Skip to main content

Other Possible Mechanisms

  • Chapter
Transport in Plants I

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 1))

Abstract

In this chapter three assumptions will be made. The first will be that we do not yet know everything about the structural details of living phloem, and that there are therefore conditions of fine structure which exist in the living, functioning state which are yet to be discovered. The second is that the knowledge about the actual movement of translocate, the shape of its front, the profile of its concentration pattern with time and tracer selection or distribution, all within a single sieve tube, are not fully elucidated. The third assumption is that each of the chief mechanisms advanced to account for translocation presents formidable difficulties (Weatherley and Johnson, 1969; MacRobbie, 1971; Fensom, 1972; Canny, 1973): the doubtful evidence of two-way trans-plate streaming at adequate rates in the case of the protoplasmic streaming hypothesis; the theoretical and experimental objections to electroosmosis; the problems of adequate pressure-driven flow in the presence of plasmatic filaments in plate pores and the difficulties over apparent metabolic control of movement in the case of pressure flow. These assumptions suggest that further study of the problem is desirable and further speculation about mechanism is quite proper. Indeed the results obtained on isolated phloem strands and by micro-injection of single sieve tubes (see Chapter 9) are so difficult to explain by any of these three mechanisms alone, that alternatives must be explored if this evidence is to be taken seriously.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikman, D.: The reduction of translocation by cytochalasin B. (Personal communication).

    Google Scholar 

  • Allen, N.S.: Endoplasmic filaments generate the motive force for rotational streaming in Nitella: J. Cell Biol 63, 270–287 (1974).

    Article  PubMed  CAS  Google Scholar 

  • Barclay, G.F.; Fensom, D.S.: Passage of carbon black through sieve plates of unexcised Heracleum sphondylium after microinjection. Acta Botan. Neerl. 22, 228–232 (1973).

    Google Scholar 

  • Behnke, H.D.: The contents of the sieve-plate pores in Aristolochia. J. Ultrastruct. Res. 36, 493–498 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Bose, J.C.: Physiology of the ascent of sap. Bose Research Institute, Calcutta: Trans. S. Longmans, Green and Co. 1923.

    Google Scholar 

  • Bull, H.D.: Physical biochemistry, p. 191–234. New York: John Wiley and Sons 1951.

    Google Scholar 

  • Canny, M.J.: The mechanism of translocation. Ann. Botany (London) 26, 603–17 (1962).

    Google Scholar 

  • Canny, M.J.: Phloem translocation. London: Cambridge Univ. Press 1973.

    Google Scholar 

  • Fensom, D.S.: A theory of translocation in phloem of Heracleum by contractile protein microfibrillar material. Can. J. Botany 50, 479–497 (1972).

    Article  CAS  Google Scholar 

  • Fensom, D.S., Clattenburg, R., Chung, T., Lee, D.R., Arnold, D.C.: Moving particles in intact sieve tubes of Heracleum mantegazzianum. Nature 219, 531–532 (1968).

    Article  Google Scholar 

  • Fensom, D.S., Williams, E.J.: A note on Allen’s suggestion for long-distance translocation in the phloem of plants. Nature 250, 490–492 (1974).

    Article  Google Scholar 

  • Fisher, D.B.: Kinetics of C-14 translocation in soybean. 1. Kinetics in stem. Plant Physiol. 45, 107–113 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Gilder, J., Cronshaw, J.: ATP-ase in the phloem of Cucurbita. Planta 110, 189–204 (1973).

    Article  CAS  Google Scholar 

  • Hales, S.: Vegetable staticks, 3rd ed. London 1738.

    Google Scholar 

  • Hejnowicz, Z.: Propagated disturbances of transverse potential gradient in intracellular fibrils as the source of motive forces for longitudinal transport in cells. Protoplasma 71, 343–364 (1970).

    Article  Google Scholar 

  • Hepler, P.K., Palevitz, B.A.: Microtubules and microfilaments. Ann. Rev. Plant Physiol. 25, 309–362 (1974).

    Article  CAS  Google Scholar 

  • Huck, M.G.: Cine film: Time lapse photography of roots. U.S. Dept. of Agric, Alabama Ag. Exp. Stat., Auburn, Ala., U.S.A.

    Google Scholar 

  • Ie, T.S., Tammes, P.M.L., Van Die, J.: Studies on phloem exudation from Yucca flaccida Haw. V. Electron microscopy of sieve plate pores. Proc. Koninkl. Ned. Akad. Wetenschap. C 69, 660–663 (1966).

    Google Scholar 

  • Jarosch, R.: Screw-mechanical basis of protoplasmic movement. In: Primitive motile systems in cell biology (ed. R.D. Allen and N. Kamiya), p. 599–620. New York and London: Academic Press 1964.

    Google Scholar 

  • Jarvis, P., Thaine, R.: Strands in sections of sieve elements cut in a cryostat. Nature New Biol. 232, 236–237 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Johnson, R.P.C.: Microfilaments in pores between frozen etched sieve elements. Planta 81, 314–332 (1968).

    Article  Google Scholar 

  • Johnson, R.P.C.: Filaments but no membranous transcellular strands in sieve pores in freezeetched, translocating phloem. Nature 244, 464 (1973).

    Article  Google Scholar 

  • Jones, R.L.: Personal communication.

    Google Scholar 

  • Kleinig, H., Dörr, I., Weber, C., Kollmann, R.: Filamentous proteins from plant sieve tubes. Nature New Biol. 229, 152–153 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Knight, B.K., Mitton, G.D., Davidson, H.R., Fensom, D.S.: Micro-injection of 14C sucrose and other tracers into isolated phloem strands of Heracleum. Can. J. Botany 52, 1491–1499 (1974).

    Article  CAS  Google Scholar 

  • Lee, D.R.: The possible significance of filaments in sieve elements. Nature 235:266 (1972).

    Article  Google Scholar 

  • Lee, D.R., Fensom, D.S., Costerton, J.W.: Particle movement in intact phloem of Heracleum. Ottawa, Canada: Canad. Natl. Film Library 1970.

    Google Scholar 

  • Levitt, J.: Introduction to plant physiology, p. 104. St. Louis: Mosby Co. 1969.

    Google Scholar 

  • MacRobbie, E.A.C.: Phloem translocation, facts and mechanisms: A comparative survey. Biol. Rev. 46, 429–481(1971).

    Article  Google Scholar 

  • Mangham, S.: On the mechanism of translocation in plant tissue. An hypothesis with special reference to sugar conduction in sieve tubes. Ann. Botany (London) 31, 293–311 (1917).

    CAS  Google Scholar 

  • Matile, P.: Personal communication.

    Google Scholar 

  • Miller, D.M.: The reciprocating flow hypothesis of translocation in plants. Can. J. Botany 51, 1623–1628 (1973)

    Article  Google Scholar 

  • Nelson, C.D., Perkins, H.J., Gorham, P.R.: Note on a rapid translocation of the photosynthetically assimilated 14C out of the primary leaf of the young soybean plant. Can. J. Biochem. Physiol. 36, 1277–1279 (1958).

    Article  PubMed  CAS  Google Scholar 

  • Nelson, C.D., Perkins, H.J., Gorham, P.R.: Evidence for different kinds of concurrent translocation of photosynthetically assimilated 14C in the soybean. Can. J. Botany 37, 1181–1189 (1959).

    Article  Google Scholar 

  • Parthasarathy, M.V., Mühlethaler, K.: Ultrastructure of protein tubules in differentiating sieve elements. Cytobiologie 1, 17–36 (1969).

    Google Scholar 

  • Robidoux, J., Sandborn, E.B., Fensom, D.S., Cameron, M.L.: Plasmatic filaments and particles in mature sieve elements of Heracleum sphondylium under the electronmicroscope. J. Exptl. Botany 24, 349–359 (1973).

    Article  Google Scholar 

  • Sabnis, D.D., Hart, J.W.: Studies on the possible occurence of actomyosin—like proteins in phloem. Planta 118, 271–278 (1974).

    Article  CAS  Google Scholar 

  • Sauter, J.J., Braun, H.J.: Histologische und cytochemische Untersuchungen zur Function der Baststrahlen von Larix decidera Mill. unter besonderer Berücksichtigung der Strasburger-Zellen. Z. Pflanzenphysiol. 59, 420–438 (1968).

    Google Scholar 

  • Siddiqui, A.W., Spanner, D.C.: The state of the pores in functioning sieve plates. Planta 91, 181–189 (1970).

    Article  Google Scholar 

  • Thaine, R.: A translocation hypothesis based on the structure of plant cytoplasm. J. Exptl. Botany 13, 152–160 (1962).

    Article  Google Scholar 

  • Thaine, R.: Movement of sugars through plants by cytoplasmic pumping. Nature 222, 873–875 (1969).

    Article  Google Scholar 

  • Thompson, R.G., Thompson, A.D.: Inhibition by cytochalasin B of sucrose transport in isolated phloem strands of Heracleum. Can. J. Botany 51, 933–936 (1973).

    Article  CAS  Google Scholar 

  • Van den Honert, T.H.: On the mechanism of the transport of organic materials in plants. Proc. Koninkl. Ned. Akad. Wetenschap. Ser. C Biol. Med. Sci. 35, 1104–1111 (1932).

    Google Scholar 

  • Weatherley, P.E., Johnson, P.R.C.: The form and function of the sieve tube: a problem in reconciliation. Intern. Rev. Cytol. 24, 149–192 (1968).

    Article  CAS  Google Scholar 

  • Whittle, C.M.: The behavior of 14C profiles in Helianthus seedlings. Planta 98, 136–49 (1971).

    Article  CAS  Google Scholar 

  • Wildon, D.C.: Cine film. School of Biol. Sciences, Univ. of East Anglia, Norwich, U.K. (1971).

    Google Scholar 

  • Williamson, R.E.: An investigation of the contractile protein hypothesis of phloem translocation. Planta 106, 149–157 (1972).

    Article  CAS  Google Scholar 

  • Zimmermann, M.H., Brown, C.L.: Trees: Structure and function, p. 268 and 275. Berlin-Heidelberg-New York: Springer 1971.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Fensom, D.S. (1975). Other Possible Mechanisms. In: Zimmermann, M.H., Milburn, J.A. (eds) Transport in Plants I. Encyclopedia of Plant Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66161-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66161-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66163-1

  • Online ISBN: 978-3-642-66161-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics