Skip to main content

Protoplasmic Streaming

  • Chapter
Transport in Plants I

Part of the book series: Encyclopedia of Plant Physiology ((PLANT,volume 1))

Abstract

After Hartig’s discovery of the sieve tube in 1837 and his later researches (1858a, b) that established the importance of the phloem as the tissue containing a rich organic sap, plant physiologists were firmly convinced that this was the channel in which the “elaborated sap” formed by the leaves was exported throughout the plant. It seems that from 1860 to 1885 they were content to believe that the mechanism of movement of the nutrients in the phloem was by diffusion down a gradient of concentration. De Vries (1885) states: “Following the prevailing view, initiated and developed by Sachs about the movement of organic nutrients in plants, the most general cause of this movement was considered to be diffusion. Consumption of each substance by growth and metabolism, and a corresponding enrichment in particular cells and organs determine the direction in which the movement goes, while the transfer itself is generally a diffusive one.” He firmly points out that this is quantitatively quite untenable, that diffusion would take two years and seven months to transfer a milligram of sugar through a distance of one meter of pure water from a 10% source solution, and that this cannot conceivably be the basis of long-distance transport. Even when the gradient of sugar concentration is established the transfer of a mg through a cm2 would take six days. He argues instead in favor of the streaming motions observable in protoplasm as a more credible mechanism and studied fresh phloem to see to what extent such motions occurred there and whether the speeds of motion provided the necessary acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aikman, D.P., Anderson, W.P.: A quantitative investigation of a peristaltic model for phloem translocation. Ann. Botany N.S. 35, 61–72 (1971).

    Google Scholar 

  • Allen, R.D., Kamiya, N. (eds.): Primitive motile systems in cell biology. New York-London: Academic Press 1964.

    Google Scholar 

  • Bauer, L.: Über den Wanderungsweg fluoreszierender Farbstoffe in den Siebröhren. Planta 37, 221–243 (1949).

    Article  CAS  Google Scholar 

  • Birch-Hirschfeld, L.: Untersuchungen über die Ausbreitungsgeschwindigkeit gelöster Stoffe in der Pflanze. Jahrb. Wiss. Bot. 59, 171–262 (1920).

    Google Scholar 

  • Canny, M.J.: The mechanism of translocation. Ann. Botany N.S. 26, 603–617 (1962).

    Google Scholar 

  • Canny, M.J.: Phloem translocation. London: Cambridge University Press 1973.

    Google Scholar 

  • Canny, M.J., Phillips, O.M.: Quantitative aspects of a theory of translocation. Ann. Botany N.S. 27, 379–402 (1963).

    Google Scholar 

  • Curtis, O.F.: The translocation of solutes in plants. New York-London: McGraw-Hill 1935.

    Google Scholar 

  • De Vries, H.: Über die Bedeutung der Circulation und der Rotation des Protoplasma für den Stofftransport in der Pflanze. Botan. Z. 43, 1–6, 17–26 (1885).

    Google Scholar 

  • Dixon, H.H.: Transport of organic substances in plants. Nature 110, 547–551 (1923).

    Article  Google Scholar 

  • Esau, K., Engleman, E.M., Bisalputra, T.: What are transcellular strands? Planta 59, 617–623 (1963).

    Article  Google Scholar 

  • Fensom, D.S., Clattenburg, R., Chung, T., Lee, D.R., Arnold, D.C.: Moving particles in intact sieve tubes of Heracleum mantegazzianum. Nature 219, 531–532 (1968).

    Article  Google Scholar 

  • Field, J.H., Clark, C.H.: Rapid streaming in the sieve tubes of wheat. School Sci. Rev. 183, 53, 339 (1971).

    Google Scholar 

  • Hartig, T.: Über die Bewegung des Saftes in den Holzpflanzen. Botan. Z. 16, 329–355, 337–342 (1858a).

    Google Scholar 

  • Hartig, T.: Über den Herbstsaft der Holzpflanzen. Botan. Z. 16, 369–370 (1858 b).

    Google Scholar 

  • Hatano, S., Oosawa, F.: Isolation and characterization of Plasmodium actin. Biochim. Biophys. Acta 127, 488–498 (1966).

    PubMed  CAS  Google Scholar 

  • Hatano, S., Tazawa, M.: Isolation, purification and characterization of myosin B from myxo-mycete Plasmodium. Biochim. Biophys. Acta 154, 507–519 (1968).

