. Atheroscler. Res. 8, 201 (1968).CrossRefGoogle Scholar
  321. Wolinsky, H.: Effects of estrogen and progestrogen treatment on the response of the aorta of male rats to hypertension. Morphological and chemical studies. Circulation Res. 30, 341 (1972).PubMedGoogle Scholar
  322. Zemplényi, T.: Enzymes of the arterial wall. J. Atheroscler. Res. 2, 2 (1962).PubMedCrossRefGoogle Scholar
  323. Zemplényi, T.: The lipolytic and esterolytic activity of blood and tissues and problems of atherosclerosis. In: Paoletti, R., Kritschevsky, D. (Eds.): Advances in Lipid Research, Vol.11, p. 235. New York: Academic Press 1964.Google Scholar
  324. Zemplényi, T.: Editorial: Vascular enzymes and atherosclerosis. J. Atheroscler. Res. 7, 725 (1967).CrossRefGoogle Scholar
  325. Zemplényi, T.: Enzyme biochemistry of the arterial wall as related to atherosclerosis. London: Lloyd-Luke 1968.Google Scholar
  326. Zemplényi, T.: Vascular enzymes and the relevance of their study to problems of atherogenesis. Med. Clin. N. Amer. 58, 293 (1974).PubMedGoogle Scholar
  327. Zemplényi, T., Blankenhorn, D. H.: Vascular permeability, hypoxia, and atherosclerosis. Paper read at IVth International Angiologic Symposium, Nyon, Switzerland, September 4–6 1972. Angiologica 9, 429 (1972).PubMedGoogle Scholar
  328. Zemplényi, T., Grafnettter, D.: Species and sex differences in fatty acid release on incubation of tissues and human lipaemic serum. Brit. J. exp. Pathol. 39, 99 (1958).Google Scholar
  329. Zemplényi, T., Grafnetter, D.: The lipolytic activity of heart and aorta in experimental atherosclerosis in rabbits. Brit. J. exp. Pathol. 40, 312 (1959a).Google Scholar
  330. Zemplényi, T., Grafnetter, D.: The lipolytic activity of the aorta, its relation to aging and to atherosclerosis. Gerontologia (Basel) 3, 55 (1959b).CrossRefGoogle Scholar
  331. Zemplényi, T., Mrhova, O.: Vascular enzyme activity changes accompanying the induction of experimental atherosclerosis. II. Rats fed excess vitamin D. J. Atheroscler. Res. 5, 548 (1965).PubMedCrossRefGoogle Scholar
  332. Zemplényi, T., Mrhova, O.: Activité enzymatique de la paroi arterielle et athérogenèse. Arch. Mal. Coeur, Suppl. 3, 59 (1966).Google Scholar
  333. Zemplényi, T., Mrhova, O.: The effect of some drugs and hormones on the activity of vascular enzymes. Progr. Biochem. Pharmacol. 2, 141 (1967).Google Scholar
  334. Zemplényi, T., Lojda, Z., Grafnetter, D.: The relationship of lipolytic and esterolytic activity of the aorta to susceptibility to experimental atherosclerosis. Circulation Res. 7, 286 (1959).PubMedGoogle Scholar
  335. Zemplényi, T., Fodor, J., Lojda, Z.: Mast cell histamine and the accumulation of colloidal particles in the vascular endothelium. Quart. J. exp. Physiol. 45, 50 (1960).PubMedGoogle Scholar
  336. Zemplényi, T., Lojda, Z., Mrhova, O.: Enzymes of the vascular wall in experimental atherosclerosis in the rabbit. In: Sandler, M., Bourne, G.H. (Eds.): Atherosclerosis and its origin, p. 459. New York: Academic Press 1963.Google Scholar
  337. Zemplényi, T., Knizkova, I., Lojda, Z., Mrhova, O.: The group-specific carboxylic esterase activity of aortic tissue. Cor Vasa 5, 107 (1963b).PubMedGoogle Scholar
  338. Zemplényi, T., Mrhova, O., Grafnetter, D., Lojda, Z.: Some enzymes of the arterial wall in physiological and pathological conditions. In: Prusik, B., Reinis, Z., Riedl, O. (Eds.): Metabolismus Parietis Vasorum. Prague: State Medical Publ. House 1962.Google Scholar
  339. Zemplényi, T., Hladovec, J., Mrhova, O.: Vascular enzyme activity changes accompanying the induction of experimental atherosclerosis. I. Rats fed Hartroft’s diet. J. Atheroscler. Res. 5, 540 (1965a).Google Scholar
  340. Zemplényi, T., Mrhova, O., Urbanova, D., Lojda, Z.: Comparative aspects of vascular enzymes. Acta Zool. Pathol. Atnverp. No. 39, 45 (1966a).Google Scholar
  341. Zemplényi, T., Mrhova, O., Urbanova, D., Kruml, J., Soph, A.: Comparative studies of vascular enzymes in human and pig arteries. Il Giornale Del l’Arteriosclerosi. Anno IV, 12 (1966b).Google Scholar
  342. Zemplényi, T., Mrhova, O., Urbanova, D., Kohout, M.: Vascular enzyme activities and susceptibility of arteries to atherosclerosis. Ann. N.Y. Acad. Sci. 149, 585 (1968).CrossRefGoogle Scholar
  343. Zemplényi, T., Urbanova, D., Mrhova, O.: Contributions of vascular enzyme studies to problems of atherogenesis. In: Laszt, L. (Ed.): International Symposium of Biochemistry of the Vascular Wall, Part II, p. 162. Basel-New York: Karger 1969a.Google Scholar
  344. Zemplényi, T., Mrhova, O., Urbanova, D.: Allylamine-induced arterial enzyme changes and the role of injury in atherogenesis. Circulation 39, Suppl. III, III - 27 (1969b).Google Scholar
  345. Zemplényi, T., Chin, H. P., Blankenhorn, D. H.: Isoenzymes of creatine phosphokinase, malate, and lactate dehydrogenase in arterial and venous tissue. Clin. Res. 18, 1591 (1970).Google Scholar
  346. Zilyersmit, D.B.: Cholesterol flux in the atherosclerotic plaque. N.Y. Acad. Sci. 149, 710 (1968).CrossRefGoogle Scholar
  347. Zilversmit, D. B.: Metabolism of arterial lipids. In: Jones, R.J. (Ed.): Atherosclerosis. Proceedings of the second international symposium, p. 35. New York-Heidelberg-Berlin: Springer 1970.Google Scholar
  348. Zilversmidt, D. B., Mccandless, E. L.: Independence of arterial phospholipid synthesis from alterations in blood lipids. J. Lipid Res. 1, 118 (1959).Google Scholar
  349. Zsoldos, S. F., Heineman, H. O.: Lipolytic activity of rabbit aorta in vitro. Amer. J. Physiol. 206, 615 (1964).PubMedGoogle Scholar

Additional References

  1. Bell, F.P., Adamson, I. L., Gallus, A.S., Schwartz, C.J.: Endothelial permeability: Focal and regional patterns of 131I-albumin and 131I-fibrinogen uptake and transmural distribution in the pig aorta. In: Schettler, G., Weizel, A. (Eds.): Atherosclerosis III, p. 235. New YorkHeidelberg-Berlin: Springer 1974.CrossRefGoogle Scholar
  2. Bierman, E.L., Eisenberg, S., Stein, O., Stein, Y.: Very low density lipoprotein “remnant” particles: uptake by aortic smooth muscle cells in culture. Biochem. biophys. Acta 329, 163 (1973).Google Scholar
  3. Bierman, E. L., Stein, O., Stein, Y.: Lipoprotein uptake and metabolism by rat aortic smooth muscle cells in tissue culture. Circulation Res. 35, 136 (1974).PubMedGoogle Scholar
  4. Björkerud, S., Bondjers, G.: Arterial repair and atherosclerosis after mechanical injury. Part 1: Permeability and light microscopic characteristics of endothelium in non-atherosclerotic and atherosclerotic lesions. Atherosclerosis 13, 355 (1971).PubMedCrossRefGoogle Scholar
  5. Blacx, W.J., Takano, T., Peters, T. J.: Subcellular distribution of cholesteryl esterase in rabbit aortic smooth muscle cells. J. Cell Biol. 59, 26a (1973).Google Scholar
  6. Brecher, P., Kessler, M., Clifford, C., Chobanian, A. V.: Cholesterol ester hydrolysis in aortic tissue. Biochem. biophys. Acta 316, 386 (1973).Google Scholar
  7. Chmelar, M., Chmelarova, M.: Lipolytic effect of insulin and other hormones in vitro in aortic tissue of experimental animals. Experientia (Basel) 24, 1118 (1968).CrossRefGoogle Scholar
  8. Chobanian, A.V., Manzur, F.: Metabolism of lipid in the human fatty streak lesion. J. Lipid Res. 13, 201 (1972).PubMedGoogle Scholar
  9. Deduve, C.: The participation of lysosomes in the transformation of smooth muscle cells to foamy cells in the aorta of cholesterol-fed rabbits. Acta Cardiol. Suppl. XX, 9 (1974).Google Scholar
  10. Daoud, A.S., Fritz, K.E., Jarmolych, J., Augustyn, J. M.: Use of aortic medial explants in the study of atherosclerosis. Exp. molec. Path. 18, 177 (1973).Google Scholar
  11. Day, A. J.: Lipid metabolism by rabbit aortic intimal and medical cells in tissue culture. Virchows Arch. A Path. Anat. Histol. 362. 2 (1973).Google Scholar
  12. Filipovic, I., Von Figura, K., Buddecke, E.: Glucose and lipid metabolism in the human arteriosclerotic aorta. In: Schettler, G., Weizel, A. (Eds.): Atherosclerosis III, p. 107. New YorkHeidelberg-Berlin: Springer 1974.CrossRefGoogle Scholar
  13. Fisher-Dzoga, K. Jones, R.M., Vesselinovitch, D., Wissler, R. W.: Ultrastructural and immunohistochemical studies of primary cultures of aortic medial cells. Exp. molec. Path. 18 (2), 162 (1973a).Google Scholar
  14. Fisher-Dzoga, K., Chen, R., Wissler, R.W.: Effects of serum lipoproteins on the morphology, growth, and metabolism of arterial smooth muscle cells. In: Wagner, W.D., Clarkson, T.B. (Eds.): Arterial Mesenchyme and Arteriosclerosis, p. 299. New York-London: Plenum Press 1973b.Google Scholar
  15. Fisher-Dzoga, K., Jones, R. M., Vesselinovitch, D., Wissler, R. W.: Increased mitotic activity in primary cultures of aortic medial smooth muscle cells after exposure to hyperlipemic serum. In: Schettler, G., Weizel, A. (Eds.): Atherosclerosis III, p. 193. New York-Heidelberg-Berlin: Springer 1974a.CrossRefGoogle Scholar
  16. Fisher-Dzoga, K., Vesselinovitch, D., Wissler, R. W.: The effect of estrogen on the rabbit aortic medial tissue culture cells. Amer. J. Path. 74, 52a (1974b).Google Scholar
  17. Fry, D.L.: Responses of the arterial wall to certain physical factors. In: Atherogenesis, Initiating Factors, p.93. CIBA Foundation Symposium 12, New York: Elsevier 1973.Google Scholar
  18. Garbarsch, C.: I. Distribution of urea-stable and urea-labile lactate dehydrogenease activity in rabbit aorta following a single mechanical dilatation injury. Acta Histochem. 46, 288 (1973a).PubMedGoogle Scholar
  19. Garbarsch, C.: II. Enzyme histochemistry of rabbit thoracic aorta following a single mechanical dilatation injury. Acta Histochem. 46, 300 (1973b).PubMedGoogle Scholar
  20. Hashimoto, S., Dayton, S.: Oxidation of palmityl-Co-A to CO2 by normal and atherosclerotic aortic mitochondria. Life Sci. 14, 945 (1974a).PubMedCrossRefGoogle Scholar
  21. Hashimoto, S., Dayton, S.: Cholesterol-esterifying activity of aortas from atherosclerosis-resistant and atherosclerosis-susceptible species. Proc. Soc. exp. Biol. 145, 89 (1974b).PubMedGoogle Scholar
  22. Hashimoto, S., Dayton, S., Alfin-Slater, R. B., Bui, P.T., Baker, N., Wilson, L.: Characteristics of the cholesterol-esterifying activity in normal and atherosclerotic rabbit aortas. Circulation Res. 34, 176 (1974).PubMedGoogle Scholar
  23. Helin, P., Garbarsch, C., Lorenzen, I.: Effects of intermittent and continuous hypoxia on the aortic wall in rabbits. Analysis of glycosaminoglycans, hydroxyproline and vascular histochemistry. Atherosclerosis 21, 325 (1975).PubMedCrossRefGoogle Scholar
  24. Jarmolych, J., Daoud, A. S., Landau, J., Fritz, K. E., Mcelvene, E.: Aortic medial explants. Cell proliferation and production of mucopolysaccharides, collagen and elastic tissue. Exp. molec. Path. 9, 171 (1968).Google Scholar
  25. Jensen, J.: On the relationship between metabolic activity and cholesterol uptake by intima-media of the rabbit aorta. Biochem. biophys. Acta 183, 204 (1969).Google Scholar
  26. Jordan, R.E., Hewitt, N., Lewis, W., Kagan, H., Franzblau, C.: Regulation of elastase-catalyzed hydrolysis of insoluble elastin by synthetic and naturally occurring hydrophobic ligands. Biochemistry 13, 3497 (1974).PubMedCrossRefGoogle Scholar
  27. Kalra, V. K., Brodie, A. F.: Metabolic differences between the arteries of atherosclerosis susceptible and resistant pigeons. Biochem. Biophys. Res. Commun. 61, 1372 (1974).PubMedCrossRefGoogle Scholar
  28. Kirk, J.E.: Vitamin contents of ârterial tissue. Monographs on Atherosclerosis, Vol. 3. Basel: S. Karger 1973.Google Scholar
  29. Kirk, J. E.: Coenzyme contents of arterial tissue. Monographs on Atherosclerosis, Vol. 4. Basel: S. Karger 1974.Google Scholar
  30. Klynstra, F.B., Böttcher, C. J. F.: Permeability patterns in pig aorta. Atherosclerosis 11, 451 (1970).PubMedCrossRefGoogle Scholar
  31. May, J. F., Zemplényi, T., Paule, W.J., Kalra, V.K., Blankenhorn, D.H., Brodie, A. F.: Studies on the effect of hypoxia on arterial smooth muscle cell cultures. In: Wolf, S., Werthessen, N.T. (Eds.): The Smooth Muscle of the Arterial Wall, p. 144. New York: Plenum Press 1975.Google Scholar
  32. May, J.F., Paule, W.J., Zemplenyi, T., Kalra, V.K., Brodie, A. F., Blankenhorn, D. H.: Effect of hypoxia on cultured arterial smooth muscle cells. Clin. Res. 22, 110A (1974).Google Scholar
  33. Morita, T., Bing, R.J.: Lipid metabolism in perfused human coronary arteries. Proc. Soc. exp. Biol. 140, 617 (1972).PubMedGoogle Scholar
  34. Noma, A., Okabe, H., Sakurada, T., Orimo, H., Murakami, M.: Properties and positional specificity of lipases in the human aorta. In: Schettler, G., Weizel, A. (Eds.): Atherosclerosis III, p. 143. New York-Heidelberg-Berlin: Springer 1974.CrossRefGoogle Scholar
  35. Peters, T.J., Moller, M., De Duve, C.: Lysosomes of the arterial wall. J. Exp. Med. 136, 1117 (1972).PubMedCrossRefGoogle Scholar
  36. Peters, T.J., De Duve, C.: Lysosomes of the arterial wall. Exp. molec. Path. 20, 228 (1974).Google Scholar
  37. Pollak, O.J.: Tissue cultures. Monographs on Atherosclerosis, Vol. 1. Basel: S. Karger 1969.Google Scholar
  38. Pollak, O.J., Kasai, T.: Appearance and behavior of aortic cells in vitro. Amer. J. Med. Sci. 248, 71 (1964).PubMedCrossRefGoogle Scholar
  39. Robert, L., Kadar, A., Robert, B.: The macromolecules of the intercellular matrix of the arterial wall: Collagen, elastin, proteoglycans, and glycoproteins. Advanc. exp. Med. Biol. 43, 85 (1974).Google Scholar
  40. Robertson, A.L., Jr., Khairallah, P. A.: Arterial endothelial permeability and vascular disease. Exp. molec. Path. 18, 241 (1973).PubMedCrossRefGoogle Scholar
  41. Ross, R.: The smooth muscle cell. J. Cell Biol. 50, 172 (1971).PubMedCrossRefGoogle Scholar
  42. Ross, R., Glomset, J.A.: Atherosclerosis and the arterial smooth muscle cell. Science 180, 1332 (1973).PubMedCrossRefGoogle Scholar
  43. Ross, R., Glomset, J., Kariya, B., Harker, L.: A platelet-dependent serum factor that stimulates the proliferation of arterial smooth muscle cells in vitro. Proc. nat. Acad. Sci. (Wash.) 71, 1207 (1974).CrossRefGoogle Scholar
  44. Rutstein, D.D., Ingenito, E.F., Craig, J.M., Martinelli, M.: Effects of linolenic and stearic acids on cholesterol induced lipoid deposition in human aortic cells in tissue culture. Lancet 1958 I, 7020.Google Scholar
  45. Sarma, J. S. M., Tillmanns, H., Ikeda, S., Grenier, A., Colby, E., Bing, R.J.: Lipid metabolism in perfused human and dog coronary arteries. Amer. J. Cardiol. 35, 579 (1975).PubMedCrossRefGoogle Scholar
  46. Shimamoto, T.: Contraction of endothelial cells as a key mechanism in atherogenesis and treatment of atherosclerosis with endothelial cell relaxants. In: Schettler, G., Weizel, A. (Eds.): Atherosclerosis III, p. 64. New York-Heidelberg-Berlin: Springer 1974.CrossRefGoogle Scholar
  47. Shimamoto, T.: Hyperreactive arterial endothelial cells in atherogenesis and cyclic AMP phosphodiesterase inhibitor in prevention and treatment of atherosclerotic disorders. Jap. Heart J. 16, 76 (1975).PubMedCrossRefGoogle Scholar
  48. Shimamoto, T., Numano, F.: Beta-lipoprotein entry into the arterial wall and its prevention. In: Schettler, G., Weizel, A. (Eds.): Atherosclerosis III, p. 89. New York-Heidelberg-Berlin: Springer 1974.CrossRefGoogle Scholar
  49. Shio, H., Farquhar, M.G., Deduve, C.: Lysosomes of the arterial wall. Amer. J. Path. 76, 1 (1974).PubMedGoogle Scholar
  50. Somer, J.B., Schwartz, C.J.: Focal 3H-cholesterol uptake in the pig aorta. Atherosclerosis 13, 293 (1971).PubMedCrossRefGoogle Scholar
  51. Schroeder, H. A.: The role of trace elements in cardiovascular diseases. Med. Clin. N. Amer. 58, 381 (1974).PubMedGoogle Scholar
  52. Stein, Y., Stein, O.: Lipid synthesis and degradation and lipoprotein transport in mammalian aorta. In: Atherogenesis, Initiating Factors, p.165. CIBA Foundation Symposium 12, New York: Elsevier 1973.Google Scholar
  53. Stein, O., Stein, Y.: Comparative uptake of rat and human serum low density and high density lipoproteins by rat aortic smooth muscle cells in culture. Circulation Res. 36, 436 (1975a).PubMedGoogle Scholar
  54. Stein, Y., Stein, O.: Turnover of phospholipids in rat aortic smooth muscle cells in culture. Amer. J. Cardiol. 35, 572 (1975b).CrossRefGoogle Scholar
  55. Stout, R.W., Bierman, E.L., Ross, R.: Effect of insulin on the proliferation of cultured primate arterial smooth muscle cells. Circulation Res. 36, 319 (1975).PubMedGoogle Scholar
  56. Takano, T., Black, W.J., Peters, T.J., De Duve, C.: Assay, kinetics, and lysosomal localization of an acid cholesteryl esterase in rabbit aortic smooth muscle cells. J. biol. Chem. 249, 6732 (1974).PubMedGoogle Scholar
  57. Veress, B., Balint, A., Koczé, A.: Increasing aortic permeability by atherogenic diet. Atherosclerosis 11, 369 (1970).PubMedCrossRefGoogle Scholar
  58. Vijayakumar, S.T., Kuxup, P.A.: Metabolism of glucoaminoglycans in atheromatous rats. Enzymes concerned with synthesis, degradation and suíphation of glycosaminoglycans. Atherosclerosis 21, 245 (1975).PubMedCrossRefGoogle Scholar
  59. Vost, A., Pocock, D.E.: Aortic uptake of chylomicron triglyceride in vivo and aortic lipoprotein triglyceride lipase in rat. In: Schettler, G., Weizel, A. (Eds.): Atherosclerosis III, p. 150. New York-Heidelberg-Berlin: Springer 1974.CrossRefGoogle Scholar
  60. Wagner, W.D., Clarkson, T.B. (Eds.): Arterial Mesenchyme and Arteriosclerosis. New York and London: Plenum Press 1974.Google Scholar
  61. Walton, K.W.: Pathogenetic mechanisms in atherosclerosis. Amer. J. Cardiol. 35, 542 (1975).PubMedCrossRefGoogle Scholar
  62. Werb, Z., Cohn, Z.A.: Cholesterol metabolism in the macrophage. J. exp. Med. 135, 21 (1972).PubMedCrossRefGoogle Scholar
  63. Wohlrab, V. F., Schmidt, S.: Zur Verteilung der Isoenzyme der Laktatdehydrogenase in der Wand der Arteria Femoralis diabetischer and nichtdiabetischer Patienten. Dtsch. Gesundh.-Wes. 28, 1350 (1973).Google Scholar
  64. Wohlrab, V. F., Götze, J.: Laktat-Dehydrogenase-Isoenzyme in der Wand der Rattenaorta beim experimentellen Streptozotocin-Diabetes. Dtsch. Z. Verdau.- u. Stoffwechselkr. 34, 53 (1974).Google Scholar
  65. Wolinsky, H., Goldfischer, S., Schiller, B., Kasak, L.E.: Modification of the effects of hypertension on lysosomes and connective tissue in the rat aorta. Circulation Res. 34, 233 (1974).PubMedGoogle Scholar
  66. Wolinsky, H., Goldfischer, S., Daly, M. M., Kasak, L.E., Coltoff-Schiller, B.: Arterial lysosomes and connective tissue in primate atherosclerosis and hypertension. Circulation Res. 36, 553 (1975).PubMedGoogle Scholar
  67. Zemplényi, T., Rosenstein, A.J.: Arterial enzymes and their relation to atherosclerosis in pigeons. Exp. molec. Path. 22, 225 (1975a).Google Scholar
  68. Zemplényi, T., Rosenstein, A. J.: Elevation of arterial phosphofructokinase activity associated with susceptibility to atherosclerosis in pigeons. Atherosclerosis 21, 167 (1975b).CrossRefGoogle Scholar
  69. Zemplényi, T., Blankenhorn, D. H., Rosenstein, A.J.: Inherited depression of arterial lipoamide dehydrogenase activity associated with susceptibility to atherosclerosis in pigeons. Circulation Res. 36, 640 (1975).PubMedGoogle Scholar
  70. Zilversmit, D. B.: A proposal linking atherogenesis to the interaction of endothelial lipoprotein lipase with triglyceride-rich lipoproteins. Circulation Res. 33, 633 (1973).PubMedGoogle Scholar
  71. Zilversmit, D. B.: Mechanisms of cholesterol accumulation in the arterial wall. Amer. J. Cardiol. 35, 559 (1975).PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • T. Zemplényi

There are no affiliations available

Personalised recommendations