Cochlear Mechanics

  • C. R. Steele
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 5 / 3)


Three successively more elaborate physical models for the fluid-elastic interaction in the cochlea are analyzed by asymptotic methods, with which an a priori assumption of “long” or “short” wavelengths is not necessary. Appropriate stiffnesses are estimated from Békésy’s static point and pressure load measurements. Most calculations are for a “two-mode” model which admits an independent motion of the arches of Corti and the pectinate zone of the basilar membrane. The phase, location of maximum response, and arrival times correlate well with recent measurements of basilar membrane response, electrical and neural activity. The model cannot reproduce with any reasonable change in stiffness or fluid viscosity, the sharpness of decay observed at a fixed point for high frequency, nor the severe post-mortem changes in amplitude. This indicates that the organ of Corti has a significant mechanical function not taken into consideration by the present models. The “three-mode” model, which includes the flexibility of the bony shelf tip, is briefly considered. The results indicate that for frequencies over 1 kHz no “long” wavelengths occur in the human cochlea.


Transition Point Basilar Membrane Spiral Ligament Tectorial Membrane Cochlear Microphonic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramowitz, M., Stegun, L. A. (Eds.): Handbook of mathematical functions. National Bureau of Standards, Appl. Math. Series 55 (1966).Google Scholar
  2. Anderson, D.J., Rose, J.E., Hind, J.E., Brugge, J.F.: Temporal position of discharges in single auditory nerve fibers within the cycle of a sine-wave stimulus: frequency and intensity effects. J. acoust. Soc. Amer. 49, 1131–1139 (1971).CrossRefGoogle Scholar
  3. Békésy, G. von: Experiments in hearing. New York: McGraw-Hill 1960.Google Scholar
  4. Békésy, G. von: Traveling waves as frequency analysers in the cochlea. Nature (Lond.) 225, 1207–1209 (1970).CrossRefGoogle Scholar
  5. Dallos, P.: The Auditory Periphery. New York: Academic Press 1973.Google Scholar
  6. Dallos, P., Cheatham, M.A.: Travel time in the cochlea and its determination from cochlear microphonic data. J. acoust. Soc. Amer. 49, 1140–1143 (1971).CrossRefGoogle Scholar
  7. Dotson, R.: Cochlear model with transient excitation. Ph. D. Dissertation, Stanford University 1974.Google Scholar
  8. Evans, E.F., Wilson, J.P.: The frequency selectivity of the cochlea. In: Moller, A.R.: Basic Mechanisms in Hearing. New York: Academic Press 1973.Google Scholar
  9. Fleischer, G.: Studien am Skelett des Gehörorgans der Säugetiere, einschließlich des Menschen. Säugetierkundl. Mitt. 2, 3, 131–239 (1973).Google Scholar
  10. Flügge, W. (Ed.): Handbook of engineering mechanics. New York: McGraw-Hill 1962.Google Scholar
  11. Hallauer, W.L., Jr.: Nonlinear behavior of the inner ear. Ph. D. Dissertation, Stanford University 1974.Google Scholar
  12. Heading, J.: An introduction to phase integral methods. New York: John Wiley 1962.Google Scholar
  13. Honrubia, V., Ward, P. H.: Longitudinal distribution of the cochlear microphonics inside the cochlear duct (guinea pig). J. acoust. Soc. Amer. 44, 951–958 (1968).CrossRefGoogle Scholar
  14. Honrubia, V., Ward, P. H.: Properties of the summating potential of the guinea pig’s cochlea. J. acoust. Soc. Amer. 45, 1443–1450 (1969).CrossRefGoogle Scholar
  15. Huxley, A. F.: Is resonance possible in the cochlea after all? Nature (Lond.) 221, 935–940 (1968).CrossRefGoogle Scholar
  16. Iurato, S.: Functional implications of the nature and submicroscopic structure of the tectorial and basilar membranes. J. acoust. Soc. Amer., 34, 1386–1395 (1962).CrossRefGoogle Scholar
  17. Johnstone, B.M., Boyle, A. J. F.: Basilar membrane vibrations examined with the Mössbauer technique. Science 158, 389–390 (1967).PubMedCrossRefGoogle Scholar
  18. Kohllöffel, L.U.E.: Studies of the distribution of cochlear potentials along the basilar membrane. Acta oto-laryng. (Stockh.) Suppl. No. 288 (1971).Google Scholar
  19. Kohllöffel, L.U.E.: A study of basilar membrane vibrations II.The vibratory amplitude and phase pattern along the basilar membrane (postmortem). Acustica 27, 66–81 (1972).Google Scholar
  20. Kohllöffel, L. U. E.: Observations of the mechanical disturbances along the basilar membrane with laser illumination. In: Moller, A. R. (Ed.): Basic Mechanisms in Hearing, pp. 95–118. New York: Academic Press 1973.Google Scholar
  21. Lim, D.J.: Fine morphology of the tectorial membrane. Arch. Otolaryng. 96, 199–215 (1972).PubMedGoogle Scholar
  22. Money, K. E., Sokoloff, M., Weaver, R. S.: Specific gravity and viscosity of endolymph and perilymph. (Third Symposium on the Role of the Vestibular Organs in Space Exploration). Washington, D.C.: NASA Special Publication 152, U.S. Gov’t. Printing Office (1966).Google Scholar
  23. Pye, J. D.: Hearing in bats. In: De Reuck, A.V. S., Knight, J. (Eds.): Hearing mechanisms in vertebrates. London: J. & A. Churchill 1967.Google Scholar
  24. Ranke, O. F.: Theory of operation of the cochlea: a contribution to the hydrodynamics of the cochlea. J. Acoust. Soc. Amer. 22, 772–777 (1950).CrossRefGoogle Scholar
  25. Rhode, W. S.: Observation of the vibration of the basilar membrane in squirrel monkeys using the Mössbauer effect. J. acoust. Soc. Amer. 49, 1218–1231 (1971).CrossRefGoogle Scholar
  26. Rhode, W.S.: An investigation of post-morten cochlear mechanics using the Mössbauer effect. In: Moller, A.R. (Ed.): Basic Mechanisms in Hearing. New York: Academic Press 1973.Google Scholar
  27. Steele, C.R.: A possibility for subtectorial membrane fluid flow. In: Moller, A.R. (Ed.): Basic Mechanisms in Hearing. New York: Academic Press 1973.Google Scholar
  28. Steele, C. R.: Behaviour of the basilar membrane with pure tone excitation. J. acoust. Soc. Amer. 55, 148–162 (1974a).CrossRefGoogle Scholar
  29. Steele, C.R.: Stiffness of Reissner’s membrane. J. acoust. Soc. Amer., 55, 1252–1257 (1974b).CrossRefGoogle Scholar
  30. Stevens, S. S., Davis, H., Lurie, M. H.: The localization of pitch perception on the basilar membrane. J. gen. Psychol. 13, 297–315 (1935).CrossRefGoogle Scholar
  31. Tidemann, H.: A new approach to the theory of hearing. Acta oto-laryng. (Stockh.) Suppl. 277 (1970).Google Scholar
  32. Tonndorf, J.: Cochlear mechanics and hydrodynamics. In: Tobias, J. V. (Ed.): Foundations of Modern Auditory Theory, Vol. I. New York: Academic Press 1970.Google Scholar
  33. Wever, E. G.: Theory of hearing. New York: John Wiley 1949.Google Scholar
  34. Wilcox, C.H.(Ed.): Asymptotic solutions of differential equations and their applications. New York: John Wiley 1964.Google Scholar
  35. Wilson, J.P., Johnstone, J.R.: Capacitive probe measures of basilar membrane vibration. Symposium on Hearing Theory 1972, IPO Endhoven, Holland, pp. 172–181 (1972).Google Scholar
  36. Zwickee, E.: Wissenschaftlicher Jahresbericht, Institut für Elektroakustik, TH München (1973).Google Scholar
  37. Zwislocki, J.: Review of recent mathematical theories of cochlear dynamics. J. Acoust. Soc. Amer. 25, 743–751 (1953).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag, Berlin · Heidelberg 1976

Authors and Affiliations

  • C. R. Steele
    • 1
  1. 1.Stanford UniversityStanfordUSA

Personalised recommendations