Advertisement

Sex Determination and Differentiation among Uniparental Homozygotes of the Hermaphroditic Fish Rivulus marmoratus (Cyprinodontidae: Atheriniformes)

  • R. W. HarringtonJr.

Abstract

The current status of knowledge and theory pertinent to sex determination and differentiation in teleost fishes was reviewed in advance (Harrington, 1974). The review is critical and selective but based on an inclusive examination of contingent, derivative, and source literature. It provides a cogent introduction to this study, which is a search at the morphogenetic level for the earliest visible manifestations of the differentiation of ovotestes versus primary testes in fish of the same genotype. The present report begins with a retrospective summary of intersexuality in Rivulus marmoratus Poey and of the evidence for the genetic uniformity of our material and its consequences. The new information appropriate to the title of this paper has its context in findings published during the last 14 years by the writer and his co-authors.

Keywords

Germ Cell Male Territory Primary Male Female Territory Medial Ramus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anteunis, A.: Recherches sur la structure et le développement de l’ovaire et de l’oviducte chez Lebistes retioulatus (Téléostéen). Arch, de Biol. 70, 783–809 (1959).Google Scholar
  2. Atz, J.W.: Intersexuality in fishes. In: Intersexuality in Vertebrates including Man (eds. C.N. Armstrong and A.J. Marshall), pp. 145–232. London-New York: Academic Press 1964.Google Scholar
  3. Billingham, R.E., Silvers, W.K.: Inbred animals and tissue transplantation immunity. Transplant. Bull. 6, 399–405 (1959).Google Scholar
  4. Chavin, W., Gordon, M.: Sex determination in Platypoecilus maculatus. I. Differentiation of the gonads in members of all-male broods. Zoologica (N.Y.) 36 (2), 135–145 (1951).Google Scholar
  5. D’Ancona, U.: Ulteriori osservazioni e considerazioni sull’ermafroditismo ed il differenziamento sessuale dell’orata (Sparus auratus L.). Pubbl. Staz. Zool. Napoli 18, 313–336 (1940/41).Google Scholar
  6. D’Ancona, U.: Ermafroditismo ed intersessualità nei Teleostei. Experientia 5 (10), 381–389 (1949).PubMedCrossRefGoogle Scholar
  7. D’Ancona, U.: Osservazioni sulle gonadi giovanili di Amia calva. Arch. Ital. Anat. Embriol. 60, 184–200 (1955).PubMedGoogle Scholar
  8. Gropp, A., Ohno, S.: The presence of a common embryonic blastema for ovarian and testicular parenchymal (follicular, interstitial and tubular) cells in cattle, Bos taurus. Z. Zellforsch. 74, 505–528 (1966).PubMedCrossRefGoogle Scholar
  9. Hackmann, E., Reinboth, R.: Delimitation of the critical stage of hormone-influenced sex differentiation in Hemihaploahromis multicolor (Hilgendorf) (Cichlidae). Gen. Comp. Endocrinol. 22, 42–53 (1974).PubMedCrossRefGoogle Scholar
  10. Hardisty, M.W.: Sex differentiation and gonadogenesis in lampreys (Parts I and II). J. Zool. 146, 305–387 (1965).Google Scholar
  11. Hardisty, M.W.: The numbers of vertebrate primordial germ cells. Biol. Rev. 42, 265–287 (1967).PubMedCrossRefGoogle Scholar
  12. Harrington, R.W., Jr.: Oviparous hermaphroditic fish with internal self-fertilization. Science 134 (3492), 1749–1750 (1961).PubMedCrossRefGoogle Scholar
  13. Harrington, R.W., Jr.: Twenty-four-hour rhythms of internal self-fertilization and of oviposition by hermaphrodites of Rivulus marmoratus. Physiol. Zoöl. 36 (4), 325–341 (1963).Google Scholar
  14. Harrington, R.W., Jr.: Environmentally controlled induction of primary male gonochorists from eggs of the self-fertilizing hermaphroditic fish, Rivulus marmoratus Poey. Biol. Bull. 132 (2), 174–199 (1967).CrossRefGoogle Scholar
  15. Harrington, R.W., Jr.: Delimitation of the thermolabile phenocritical period of sex determination and differentiation in the ontogeny of the normally hermaphroditic fish, Rivulus marmoratus Poey. Physiol. Zoöl. 41 (4), 447–460 (1968).Google Scholar
  16. Harrington, R.W., Jr.: How ecological and genetic factors interact to determine when self-fertilizing hermaphrodites of Rivulus marmoratus change into functional secondary males, with a reappraisal of the modes of intersexuality among fishes. Copeia (3), 389–432 (1971).Google Scholar
  17. Harrington, R.W., Jr.: Sex determination and differentiation in fishes, In: Control of Sex in Fishes (ed. C.B. Schreck), pp. 4–12. Blacksburg, Virginia: Sea Grant and Virginia Polytechnic Institute and State University Press (V.P.I.-SG-74–01) (1974).Google Scholar
  18. Harrington, R.W., Jr., Kallman, K.D.: The homozygosity of clones of the self-fertilizing hermaphroditic fish, Rivulus marmoratus Poey (Cyprinodontidae, Atheriniformes). Amer. Nat. 102 (926), 337–343 (1968).CrossRefGoogle Scholar
  19. Harrington, R.W., Jr., Rivas, L.R.: The discovery in Florida of the cyprinodont fish, Rivulus marmoratus, with a redescription and ecological notes. Copeia (2), 125–130 (1958).Google Scholar
  20. Hoedeman, J.J.: Rivulid fishes of the Antilles. Stud. Fauna Curaçao Carib. Isl. 8 (32), 112–126 (1958).Google Scholar
  21. Kallman, K.D., Harrington, R.W., Jr.: Evidence for the existence of homozygous clones in the self-fertilizing hermaphroditic fish, Rivulus marmoratus (Poey). Biol. Bull. 126. (1), 101–114 (1964).CrossRefGoogle Scholar
  22. Kallman, K.D., Schreibman, M.P., Borkoski, V.: Genetic control of gonadotrop differentiation in the platyfish, Xiphophorus maoulatus (Poeciliidae). Science 181 (4100), 678–680 (1973).PubMedCrossRefGoogle Scholar
  23. Kristensen, I.: Competition in three cyprinodont fish species in the Netherlands Antilles. Stud. Fauna Curaçao Carib. Isl. 32 (119), 82–101 (1970).Google Scholar
  24. Lindsey, C.C., Harrington, R.W., Jr.: Extreme vertebral variation induced by temperature in a homozygous clone of the self-fertilizing cyprinodont id fish Rivulus marmoratus. Can. J. Zool. 50 (6), 733–744 (1972).CrossRefGoogle Scholar
  25. Massaro, E.J., Massaro, J.C., Harrington, R.W., Jr.: Biochemical comparison of genetically-different homozygous clones (isogenic, uniparental lines) of the self-fertilizing fish Rivulus marmoratus Poey (In prep.).Google Scholar
  26. Mittwoch, U.: Genetics of sex differentiation. New York-London: Academic Press 1973.Google Scholar
  27. Miyamori, H.: Study on the morphogenic process of the estrogen-induced feminization of male reproductive organs of Lebistes reticulatus. J. Biol. Osaka City Univ. 15, 1–22 (1964).Google Scholar
  28. Odum, E.P.: Notes on the history of the germ cells in the toadfish (Opsanus tau). J. Elisha Mitchell Sci. Soc. 52, 235–246 (1936).Google Scholar
  29. Ohno, S.: Sex chromosomes and sex-linked genes. Monographs on Endocrinology. Berlin-Heidelberg-New York: Springer 1967.Google Scholar
  30. Okada, Y.K.: Bisexuality in sparid fishes. I. Origin of bisexual gonads in Mylio macrocephalus. Proc. Jap. Acad. 41, 294–299 (1965).Google Scholar
  31. Onitake, K.: Morphological studies of normal sex-differentiation and induced sex-reversal process of gonads in the medaka, Oryzias latipes. Annot. Zool. Japon. 45 (3), 159–169 (1972).Google Scholar
  32. Pasquali, A.: Contributo allo studio dell’ermafroditismo e del differenziamento della gonade nell’orata (Sparus auratus L.). Pubbl. Staz. Zool. Napoli 18, 282–312 (1940/41).Google Scholar
  33. Quirk, J.G., Hamilton, J.B.: Number of germ cells in known male and known female genotypes of vertebrate embryos (Oryzias latipes). Science 180 (4089), 963–964 (1973).PubMedCrossRefGoogle Scholar
  34. Reinboth, R.: Morphologische und funktionelle Zweigeschlechtlichkeit bei marinen Teleostiern (Serranidae, Sparidae, Centracanthidae, Labridae). Zool. Jb. Abt. Zool. Physiol. Tiere 69, 405–480 (1962).Google Scholar
  35. Reinboth, R.: Zum Problem der amphisexuellen Fische. Verh. Dtsch. Zool. Ges. Heidelberg, 316–325 (1967).Google Scholar
  36. Reinboth, R.: Protogynie bei Papageifischen (Scaridae). Z. Naturforsch. 23b (6), 852–855 (1968).Google Scholar
  37. Reinboth, R.: Intersexuality in fishes. Mem. Soc. Endocrinol. 18, 515–543 (1970).Google Scholar
  38. Reinboth, R.: Hormonal control of the teleost ovary. Amer. Zool. 12, 307–324 (1972).Google Scholar
  39. Satoh, N., Egami, N.: Sex differentiation in germ cells in the teleost Oryzias latipes, during normal embryonic development. J. Embryol. exp. Morph. 28 (2), 385–395 (1972).PubMedGoogle Scholar
  40. Vitagliano, G.: Osservazioni sul comportamento delle cellule folliculari nella gametogenesi di Cavolinia tridentata Forskal (Moll. Pterop.). Pubbl. Staz. Zool. Napoli 22, 367–377 (1950).Google Scholar
  41. Witschi, E.: The inductor theory of sex differentiation. J. Fac. Sci. Hokkaido Univ., Ser. VI, Zool. (Prof. T. Uchida Jubilee Vol.) 13, 428–439 (1957).Google Scholar
  42. Yamamoto, K.; Studies on the formation of fish eggs. I. Annual cycle in the development of ovarian eggs in the flounder, Liopsetta obsovœa. J. Fac. Sci. Hokkaido Univ., Ser. VI, Zool. 12 (3), 362–373 (1956).Google Scholar
  43. Yamamoto, T.: Artificially induced sex-reversal in genotypic males of the medaka (Oryzias latipes). J. Exp. Zool. 123, 571–594 (1953).CrossRefGoogle Scholar
  44. Yamamoto, T.: Artificial induction of functional sex-reversal in genotypic females of the medaka (Oryzias latipes). J. Exp. Zool. 137, 227–262 (1958).PubMedCrossRefGoogle Scholar
  45. Yamamoto, T.: Permanency (sic) of hormone-induced sex-differentiation in the medaka, Oryzias latipes. Annot. Zool. Japon. 41 (4), 172–179 (1968).Google Scholar
  46. Yamamoto, T.: Sex differentiation. In: Fish Physiology (eds. W.S. Hoar and D.J. Randall), Vol. 3, pp. 117–175. New York: Academic Press 1969.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • R. W. HarringtonJr.

There are no affiliations available

Personalised recommendations