Monoamine Metabolism in Rat Brain after Increased Intracranial Pressure

  • Bengt Ljunggren
  • Roger M. Brown


Recent animal experiments demonstrate that considerable restitution of cerebral function and metabolism can occur even after prolonged interruption of cerebral circulation. In barbiturate-anaesthetized cats HOSSMANN and SATO (1970) (1) recorded reappearance of the EEG and of evoked cortical potentials after 30–60 minutes of complete cerebral ischemia. In rats under nitrous oxide anaesthesia circulatory interruption for 15 minutes is followed by rapid rephosphorylation of adenine nucleotides and disappearance of accumulated lactate (2). Metabolic signs of restitution of energy metabolism appear long before the EEG returns towards normal patterns (3). Furthermore, neurological function may be grossly abnormal even when considerable restitution of EEG and energy metabolism is at hand (4). These results indicate that tissue alterations other than energy failure may underlie the functional deficits.


Cerebral Circulation Energy Failure Cation Exchange Column Acta Physiol Nitrous Oxide Anaesthesia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hossmann, K.-A., Sato, K.: Recovery of neuronal function after prolonged cerebral ischemia. Science 168, 375–376 (1970).PubMedCrossRefGoogle Scholar
  2. 2.
    Ljunggren, B., Ratcheson, R.A., Siesjö, B.K.: Cerebral metabolic state following complete compression ischemia. Brain Res. 73, 291–307 (1974).PubMedCrossRefGoogle Scholar
  3. 3.
    Hinzen, D.H., Müller, U., Sobotka, P., Geberg, E., Lang, R., Hirsch, H.: Metabolism and function of dog’s brain recovering from longtime ischemia. Amer. J. Physiol. 223, 1158–1164 (1972).PubMedGoogle Scholar
  4. 4.
    Ljunggren, B., Granholm, L., Schutz, H., Siesjö, B.K.: Energy state of the brain during and after compression ischemia. In: Brock, M., Dietz, H. (eds.): Intracranial Pressure, pp. 90–95, Berlin-Heidelberg-New York: Springer-Verlag (1972).CrossRefGoogle Scholar
  5. 5.
    Green, H., Sawyer, J.L.: Demonstration, characterization, and assay procedure of tryptophan hydroxylase in rat brain. Analyt. Biochem. 15, 53–64 (1966).PubMedCrossRefGoogle Scholar
  6. 6.
    Fisher, D.B., Kaufman, S.: The inhibition of phenylalanine and tyrosine hydroxylases by high oxygen levels. J. Neurochem. 19, 1359–1365 (1972).PubMedCrossRefGoogle Scholar
  7. 7.
    Davis, J.N., Carlsson, A.: Effect of hypoxia on tyrosine and tryptophan hydroxylation in unanaesthetized rat brain. J. Neurochem. 20, 913–915 (1973).PubMedCrossRefGoogle Scholar
  8. 8.
    Brown, R., Davis, J., Carlsson, A.: Dopa reversal of hypoxia-induced disruption of the conditioned avoidance response. J. Pharm. Pharmacol. 25, 412–414 (1973).PubMedCrossRefGoogle Scholar
  9. 9.
    Kramer, W., Tuynman, J.A.: Acute intracranial hypertension — an experimental investigation. Brain Res. 6, 686–705 (1967).PubMedCrossRefGoogle Scholar
  10. 10.
    Ljunggren, B., Schutz, H., Siesjö, B.K.: Changes in energy state and acid-base parameters of the rat brain. Brain Res. 73, 291–307 (1974).PubMedCrossRefGoogle Scholar
  11. 11.
    Atach, C.V.: Individual elution of noradrenaline (together with adrenaline), dopamine, 5-Hydroxytryptamine and histamine from a single, strong cation exchange column, by means of mineral acid-organic solvent mixtures. J. Pharm. Pharmacol. 22, 625–627 (1970).CrossRefGoogle Scholar
  12. 12.
    Kehr, W., Carlsson, A., Lindqvist, M.: A method for the determination of 3,4 dihydroxyphenylalanine (DOPA) in brain. Naunyn-Schmiedeberg’s Arch. Pharmak. 274, 273–280 (1972).CrossRefGoogle Scholar
  13. 13.
    Bertler, A., Carlsson, A., Rosengren, E.: A method for the fluorimetric determination of adrenaline and noradrenaline in tissues. Acta physiol. scand. 44, 273–292 (1958).PubMedCrossRefGoogle Scholar
  14. 14.
    Andén. N.-E., Magnusson, T.: An improved method for the fluorimetric determination of 5-Hydroxytryptamine in tissues. Acta physiol. scand. 69, 87–94 (1967).PubMedCrossRefGoogle Scholar
  15. 15.
    Jonsson, J., Lewander, T.: A method for the simultaneous determination of 5-hydroxy-3-indole-acetic acid (5-HIAA) and 5-hydroxy-tryptamine (5-HT) in brain tissue and cerebrospinal fluid. Acta physiol. scand. 78, 43–51 (1970).PubMedCrossRefGoogle Scholar
  16. 16.
    Bédard, P., Carlsson, A., Lindqvist, M.: Effect of a transverse cerebral hemisection on 5-hydroxytryptamine metabolism in the rat brain. Naunyn-Schmiedeberg’s Arch. Exp. Path. Pharmak. 272, 1–15 (1972).CrossRefGoogle Scholar
  17. 17.
    Siesjö, B.K., Ljunggren, B.: Cerebral energy reserves after prolonged hypoxia and ischemia. Symposium on the Threshold and Mechanisms of Anoxic-Ischemic Brain injury, New York 1973, Arch. Neurol. 29, 400–404 (1973).PubMedGoogle Scholar
  18. 18.
    Von Euler, U.S., Lishajko, F.: Effect of adenine nucleotides on catecholamine release and uptake in isolated adrenergic nerve granules. Acta physiol. scand. 59, 454–461 (1963).CrossRefGoogle Scholar
  19. 19.
    Von Euler, U.S., Lishajko, F.: Noradrenaline release from isolated nerve granules. Acta physiol. scand. 51, 193–203 (1961).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1975

Authors and Affiliations

  • Bengt Ljunggren
  • Roger M. Brown

There are no affiliations available

Personalised recommendations