    PubMed  CAS  Google Scholar 

  • Huber, B.: Beobachtung und Meßung pflanzlicher Saftströme. Ber. Deut. Botan. Ges. 50, 89–109 (1932).

    CAS  Google Scholar 

  • Huber, B., Rouschal, E.: Untersuchungen über die Protoplasmatik und Funktion der Siebröhren. Ber. Deut. Botan. Ges. 56, 380–391 (1938).

    Google Scholar 

  • Kamitsubo, E.: Motile protoplasmic filaments in cells of Characeae. I. Movement of fibrillar loops. Proc. Japan Acad. 42, 507–511 (1966).

    Google Scholar 

  • Kamitsubo, E.: Motile protoplasmic filaments in cells of Characeae. II. Linear fibrillar structure and its bearing on protoplasmic streaming. Proc. Japan Acad. 42, 640–643 (1966).

    Google Scholar 

  • Kamiya, N.: Protoplasmic streaming. Protoplasmatologia, vol. VIII 3a. Wien: Springer 1959.

    Google Scholar 

  • Kamiya, N.: Protoplasmic streaming. In: Enc. Pl. Phys., vol. XVII/2, p. 979–1035 (1962).

    Google Scholar 

  • Kuroda, K.: Behavior of naked cytoplasmic drops isolated from plant cells. In: Primitive motile systems in cell biology (ed. R.D. Allen, N. Kamiya), p. 31–40 (1964).

    Google Scholar 

  • Lecomte, H.: Contribution a l’étude du liber des angiospermes. Ann. Sci. Nat. Botan. Ser. 10, 193–324 (1889).

    Google Scholar 

  • Loewy, A.G.: An actomyosin-like substance from the Plasmodium of a myomycete. J. Cellular Comp. Physiol. 40, 127–156 (1952).

    Article  CAS  Google Scholar 

  • MacRobbie, E.A.: Phloem translocation. Facts and mechanisms: a comparative survey. Biol. Rev. 46, 429–481 (1971).

    Article  Google Scholar 

  • Mason, T.G., Lewin, C.T.: On the rate of carbohydrate transport in the greater yam, Dioscorea alata. Roy. Dublin Soc. Sci. Proc. 18, 203–205 (1926).

    Google Scholar 

  • Mason, T.G., Maskell, E.J.: Studies on the transport of carbohydrates in the cotton plant. I. A study of diurnal variation in the carbohydrates of leaf, bark and wood, and of the effects of ringing. Ann. Botany (London) 42, 189–253 (1928 a).

    Google Scholar 

  • Mason, T.G., Maskell, E.J.: Studies on the transport of carbohydrates in the cotton plant. II. The factors determining the rate and the direction of movement of sugars. Ann. Botany (London) 42, 571–636 (1928b).

    CAS  Google Scholar 

  • Mason, T.G., Maskell, E.J., Phillis, E.: Further studies on transport in the cotton plant. III. Concerning the independence of solute movement in the phloem. Ann. Botany (London) 50, 23–58 (1936).

    CAS  Google Scholar 

  • Mittler, T.E.: Studies on the feeding and nutrition of Tuberolachnus salignus (Gmelin) (Homoptera, Aphididae). I. The uptake of phloem sap. J. Exptl. Biol. 34, 334–341 (1957).

    Google Scholar 

  • Nachmias, V.T., Huxley, H.E., Kessler, D.: Electronmicroscope observations on actomyosin and actin preparations from Physarum polycephalum and on their interactions with heavy meromyosin subfragments I from muscle myosin. J. Mol. Biol. 50, 83–90 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Nagai, R., Rebhun, L.L.: Cytoplasmic microfilaments in streaming Nitella cells. J. Ultrastruct. Res. 14, 571–589 (1966).

    Article  PubMed  CAS  Google Scholar 

  • O’Brien, R.P., McCully, M.: Cytoplasmic fibers associated with streaming and saltatory-particle movement in Heracleum mantegazzianum. Planta 94, 91–94 (1970).

    Article  Google Scholar 

  • O’Brien, T.P., Thimann, K.V.: Intracellular fibers in oat coleoptile cells and their possible significance in cytoplasmic streaming. Proc. Natl. Acad. Sci. U.S. 56, 888–894 (1966).

    Article  Google Scholar 

  • Parker, J.: Transcellular strands and intercellular particle movement in sieve tubes of some common trees. Naturwissenschaften 11, 273–274 (1964a).

    Article  Google Scholar 

  • Parker, J.: Sieve-tube strands in tree bark. Nature 202, 926–927 (1964b).

    Article  Google Scholar 

  • Parker, J.: Strand characteristics in sieve tubes of some common tree species. Protoplasma 60, 86–93 (1965 a).

    Article  CAS  Google Scholar 

  • Parker, J.: Stains for strands in sieve tubes. Stain Technol. 40, 223–225 (1965b).

    PubMed  CAS  Google Scholar 

  • Pollard, T.D., Ito, S.: The role of cytoplasmic filaments in viscosity changes and contraction in extracts of Amoeba proteus. J. Cell Biol. 39, 106 a (1968).

    Google Scholar 

  • Pollard, T.D., Shelton, E., Weihung, R.R., Korn, B.D.: Ultrastructural characterization of F-actin isolated from Acanthamoeba castellana and identification of cytoplasmic filaments as F-actin by reaction with rabbit heavy meromyosin. J. Mol. Biol. 50, 91–97 (1970).

    Article  PubMed  CAS  Google Scholar 

  • Pringle, J.W.S.: Mechano-chemical transformation in striated muscle. Symp. Soc. Exptl. Biol. 22, 67–86 (1968).

    CAS  Google Scholar 

  • Schumacher, W.: Untersuchungen über die Lokalisation der Stoffwanderung in den Leitbündeln höherer Pflanzen. Jahrb. Wiss. Bot. 73, 770–823 (1930).

    CAS  Google Scholar 

  • Small, J.: Technique for the observation of protoplasmic streaming in sieve tubes. New Phytologist 38, 176–177 (1939).

    Article  Google Scholar 

  • Spanner, D.C.: A note on the velocity and the energy requirement of translocation. Ann. Botany N.S. 26, 511–516 (1962).

    Google Scholar 

  • Spooner, B.S., Yamada, K.M., Wessels, N.K.: Microfilaments and cell locomotion. J. Cell Biol. 49, 595–613 (1971).

    Article  PubMed  CAS  Google Scholar 

  • Strasburger, E.: Über den Bau und die Verichtungen der Leitungsbahnen in den Pflanzen. Histol. Beitr. 3 (1891).

    Google Scholar 

  • Thaine, R.: Transcellular strands and particle movement in mature sieve tubes. Nature 192, 772–773 (1961).

    Article  Google Scholar 

  • Thaine, R.: A translocation hypothesis based on the structure of plant cytoplasm. J. Exptl. Botany 13, 152–160 (1962).

    Article  Google Scholar 

  • Thaine, R.: Protoplast structure in sieve-tube elements. New Phytologist 63, 236–243 (1964).

    Article  Google Scholar 

  • Thaine, R.: Movement of sugar through plants by cytoplasmic pumping. Nature 222, 873–875 (1969).

    Article  Google Scholar 

  • Thaine, R., Probine, M.C., Dyer, P.Y.: The existence of transcellular strands in mature sieve elements. J. Exptl. Botany 18, 110–127 (1967).

    Article  Google Scholar 

  • Thompson, R.G., Thompson, A.D.: Inhibition by cytochalasin B of sucrose transport in isolated phloem strands of Heracleum. Can. J. Botany 51, 933–936 (1973).

    Article  CAS  Google Scholar 

  • Wessels, N.K., Spooner, B.S., Ash, J.F., Bradley, M.O., Luduena, M.A., Taylor, E.L., Wrenn, J.T., Yamada, K.M.: Microfilaments in cellular and developmental processes. Science 171, 135–143(1971).

    Article  Google Scholar 

  • Williamson, R.E.: An investigation of the contractile protein hypothesis of phloem translocation. Planta 106, 149–157 (1972a).

    Article  CAS  Google Scholar 

  • Williamson, R.E.: A light-microscope study of the action of cytochalasin-B on the cells and isolated cytoplasm of the Characeae. J. Cell Sci. 10, 811–819 (1972 b).

    PubMed  CAS  Google Scholar 

  • Wohlfarth-Bottermann, K.E.: Cell structures and their significance for amoeboid movement. Intern. Rev. Cytol. 16, 61–131 (1963).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Canny, M.J. (1975). Protoplasmic Streaming. In: Zimmermann, M.H., Milburn, J.A. (eds) Transport in Plants I. Encyclopedia of Plant Physiology, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66161-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66161-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66163-1

  • Online ISBN: 978-3-642-66161-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics