Skip to main content

Exchange of Solutes between Phloem and Xylem and Circulation in the Whole Plant

  • Chapter
Transport in Plants I

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 1))

Abstract

Two main pathways exist for transport of solutes in the vascular plant. One of these comprises the cytoplasmic continuum (symplast) of the plant, including cell-to-cell transfer over short distances via plasmodesmata and over longer distances through the sieve elements of the phloem. The predominant direction of flux within this system is usually from photosynthetically active structures which serve as bulk sources of concentrated solutes such as carbohydrate, to sink regions of various kinds in which these solutes are consumed in growth or in the establishment of new reserves. The second pathway constitutes the extra-protoplasmic compartment (apoplast) of the plant, consisting in particular of the mass flow of water, ions and certain organic solutes upwards from the root in the xylem to transpiring surfaces of the shoot system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andel, O.M. van: The influence of salts on the exudation of tomato plants. Acta Botan. Neerl. 2, 445–521 (1953).

    Google Scholar 

  • Anderssen, F.G.: Some seasonal changes in the tracheal sap of pear and apricot trees. Plant Physiol. (Lancaster) 4, 459–476 (1929).

    CAS  Google Scholar 

  • Becker, D., Kluge, M., Ziegler, H.: Der Einbau von 32PO 4 in organische Verbindungen durch Siebröhrensaft. Planta 99, 154–162 (1971).

    CAS  Google Scholar 

  • Biddulph, O.: Translocation of inorganic solutes. In: Plant physiology, vol. 2. Plants in relation to water and solutes (ed. F.C. Steward), chap. 6, p. 553–603. New York: Academic Press 1959.

    Google Scholar 

  • Biddulph, O., Biddulph, S., Cory, R., Koontz, H.: Circulation patterns for phosphorus, sulfur, and calcium in the bean plant. Plant Physiol. (Lancaster) 33, 293–300 (1958).

    CAS  Google Scholar 

  • Biddulph, O., Cory, R.: Translocation of C14-metabolites in the phloem of the bean plant. Plant Physiol. (Lancaster) 40, 119–129 (1965).

    CAS  Google Scholar 

  • Biddulph, O., Nakayama, F.S., Cory, R.: Transpiration stream and ascension of calcium. Plant Physiol. (Lancaster) 36, 429–436 (1961).

    CAS  Google Scholar 

  • Bieleski, R.L.4: Phosphorus compounds in translocating phloem. Plant Physiol. (Lancaster) 44, 497–502 (1969).

    CAS  Google Scholar 

  • Bieleski, R.L.: Phosphate pools, phosphate transport, and phosphate availability. Ann. Rev. Plant Physiol. 24, 225–252 (1973).

    CAS  Google Scholar 

  • Bledsoe, R.W., Comar, C.L., Harris, H.C.: Absorption of radioactive calcium by the peanut fruit. Science 109, 329–330 (1949).

    PubMed  CAS  Google Scholar 

  • Bollard, E.G.: Transport in the xylem. Ann. Rev. Plant Physiol. 11, 141–166 (1960).

    Google Scholar 

  • Bollard, E.G., Butler, G.W.: Mineral nutrition of plants. Ann. Rev. Plant Physiol. 17, 77–112 (1966).

    CAS  Google Scholar 

  • Bousquet, U.: Absorption et migration du calcium chez une espèce calcifuge et une espèce calcicole. Compt. Rend. 272, 1768–1771 (1971).

    CAS  Google Scholar 

  • Bowen, M.R., Hoad, G.V.: Inhibitor content of phloem and xylem sap obtained from willow (Salix viminalis) entering dormancy. Planta 81, 64–70 (1968).

    CAS  Google Scholar 

  • Bowen, M.R., Wareing, P.F.: The interchange of 14C-kinetin and 14C-gibberellic acid between the bark and xylem of willow. Planta 89, 108–125 (1969).

    CAS  Google Scholar 

  • Briarty, L.G.: Repeating particles associated with membranes of transfer cells. Plant 113, 373–375 (1973).

    Google Scholar 

  • Brown, A.L., Yamaguchi, S., Leal-Diaz, J.: Evidence for translocation of iron in plants. Plant Physiol. (Lancaster) 40, 35–38 (1965).

    CAS  Google Scholar 

  • Bukovac, M.J., Teubner, F.G., Wittwer, S.H.: Absorption and mobility of magnesium-28 in the bean (Phaseolus vulgaris). Proc. Am. Soc. Hort. Sci. 75, 429–434 (1960).

    CAS  Google Scholar 

  • Bukovac, M.J., Wittwer, S.H.: Absorption and mobility of foliar-applied nutrients. Plant Physiol. (Lancaster) 32, 428–435 (1957).

    CAS  Google Scholar 

  • Burrows, W.J., Carr, D.J.: Effects of flooding the root system of sunflower plants on the cytokinin content in the xylem sap. Physiol. Plantarum 22, 1105–1112 (1969).

    CAS  Google Scholar 

  • Burström, H.: The rate of the nutrient transport to swelling buds of trees. Physiol. Plantarum 1, 124–135 (1948).

    Google Scholar 

  • Carr, D.J., Burrows, W.J.: Evidence of the presence in xylem sap of substances with kinetin-like activity. Life Sci. 5, 2061–2077 (1966).

    CAS  Google Scholar 

  • Carr, D.J., Reid, D.M., Skene, K.G.M.: The supply of gibberellins from the root to the shoot. Planta 63, 382–392 (1964).

    CAS  Google Scholar 

  • Clark, R.B., Tiffin, L.O., Brown, J.C.: Organic acids and iron translocation in maize genotypes. Plant Physiol. (Lancaster) 52, 147–150 (1973).

    CAS  Google Scholar 

  • Cooper, D.R., Hill Cottingham, D.G., Shortfall, M.J.: Gradients in the nitrogenous constituents of the sap extracted from apple shoots of different ages. J. Exptl. Botany 23, 247–254 (1972).

    CAS  Google Scholar 

  • Crafts, A.S., Crisp, C.E.: Phloem transport in plants. San Francisco: Freeman 1971.

    Google Scholar 

  • Crafts, A.S., Lorenz, O.A.: Composition of fruits and phloem exudate of cucurbits. Plant Physiol. (Lancaster) 19, 326–337 (1944).

    CAS  Google Scholar 

  • Crozier, A., Reid, D.M.: Do roots synthesize gibberellins? Can. J. Botany 49, 967–975 (1971).

    CAS  Google Scholar 

  • Eastwood, D., Laidman, D.L.: Mineral translocation in germinating wheat grain. Biochem. J. 109, 9–10(1968).

    Google Scholar 

  • Eddings, J.L., Brown, A.L.: Absorption and translocation of foliar applied iron. Plant Physiol. (Lancaster) 42, 15–19(1967).

    CAS  Google Scholar 

  • Ehrhardt, P.: Die anorganischen Bestandteile des Honigtaues von Megoura viciae Buckt. Experentia 21, 472–473 (1965).

    CAS  Google Scholar 

  • Epstein, E.: Mineral nutrition of plants: Principles and perspectives. New York: Wiley 1972.

    Google Scholar 

  • Eschrich, W.: Translokation 14C-markierter Assimilate im Licht und im Dunkeln bei Vicia faba. Planta 70, 99–124 (1966).

    Google Scholar 

  • Eschrich, W.: Translokation radioaktivmarkierter Indolyl-3-Essigsäure in Siebröhren von Vicia faba. Planta 78, 144–157 (1968).

    CAS  Google Scholar 

  • Ferrel, W.K., Johnson, F.D.: Mobility of 45Ca after injection into Western Pine. Science 124, 364–365 (1956).

    Google Scholar 

  • Fife, J.M., Price, C., Fife, D.C.: Some properties of phloem exudate collected from root of sugar beet. Plant Physiol. (Lancaster) 37, 791–792 (1962).

    CAS  Google Scholar 

  • Flinn, A.M., Pate, J.S.: A quantitative study of carbon transfer from pod and subtending leaf to the ripening seeds of the field pea (Pisum arvense L.). J. Exptl. Botany 21, 71–82 (1970).

    CAS  Google Scholar 

  • Ford, J., Peel, A.J.: The movement of sugars into the sieve elements of bark strips of willow. I. Metabolism during transport. J. Exptl. Botany 18, 607–619 (1967).

    Google Scholar 

  • Gardner, D.C.J., Peel, A.J.: ATP in sieve-tube sap from willow. Nature 222, 774 (1969).

    CAS  Google Scholar 

  • Gardner, D.C.J., Peel, A.J.: Metabolism and transport of 14C-labeled glutamic and aspartic acids in the phloem of willow. Phytochemistry 10, 2385–2387 (1971).

    CAS  Google Scholar 

  • Greenway, H., Gunn, A., Pitman, M.G., Thomas, D.A.: Plant response to saline substrates. VI. Chloride, sodium and ptassium uptake and distribution within the plant during ontogenesis of Hordeum vulgare. Australian J. Biol. Sci. 18, 525–540 (1965).

    CAS  Google Scholar 

  • Greenway, H., Pitman, M.G.: Potassium retranslocation in seedlings of Hordeum vulgare. Australian J. Biol. Sci. 18, 235–247 (1965).

    CAS  Google Scholar 

  • Guardiola, J.L., Sutcliffe, J.F.: Transport of materials from cotyledons during germination of the garden pea (Pisum sativum L.). J. Exptl. Botany 23, 322–337 (1972).

    CAS  Google Scholar 

  • Gunning, B.E.S., Pate, J.S.: “Transfer Cells” plant cells with wall ingrowths, specialized in relation to short distance transport of solutes—their occurrence, structure and development. Protoplasma 68, 107–133 (1969).

    Google Scholar 

  • Gunning, B.E.S., Pate, J.S., Briarty, L.G.: Specialized “Transfer Cells” in minor veins of leaves and their possible significance in phloem translocation. J. Cell Biol. 37, C7–C12 (1968).

    PubMed  CAS  Google Scholar 

  • Gunning, B.E.S., Pate, J.S., Green, L.W.: Transfer cells in the vascular system of stems: Taxonomy, association with nodes, structure. Protoplasma 71, 147–171 (1970).

    Google Scholar 

  • Gunning, B.E.S., Pate, J.S., Minchin, F.R., Marks, I.: Quantitative aspects of transfer-cell structure in relation to vein loading in leaves and solute transport in legume nodules. Symp. Soc. Exptl. Biol. 28, 87–126 (1974).

    CAS  Google Scholar 

  • Hall, R.H.: Cytokinins as a probe of developmental processes. Ann. Rev. Plant Physiol. 24, 415–444 (1973).

    CAS  Google Scholar 

  • Hall, S.M., Baker, D.A.: The chemical composition of Ricinus phloem exudate. Planta 106, 131–140 (1972).

    CAS  Google Scholar 

  • Hall, S.M., Baker, D.A., Milburn, J.A.: Phloem transport of 14C-labeled assimilates in Ricinus. Planta 100, 200–207 (1971).

    CAS  Google Scholar 

  • Hardy, P.J.: Selective diffusion of basic and acidic products of CO2 fixation into the transpiration stream in grapevine. J. Exptl. Botany 20, 856–862 (1969).

    CAS  Google Scholar 

  • Hardy, P.J., Possingham, J.V.: Studies on translocation of metabolites in the xylem of grapevine shoots. J. Exptl. Botany 20, 325–335 (1969).

    CAS  Google Scholar 

  • Harris, H.C.: The effect on the growth of peanuts of nutrient deficiencies in the root and the pegging zone. Plant Physiol. (Lancaster) 24, 150–161 (1949).

    CAS  Google Scholar 

  • Hartt, C.E., Kortschak, H.P.: Radioactive isotopes in sugar cane physiology. Proc. 12th I.S.S.C.T. Congress, Puerto Rico, p. 647–662 (1965).

    Google Scholar 

  • Henkens, Ch.H., Jongman, E.: The movement of manganese in the plant and the practical consequences. Neth. J. Agr. Sci. 13, 392–407 (1965).

    CAS  Google Scholar 

  • Hes, J.W.: Leaf fall and excretion. Acta Botan. Neerl. 7, 278–281 (1958).

    Google Scholar 

  • Hill-Cottingham, D.G., Lloyd-Jones, C.P.: Relative mobility of some organic nitrogenous compounds in the xylem of apple shoots. Nature 220, 389–390 (1968).

    CAS  Google Scholar 

  • Hill-Cottingham, D.G., Lloyd-Jones, C.P.: Seasonal variations in absorption and metabolism of carbon-14-labeled arginine in intact apple stem tissue. Physiol. Plantarum 29, 35–44 (1973a).

    Google Scholar 

  • Hill-Cottingham, D.G., Lloyd-Jones, C.P.: Metabolism of carbon-14-labeled arginine, citrulline and ornithine in intact apple stems. Physiol. Plantarum 29, 125–128 (1973b).

    CAS  Google Scholar 

  • Hill-Cottingham, D.G., Lloyd-Jones, C.P.: A technique for studying the adsorption, absorption and metabolism of amino acids in intact apple stem tissue. Physiol. Plantarum 28, 443–446 (1973 c).

    CAS  Google Scholar 

  • Hoad, G.V.: Effect of moisture stress on abscisic acid levels in Ricinus communis L. with particular reference to phloem exudate. Planta 113, 367–372 (1973).

    CAS  Google Scholar 

  • Hoad, G.V., Bowen, M.R.: Evidence for gibberellin-like substances in phloem exudate of higher plants. Planta 82, 22–32 (1968).

    CAS  Google Scholar 

  • Hoad, G.V., Hillman, S.K., Wareing, P.F.: Studies on the movement of indole auxins in willow (Salix viminalis L.) Planta 99, 73–88 (1971).

    CAS  Google Scholar 

  • Hoad, G.V., Peel, A.J.: Studies on the movement of solutes between the sieve tubes and surrounding tissues in willow. I. Interference between solutes and rate of translocation measurements. J. Exptl. Botany 16, 433–451 (1965).

    Google Scholar 

  • Hofsten, A. van: X-ray analysis of microelements in seeds of Crambe abyssinica. Physiol. Plantarum 29, 76–81 (1973).

    Google Scholar 

  • Humphries, E.C.: Entry of nutrients into the plant and their movement within it. Proc. Fertil. Soc. 48 (1958).

    Google Scholar 

  • Husa, J.G., McIlrath, W.J.: Absorption and translocation of boron by sunflower plants. Botan. Gaz. 126, 186–194 (1965).

    CAS  Google Scholar 

  • Ivanko, S.: Metabolic pathways of nitrogen assimilation in plant tissue when 15N is used as a tracer. In: Nitrogen-15 in soil plant studies. Int. Atom. Energy Ag. Vienna (1971).

    Google Scholar 

  • Jacoby, B.: Sodium retention in excised bean stems. Physiol. Plantarum 18, 730–739 (1965).

    CAS  Google Scholar 

  • Jones, O.P., Lacey, H.J.: Gibberellin-like substances in the transpiration stream of apple and pear trees. J. Exptl. Botany 19, 526–531 (1968).

    CAS  Google Scholar 

  • Jones, O.P., Rowe, R.W.: Sampling the transpiration stream in woody plants. Nature 219, 403 (1968).

    CAS  Google Scholar 

  • Joy, K.W., Antcliff, A.J.: Translocation of amino-acids in sugar beet. Nature 211, 210–211 (1966).

    PubMed  CAS  Google Scholar 

  • Kende, H.: Kinetin-like factors in the root exudate of sunflowers. Proc. Natl. Acad. Sci. U.S. 53, 1302–1307 (1965).

    CAS  Google Scholar 

  • Kimmel, C.: Über das Vorkommen anorganischer Ionen in Siebröhrensäften und den Transport von Salzen im Phloem. Diss. tech. Hochsch. Darmstadt (1962).

    Google Scholar 

  • Kipps, A., Boulter, D.: Carbon transfer from the blossom node leaf to the fruit of Vicia faba. New Phytologist 72, 1293–1298 (1973).

    CAS  Google Scholar 

  • Kluge, H.: Untersuchungen über Kohlenhydrate und Myo-inosit in Siebröhrensäften von Holz. Doctoral Dissertation, Darmstadt Technical University (1967).

    Google Scholar 

  • Kluge, M., Ziegler, H.: Der ATP-gehalt der Siebröhrensäfte von Laubbäumen. Planta 61, 167–177 (1964).

    Google Scholar 

  • Kollmann, R., Dörr, I. Kleinig, H.: Protein filaments—structural components of the phloem exudate. Planta 95, 86–94 (1970).

    CAS  Google Scholar 

  • Kursanov, A.L.: The transport of organic substances in plants. Endeavour 20, 19–25 (1961).

    CAS  Google Scholar 

  • Kursanov, A.L.: Metabolism and the transport of organic substances in the phloem. Advances in Botanical Research, vol. 1, p. 209–278. London: Academic Press 1963.

    Google Scholar 

  • Läuchli, A.: Untersuchungen mit der Röntgen-Mikrosonde über Verteilung und Transport von Ionen in Pflanzengeweben. II. Ionentransport nach Früchten von Pisum sativum. Planta 83, 137–149 (1968).

    Google Scholar 

  • Läuchli, A.: Translocation of inorganic solutes. Ann. Rev. Plant Physiol. 23, 197–218 (1972).

    Google Scholar 

  • Lewis, O.A.M., Pate, J.S.: The significance of transpirationally derived nitrogen in protein synthesis in fruiting plants of pea (Pisum sativum L.). J. Exptl. Botany 24, 596–606 (1973).

    CAS  Google Scholar 

  • Linck, A.J., Sudia, J.W.: Translocation of labeled photosynthate from the bloom node leaf to the fruit of Pisum sativum. Experientia 18, 69–70 (1962).

    CAS  Google Scholar 

  • MacRobbie, E.: Phloem translocation. Facts and mechanisms. A comparative survey. Biol. Rev. 46, 429–481 (1971).

    Google Scholar 

  • Maier, K., Maier, U.: Localization of beta-glycerophosphatase and Mg++-activated adenosine triphosphatase in a moss haustorium, and the relation of these enzymes to the wall labyrinth. Protoplasma 75, 91–112 (1972).

    Google Scholar 

  • Maizel, J.V., Benson, A.A., Tolbert, N.E.: Identification of phosphoryl choline as an important constituent of plant saps. Plant Physiol. (Lancaster) 31, 407–408 (1956).

    CAS  Google Scholar 

  • McIlrath, W.J.: Mobility of boron in several dicotyledonous species. Botan. Gaz. 126, 27–30 (1965).

    CAS  Google Scholar 

  • Meyer-Mevius, U.: Vorkommen und Transport von Kohlenhydraten und Stickstoffverbindungen in den pflanzlichen Leitungsbahnen. Flora (Jena) 147, 553–594 (1959).

    CAS  Google Scholar 

  • Michael, G., Wilberg, E., Kouhsiahi-Tork, K.: Durch hohe Luftfeuchtigkeit induzierter Bormangel. Z. Pflanzenernähr. Düng. Bodenk. 122, 1–3 (1969).

    CAS  Google Scholar 

  • Millikan, C.R., Hanger, B.C.: Effects of chelation and of certain cations on the mobility of foliar-applied 45Ca in stock, broad beans, peas and subterranean clover. Australian J. Biol. Sci. 18, 211–226 (1965).

    CAS  Google Scholar 

  • Millikan, C.R., Hanger, B.C.: Redistribution of 45Ca in Trifolium subterraneum L. and Antirrhinum majus L. Australian J. Biol. Sci. 20, 1119–1130 (1967).

    Google Scholar 

  • Millikan, C.R., Hanger, B.C., Bjarnason, E.N.: The mobility of 65Zn in Trifolium subterraneum L. and Antirrhinum majus L. Australian J. Biol. Sci. 22, 311–320 (1969).

    Google Scholar 

  • Milthorpe, F.L., Moorby, J.: Vascular transport and its significance in plant growth. Ann. Rev. Plant Physiol. 20, 117–138 (1969).

    CAS  Google Scholar 

  • Moorby, J.: The influence of carbohydrate and mineral nutrient supply on the growth of potato tubers. Ann. Botany (London) 32, 57–68 (1968).

    CAS  Google Scholar 

  • Moose, C.A.: Chemical and spectroscopic analysis of phloem exudate and parenchyma sap from several species of plants. Plant Physiol. (Lancaster) 13, 365–380 (1938).

    CAS  Google Scholar 

  • Morrison, T.M.: Xylem sap composition in woody plants. Nature 205, 1027 (1965).

    Google Scholar 

  • Münch, E.: Die Stoffbewegungen in der Pflanze. Jena 1930.

    Google Scholar 

  • Nelson, C.D.: The translocation of organic compounds in plants. Can. J. Botany 40, 757–770 (1962).

    CAS  Google Scholar 

  • O’Brien, T.P., Carr, D.J.: A suberized layer in the cell walls of the bundle sheath of grasses. Australian J. Biol. Sci. 23, 275–287 (1970).

    Google Scholar 

  • O’Brien, T.P., Zee, S.Y.: Vascular transfer cells in the vegetative nodes of wheat. Australian J. Biol. Sci. 24, 207–217 (1971)

    Google Scholar 

  • Oertli, J.J., Richardson, W.F.: The mechanism of boron immobility in plants. Physiol. Plantarum 23, 108–116 (1970).

    CAS  Google Scholar 

  • Oghoghorie, C.G.O., Pate, J.S.: Exploration of the nitrogen transport system of a nodulated legume using 15N. Planta 104, 35–49 (1972).

    CAS  Google Scholar 

  • Oland, K.: Changes in the content of dry matter and major nutrient elements of apple foliage during senescence and abscission. Physiol. Plantarum 16, 682–694 (1963).

    CAS  Google Scholar 

  • Olofinboba, M.O.: Seasonal variations in the carbohydrates in the xylem of Antiaris africana. Ann. Botany (London) 33, 339–349 (1969).

    CAS  Google Scholar 

  • Pate, J.S.: Root exudation studies on the exchange of 14C-labeled organic substances between the roots and shoot of the nodulated legume. Plant Soil 17, 333–356 (1962).

    CAS  Google Scholar 

  • Pate, J.S.: Roots as organs of assimilation of sulfate. Science 149, 547–548 (1965).

    PubMed  CAS  Google Scholar 

  • Pate, J.S.: Movement of nitrogenous solutes in plants. In: Nitrogen-15 in soil-plant studies. Int. Atom. Energy Ag. Vienna (1971).

    Google Scholar 

  • Pate, J.S.: Uptake, assimilation and transport of nitrogen compounds by plants. Soil Biol. Biochem. 5, 109–119 (1973).

    CAS  Google Scholar 

  • Pate, J.S., Flinn, A.M.: Carbon and nitrogen transfer from vegetative organs to ripening seeds of field pea (Pisum arvense L.). J. Exptl. Botany 24, 123–145 (1973).

    Google Scholar 

  • Pate, J.S., Gunning, B.E.S.: Vascular transfer cells in Angiosperm leaves. A taxonomic and morphological survey. Protoplasma 68, 135–156 (1969).

    Google Scholar 

  • Pate, J.S., Gunning, B.E.S.: Transfer Cells. Ann. Rev. Plant Physiol. 23, 173–196 (1972).

    Google Scholar 

  • Pate, J.S., Gunning, B.E.S., Milliken, F.F.: Function of transfer cells in the nodal regions of stems, particularly in relation to the nutrition of young seedlings. Protoplasma 71, 313–334 (1970).

    Google Scholar 

  • Pate, J.S., O’Brien, T.P.: Microautoradiographic study of the incorporation of labeled amino acids into insoluble compounds of the shoot of a higher plant. Planta 78, 60–71 (1968).

    CAS  Google Scholar 

  • Pate, J.S., Sharkey, P.J., Lewis, O.A.M.: Phloem bleeding from legume fruits—A technique for study of fruit nutrition. Planta 120, 229–243 (1974).

    CAS  Google Scholar 

  • Pate, J.S., Sharkey, P.J., Lewis, O.A.M.: Xylem to phloem transfer of solutes in fruiting shoots of legumes, studied by a phloem bleeding technique. Planta 122, 11–26 (1975).

    CAS  Google Scholar 

  • Pate, J.S., Walker, J., Wallace, W.: Nitrogen-containing compounds in the shoot system of Pisum arvense L. II. The significance of amino acids and amides released from nodulated roots. Ann. Botany (London) 29, 475–493 (1965).

    Google Scholar 

  • Pate, J.S., Wallace, W., Van Die, J.: Petiole bleeding sap in the examination of the circulation of nitrogenous substances in plants. Nature 204, 1073–1074 (1964).

    Google Scholar 

  • Peel, A.J.: The movement of ions from the xylem solution into the sieve tubes of willow. J. Exptl. Botany 14, 438–447 (1963).

    CAS  Google Scholar 

  • Peel, A.J., Weatherley, P.E.: Composition of sieve-tube sap. Nature 184, 1955–1956 (1959).

    CAS  Google Scholar 

  • Phillips, D.A., Cleland, C.F.: Cytokinin activity from the phloem sap of Xanthium strumarium L. Planta 102, 173–178 (1972).

    CAS  Google Scholar 

  • Phillips, I.D.J., Jones, R.L.: Gibberellin-like activity in bleeding sap of root systems of Helianthus annuus detected by a new dwarf pea epicotyl assay and other methods. Planta 63, 269–278 (1964).

    CAS  Google Scholar 

  • Rains, D.W.: Cation absorption by slices of stem tissue of bean and cotton. Experientia 25, 215–216 (1969).

    PubMed  CAS  Google Scholar 

  • Ringoet, A., Sauer, G., Gielink, A.J.: Phloem transport of calcium in oat leaves. Planta 80, 15–20 (1968).

    Google Scholar 

  • Sauter, J.J., Iten, W., Zimmermann, M.H.: Studies on the release of sugar into the vessels of sugar maple (Acer saccharum). Can. J. Botany 51, 1–8 (1973).

    CAS  Google Scholar 

  • Schmid, W.E., Gerloff, G.C.: A naturally occurring chelate of iron in xylem exudate. Plant Physiol. (Lancaster) 36, 226–231 (1961).

    CAS  Google Scholar 

  • Scholz, G.: Über die Translokation des Bors in Tabak-Blattstecklingen mit geteilten Wurzelsystemen. Flora (Jena) 148, 484–488 (1960).

    CAS  Google Scholar 

  • Selvendran, R.R., Sabaratnam, S.: Composition of the xylem sap of tea plants (Camellia sinensis L.). Ann. Botany (London) 35, 679–682 (1971).

    CAS  Google Scholar 

  • Sheldrake, A.R., Northcote, D.H.: Some constituents of xylem sap and their possible relationship to xylem differentiation. J. Exptl. Botany 19, 681–689 (1968).

    Google Scholar 

  • Shone, M.G.T., Clarkson, D.T., Sanderson, J.: The absorption and translocation of sodium by maize seedlings. Planta 86, 301–314 (1969).

    CAS  Google Scholar 

  • Sitton, D., Itai, C., Kende, H.: Decreased cytokinin production in the roots as a factor in shoot senescence. Planta 73, 296–300 (1967).

    CAS  Google Scholar 

  • Sitton, D., Richmond, A., Vaadia, Y.: On the synthesis of gibberellins in roots. Phytochemistry 6, 1101–1105 (1967).

    CAS  Google Scholar 

  • Skene, K.G.M.: Gibberellin-like substances in root exudate of Vitis vinifera. Planta 74, 250–262 (1967).

    CAS  Google Scholar 

  • Smith, J.G.: Embryo development in Phaseolus vulgaris. Plant Physiol. (Lancaster) 51, 454–458 (1973).

    CAS  Google Scholar 

  • Steucek, G.L., Koontz, H.V.: Phloem mobility of magnesium. Plant Physiol. (Lancaster) 46, 50–52 (1970).

    CAS  Google Scholar 

  • Stösser, R.: Autoradiographische Lokalisierung von 45Calcium im Xylem bei Fruchtstielen von Prunus avium L. Z. Pflanzenphysiol. 4, 387–392 (1970).

    Google Scholar 

  • Tammes, P.M.L.: Micro- and macro-nutrients in sieve-tube sap of palms. Acta Botan. Neerl. 7, 233–234 (1958).

    Google Scholar 

  • Tammes, P.M.L., Van Die, J.: Studies on phloem exudation from Yucca flaccida Haw. I. Some observations on the phenomenon of bleeding and the composition of the exudate. Acta Botan. Neerl. 13, 76–83 (1964).

    CAS  Google Scholar 

  • Tammes, P.M.L., Van Die, J.: Studies on phloem exudation from Yucca flaccida Haw. IV. Translocation of macro- and micro-nutrients by the phloem sap Stream. Proc. Kaninkl. Ned. Akad. Wetenschap. 69, 655–659 (1966).

    CAS  Google Scholar 

  • Taylor, F.H.: Variation in sugar content of maple sap. Vermont Agr. Expt. Stat. Bull. 587, 1–39 (1956).

    Google Scholar 

  • Tiffin, L.O.: Translocation of iron citrate and phosphorus in xylem exudate of soybean. Plant Physiol. (Lancaster) 45, 280–283 (1970).

    CAS  Google Scholar 

  • Tolbert, N.E., Wiebe, H.: Phosphorus and sulfur compounds in plant xylem sap. Plant Physiol. (Lancaster) 30, 499–504 (1955).

    CAS  Google Scholar 

  • Trapp, G.: A study of the foliar endodermis in the Plantaginaceae. Trans. Roy. Soc. Edinburgh 17, 523–546 (1932).

    Google Scholar 

  • Tukey, H.B.: The leaching of substances from plants. Ann. Rev. Plant Physiol. 21, 305–324 (1970).

    CAS  Google Scholar 

  • Van Die, J.: Pathways of translocation and metabolic conversions of root-absorbed 14C (U) L-glutamic acid in tomato plants. Acta Botan. Neerl. 12, 269–280 (1963).

    Google Scholar 

  • Van Die, J., Vonk, C.R.: Selective and stereo-specific absorption of various amino acids during xylem translocation in tomato stems. Acta Botan. Neerl. 16, 147–152 (1967).

    Google Scholar 

  • Waisel, Y., Shapira, Z.: Functions performed by roots of some submerged hydrophytes. Israel J. Botany 20, 69–77 (1971).

    CAS  Google Scholar 

  • Walker, T.S., Thaine, R.: Proteins and fine structural components in exudate from sieve tubes in Cucurbita pepo stems. Ann. Botany (London) 35, 773–790 (1971).

    CAS  Google Scholar 

  • Wallace, A., Hemaidan, N., Sufi, S.M.: Sodium translocation in bush beans. Soil Sci. 100, 331–334 (1965).

    Google Scholar 

  • Wallace, W., Pate, J.S.: Nitrate assimilation in higher plants with special reference to the cocklebur (Xanthium pennsylvanicum Wallr.) Ann. Botany (London) 31, 213–228 (1967).

    CAS  Google Scholar 

  • Weatherley, P.E.: Ion movement within the plant and its integration with other physiological processes. In: Ecological aspects of the mineral nutrition of plants (ed. LH. Rorison). Oxford: Blackwells 1969.

    Google Scholar 

  • Wiersum, L.K.: Water transport in the xylem as related to calcium uptake by groundnuts (Arachis hypogoea L.) Plant Soil 3, 160–169 (1951).

    CAS  Google Scholar 

  • Wiersum, L.K.: Calcium content of fruits and storage tissue in relation to the mode of water supply. Acta Botan. Neerl. 15, 406–418 (1966).

    CAS  Google Scholar 

  • Williams, R.F.: Redistribution of mineral elements during development. Ann. Rev. Plant Physiol. 6, 25–42 (1955).

    CAS  Google Scholar 

  • Wooding, F.B.P.: Absorptive cells in protoxylem: association between mitochondria and the plasmalemma. Planta 84, 235–238 (1969).

    Google Scholar 

  • Wooding, F.B.P., Northcote, D.H.: An anomalous wall thickening and its possible role in the uptake of stem-fed tritiated glucose by Pinus pinea. J. Ultrastruct. Res. 12, 463–472 (1965).

    PubMed  CAS  Google Scholar 

  • Yoshida, R., Oritani, T., Nishi, A.: Kinetin-like factors in the root exudate of rice plants. Plant Cell Physiol. (Tokyo) 12, 89–94 (1971).

    CAS  Google Scholar 

  • Zee, S.Y., O’Brien, T.P.: Vascular transfer cells in the wheat spikelet. Australian J. Biol. Sci. 24, 35–49 (1971).

    Google Scholar 

  • Ziegler, H.: Der Ferntransport organischer Stoffe in den Pflanzen. Naturwissenschaften 50, 177–186 (1963).

    Google Scholar 

  • Ziegler, H.: Die Physiologie pflanzlicher Drüsen. Ber. Deut. Botan. Ges. 78, 466–477 (1965).

    Google Scholar 

  • Ziegler, H.: L’abeille et la fleur. II. Le miel 1. La Sève des tubes criblés. In: Traité de Biologie de L’Abeille, vol. 3, p. 207–217. Paris: Masson et Cie. 1968.

    Google Scholar 

  • Ziegler, H., Schnabel, M.: Über Harnstoffderivate im Siebröhrensaft. Flora (Jena) 150, 306–317 (1961).

    CAS  Google Scholar 

  • Ziegler, H., Ziegler, I.: The water-soluble vitamins in the sieve-tube sap of some trees. Flora (Jena) 152, 257–278 (1962).

    CAS  Google Scholar 

  • Zimmermann, M.H.: Translocation of organic substances in trees. I. The nature of the sugars in the sieve-tube exudates of trees. Plant Physiol. (Lancaster) 32, 288–291 (1957).

    CAS  Google Scholar 

  • Zimmermann, M.H.: Translocation of nutrients. In: The physiology of plant growth and development M.B. Wilkins (ed.). Maidenhead, England: McGraw Hill 1969.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Pate, J.S. (1975). Exchange of Solutes between Phloem and Xylem and Circulation in the Whole Plant. In: Zimmermann, M.H., Milburn, J.A. (eds) Transport in Plants I. Encyclopedia of Plant Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66161-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66161-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66163-1

  • Online ISBN: 978-3-642-66161-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics