Advertisement

Abstract

In recent years membrane structure and function have become a central issue in molecular biology, and viruses provide valuable model systems for such studies. The biogenesis of viruses depends almost completely on the biosynthetic apparatus of the host cell and cellular membranes are involved in many steps of viral replication. Thus, investigation of virus-membrane interactions provides valuable information on the biosynthesis of viruses. Since a virus can be regarded as a biological probe for many events in cell biology, such studies should ultimately throw light on the biosynthesis, function, and structure of cellular membranes in general.

Keywords

Influenza Virus Newcastle Disease Virus Envelope Protein Viral Envelope Vesicular Stomatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ada, G. L., Gottschalk, A.: The component sugars of the influenza virus particle. Biochem. J. 62, 686 (1956)PubMedGoogle Scholar
  2. Apostolov, K., Almeida, J. D.: Interaction of Sendai (HVJ) virus with human erythrocytes: a morphological study of haemolysis and cell fusion. J. gen. Virol. 15, 227–234 (1972)PubMedCrossRefGoogle Scholar
  3. Aub, J.-D., Tieslar, C., Lankester, A.: Reactions of normal and tumor cell surfaces to enzymes. I. Wheat-germ lipase and associated mucopolysaccharides. Proc. nat. Acad. Sci. (Wash.) 50, 613–619 (1963)CrossRefGoogle Scholar
  4. Bachmeyer, H., Schmidt, G.: Selective removal of neuraminidase from influenza A2 viruses. Med. Microbiol. Immunol. 158, 91–94 (1972)CrossRefGoogle Scholar
  5. Bächi, T., Gerhard, W., Lindenmann, J., Mühlethaler, K.: Morphogenesis of influenza A virus in Ehrlich ascites tumor cells as revealed by thin-sectioning and freeze-etching. J. Virol. 4, 769–776 (1969)PubMedGoogle Scholar
  6. Becht, H., Rott, R., Klenk, H. D.: Agglutination of cells infected with myxoviruses by Concanvalin A. Z. med. Mikrobiol. u. Immunol. 156, 305–308 (1971)CrossRefGoogle Scholar
  7. Becht, H., Rott, R., Klenk, H. D.: Effect of Concanavalin A on cells infected with enveloped RNA viruses. J. gen. Virol. 14, 1–8 (1972)PubMedCrossRefGoogle Scholar
  8. Benson, A. A.: On the orientation of lipids in chloroplasts and cell membranes. J. Amer. Oil Chem. Soc. 43, 265 (1966)CrossRefGoogle Scholar
  9. Birdwell, C. R., Strauss, J. H.: Agglutination of Sindbis virus and of cells infected with Sindbis virus by plant lectins. J. Virol. 11, 502–507 (1973)PubMedGoogle Scholar
  10. Blough, H. A.: Fatty acid composition of individual phospholipids of influenza virus. J. gen. Virol. 12, 317–320 (1971)PubMedCrossRefGoogle Scholar
  11. Blough, H. A., Lawson, D. E. M.: The lipids of paramyxoviruses: A comparative study of Sendai and Newcastle disease virus. Virology 36, 286–292 (1968)PubMedCrossRefGoogle Scholar
  12. Blough, H. A., Tiffany, J. M.: Lipids in viruses. Advanc. Lipid Res. 11, 267–339 (1973)Google Scholar
  13. Brand, C. M., Skehel, J. J.: Crystalline antigen from the influenza virus envelope. Nature (Lond.) New Biol. 238, 145–147 (1972)CrossRefGoogle Scholar
  14. Breitenfeld, P.M., Schäfer, W.: The formation of fowl plague virus antigens in infected cells as studied with fluorescent antibodies. Virology 4, 328–345 (1957)PubMedCrossRefGoogle Scholar
  15. Burge, B. W., Huang, A. S.: Comparison of membrane protein glycopeptides of Sindbis virus and vesicular stomatitis virus. J. Virol. 6, 176–182 (1970)PubMedGoogle Scholar
  16. Burger, M. M., Goldberg, A. R.: Identification of a tumorspecific determinant on neoplastic cell surfaces. Proc. nat. Acad. Sci. (Wash.) 57, 359–366 (1967)CrossRefGoogle Scholar
  17. Calafat, J., Hageman, P. C.: Binding of Concanavalin A to the envelope of two murine RNA tumour viruses. J. gen. Virol. 14, 103–106 (1972)PubMedCrossRefGoogle Scholar
  18. Cartwright, B., Pearce, C. H.: Evidence for a host cell component in vesicular stomatitis virus. J. gen. Virol. 2, 207–214 (1968)PubMedCrossRefGoogle Scholar
  19. Chen, C., Compans, R. W., Choppin, P. W.: Parainfluenza virus surface projections: Glycoproteins with haemagglutinin and neuraminidase activities. J. gen. Virol. 11, 53–58 (1971)PubMedCrossRefGoogle Scholar
  20. Choppin, P. W., Klenk, H.-D., Compans, R. W., Caliguiri, L. A.: The parainfluenza virus SV5 and its relationship to the cell membrane. In: Perspectives in virology, vol. VII (M. Pollard, ed.), p. 127–156. New York: Academic Press 1971Google Scholar
  21. Cohen, G. H., Atkinson, P. H., Summers, D. F.: Interactions of vesicular stomatitis virus structural proteins with HeLa plasma membranes. Nature (Lond.) New Biol. 231, 121 (1971)CrossRefGoogle Scholar
  22. Compans, R. W.: Location of the glycoprotein in the membrane of Sindbis virus. Nature (Lond.) New Biol. 229, 114–116 (1971)Google Scholar
  23. Compans, R. W.: Influenza virus proteins. II. Association with components of the cytoplasm. Virology 51, 56–70 (1973 a)PubMedCrossRefGoogle Scholar
  24. Compans, R. W.: Distinct carbohydrate components of influenza virus glycoproteins in smooth and rough cytoplasmic membranes. Virology 55, 541–545 (1973 b)PubMedCrossRefGoogle Scholar
  25. Compans, R. W., Choppin, P. W.: Isolation and properties of the helical nucleocapsid of the parainfluenza virus SV5. Proc. nat. Acad. Sci. (Wash.) 57, 949–956 (1967)CrossRefGoogle Scholar
  26. Compans, R. W., Dimmock, N. J.: An electron microscopic study of single-cycle infection of chick embryo fibroblasts by influenza virus. Virology 39, 399–515 (1969)CrossRefGoogle Scholar
  27. Compans, R. W., Holmes, K. V., Dales, S., Choppin, P. W.: An electron microscopic study of moderate and virulent virus-cell interactions of the parainfluenza virus SV5. Virology 30, 411–426 (1966)PubMedCrossRefGoogle Scholar
  28. Compans, P. W., Klenk, H.-D., Caliguiri, L. A., Choppin, P. W.: Influenza virus proteins. I. Analysis of polypeptides of the virion and identification of spike glycoproteins. Virology 42, 880–889 (1970)PubMedCrossRefGoogle Scholar
  29. David, A. E.: Lipid composition of Sindbis virus. Virology 46, 711–720 (1971)PubMedCrossRefGoogle Scholar
  30. David, A. E.: Assembly of the vesicular stomatitis virus envelope: Incorporation of viral polypeptides into the host plasma membrane. J. molec. Biol. 76, 135–148 (1973)PubMedCrossRefGoogle Scholar
  31. Drzeniek, R.: Viral and bacterial neuraminidases. C.T. in Microbiology vol. 59, p. 35–74. Berlin-Heidelberg-New York: Springer 1972Google Scholar
  32. Drzeniek, R., Saber, M. S., Rott, R.: Veränderung der Erythrocyten-Oberfläche durch Newcastle disease virus. Z. Naturforsch. 21b, 254–266 (1966)Google Scholar
  33. Fazekas de St. Groth, S.: Viropexis, the mechanism of influenza virus infection. Nature (Lond.) 162, 294–295 (1948)CrossRefGoogle Scholar
  34. Franklin, R. M.: Bacteriophage Pm2: a model for the structure and synthesis of lipid membranes. In: Membrane mediated information (P. H. Kent, ed.), vol. 2, p. Lancaster: MTP 57–80 (1973)Google Scholar
  35. Frommhagen, L. H., Knight, C. A., Freeman, N. K.: The ribonucleic acid, lipid and polysaccharide constituents of influenza virus preparations. Virology 8, 176–197 (1959)PubMedCrossRefGoogle Scholar
  36. Gregoriades, A.: Isolation of neuraminidase from the WSN strain of influenza virus. Virology 49, 333–336 (1972)PubMedCrossRefGoogle Scholar
  37. Harrison, S. C., David, A., Jumblatt, J., Darnell, J. E.: Lipid and protein organization in Sindbis virus. J. molec. Biol. 60, 523–528 (1971)CrossRefGoogle Scholar
  38. Haukenes, G., Harboe, A., Mortensson-Egnund, K.: A uronic and sialic acid-free chick allantoic mucopolysaccharide sulfate which combines with influenza virus HI-antibody to host material. 1. Purification of the substance. Acta path. microbiol. scand. 64, 534 (1965)PubMedGoogle Scholar
  39. Haywood, A.: Sendai model membranes: surface-surface interactions. In: Negative-strand viruses ( R.D. Barry and B. W. J. Mahy, eds.). London: Academic Press 1974, in press.Google Scholar
  40. Heine, J. W., Schnaitman, C.: Entry of vesicular stomatitis virus into L cells. J. Virol. 8, 786–795 (1971)PubMedGoogle Scholar
  41. Hirst, G. H.: The agglutination of red cells by allantoic fluid of chick embryo infected with influenza virus. Science 94, 22–23 (1941)PubMedCrossRefGoogle Scholar
  42. Homma, M., Ohuchi, M.: Trypsin action on the growth of Sendai virus in tissue culture cells. III. Structural difference of Sendai viruses grown in eggs and tissue culture cells. J.Virol. 12, 1457–1465 (1973)PubMedGoogle Scholar
  43. Hosaka, Y.: Artificial assembly of active envelope particles of HVJ (Sendai virus). In: Negative strand viruses (R.D. Barry and B. W. J. Mahy, eds.). London: Academic Press 1974, in pressGoogle Scholar
  44. Hotz, G., Schäfer, W.: Ultrahistologische Studie über die Vermehrung des Virus der klassischen Gefügelpest. Z. Naturforsch. 10b, 1–5 (1955)Google Scholar
  45. Howe, C., Morgan, C.: Interactions between Sendai virus and human erythrocytes. J.Virol. 3, 70 (1968)Google Scholar
  46. Hoyle, L.: Structure of the influenza virus. The relation between biological activity and chemical structure of virus fractions. J. Hyg. 50, 229–245 (1952)CrossRefGoogle Scholar
  47. Huang, R. T. C.: Adsorption of influenza virus to charged groups on natural and artificial surfaces. Med. Microbiol. Immunol. 159, 129–135 (1974)PubMedCrossRefGoogle Scholar
  48. Huang, R. T. C., Kuksis, A.: A comparative study of the lipids of globule membrane and fat core and of the milk serum of cows. Lipids 2, 453–460 (1967)PubMedCrossRefGoogle Scholar
  49. Hughes, R. C.: Glycoproteins as components of cellular membranes. Progr. Biophys. molec. Biol. 26, 191–268 (1973)Google Scholar
  50. Inbar, M., Sachs, L.: Interaction of the carbohydrate binding protein Concanavalin A with normal and transformed cells. Proc. nat. Acad. Sci. (Wash.) 63, 1418–1425 (1969)CrossRefGoogle Scholar
  51. Isacson, P., Koch, A. E.: Association of host antigens with a parainfluenza virus. Virology 27, 129 (1965)PubMedCrossRefGoogle Scholar
  52. Kendal, A. P., Apostolov, K., Belyavin, G.: The effect of protease treatment on the morphology of influenza A, B and C viruses. J. gen. Virol. 5, 141–143 (1969)PubMedCrossRefGoogle Scholar
  53. Kilbourne, E. D., Choppin, P. W., Schulze, I. T., Scholtissek, I. T., Bucher, D. L.: Influenza virus polypeptides and antigens. J. infect. Dis. 125, 447–455 (1972)CrossRefGoogle Scholar
  54. Klenk, E., Faillard, H., Lempfrid, H.: Über die enzymatische Wirkung von Influenzavirus. Hoppe-Seylers Z. physiol. Chem. 301, 235–246 (1955)PubMedCrossRefGoogle Scholar
  55. Klenk, E., Stoffel, W.: Zur Kenntnis der Zellrezeptoren für das Influenzavirus. Über das Vorkommen von Neuraminsäure im Eiweiß des Erythrocytenstromas. Hoppe-Seylers Z. physiol. Chem. 303, 78–80 (1956)PubMedCrossRefGoogle Scholar
  56. Klenk, H.-D.: Structure and biosynthesis of viral membranes. In: The dynamic structure of cell membranes (D. F. Hölzl Wallach, H. Fischer, eds.), p. 97–118. Berlin-Heidelberg-New York: Springer 1971Google Scholar
  57. Klenk, H.-D.: Virus membranes. In: Biological membranes (D. Chapman, D. F. H. Wallach, eds.), p. 145–183. London: Academic Press 1973aGoogle Scholar
  58. Klenk, H.-D.: Glycoproteins and glycolipids in viral envelopes. In: Membrane mediated Information (P. W. Kent, ed.), vol. 1, p. 200–211. Lancaster: MTP 1973bGoogle Scholar
  59. Klenk, H.-D., Caliguiri, L. A., Choppin, P. W.: The proteins of the parainfluenza virus SV5- II. The carbohydrate content and glycoproteins of the virion. Virology 42, 473–481 (1970a)PubMedCrossRefGoogle Scholar
  60. Klenk, H.-D., Choppin, P. W.: Lipids of plasma membranes of monkey and hamster kidney cells and of parainfluenza virions grown in these cells. Virology 38, 255–268 (1969)PubMedCrossRefGoogle Scholar
  61. Klenk, H.-D., Choppin, P. W.: Plasma membrane lipids and parainfluenza virus assembly. Virology 40, 939–947 (1970a)PubMedCrossRefGoogle Scholar
  62. Klenk, H.-D., Choppin, P. W.: Glycosphingolipids of plasma membranes of cultured cells and an enveloped virus (SV5) grown in these cells. Proc. nat. Acad. Sci. (Wash.) 66, 57–64 (1970b)CrossRefGoogle Scholar
  63. Klenk, H.-D., Choppin, P. W.: Glycolipid content of vesicular stomatitis virus grown in baby hamster kidney cells. J. Virol. 7, 416 (1971)PubMedGoogle Scholar
  64. Klenk, H.-D., Compans, R. W., Choppin, P. W.: An electron microscopic study of the presence or absence of neuraminic acid in enveloped viruses. Virology 42, 1158–1162 (1970b)PubMedCrossRefGoogle Scholar
  65. Klenk, H.-D., Rott, R.: Formation of influenza virus proteins. J. Virol. 11, 823–831 (1973)PubMedGoogle Scholar
  66. Klenk, H.-D., Rott, R., Becht, H.: On the structure of the influenza virus envelope. Virology 47, 579–591 (1972a)PubMedCrossRefGoogle Scholar
  67. Klenk, H.-D., Scholtissek, C., Rott, R.: Inhibition of glycoprotein biosynthesis of influenza virus by D-glucosamine and 2-deoxy-D-glucose. Virology 49, 723–734 (1972b)PubMedCrossRefGoogle Scholar
  68. Klenk, H.-D., Wöllert, W., Rott, R., Scholtissek, C.: Association of influenza virus proteins with cytoplasmic fractions. Virology 57, 28–41 (1974a)PubMedCrossRefGoogle Scholar
  69. Klenk, H.-D., Wöllert, W., Rott, R., Scholtissek, C.: Biosynthesis of the influenza virus hemagglutinin. In: Negative strand viruses (R. D. Barry and B. W. J. Mahy, eds.). London: Academic Press 1974b, in pressGoogle Scholar
  70. Knight, C. A.: The nucleic acid and carbohydrate of influenza virus. J. exp. Med. 85, 99–116 (1947)PubMedCrossRefGoogle Scholar
  71. Laine, R., Söderlund, H., Renkonen, O.: Chemical composition of Semilki Forest virus. Intervirology 1, 110–118 (1973)PubMedCrossRefGoogle Scholar
  72. Landsberger, F. R., Compans, R. W., Choppin, P. W., Lenard, J.: Organization of the lipid phase in viral membranes. Effects of independent variation of the lipid and the protein composition. Biochemistry (Wash.) 12, 4498–4502 (1973)CrossRefGoogle Scholar
  73. Landsberger, F. R., Compans, R. W., Paxton, J., Lenard, J.: Structure of the lipid phase of Rauscher murine leukemia virus. J. Supramolecular Structure 1, 50–54 (1972)CrossRefGoogle Scholar
  74. Landsberger, F. R., Lenard, J., Paxton, J., Compans, R. W.: Spin-label electron spin resonance study of the lipidcontaining membrane of influenza virus. Proc. nat. Acad. Sci. (Wash.) 68, 2579–2583 (1971)CrossRefGoogle Scholar
  75. Laver, W. G.: Separation of two polypeptide chains from the hemagglutinin subunit of influenza virus. Virology 45, 275–288 (1971)PubMedCrossRefGoogle Scholar
  76. Laver, W. G.: The polypeptides of influenza viruses. Advanc. Virus Res. 18, 57–103 (1973)CrossRefGoogle Scholar
  77. Laver, W. G., Webster, R. G.: The structure of influenza viruses. IV. Chemical studies of the host antigens. Virology 30, 104–115 (1966)PubMedCrossRefGoogle Scholar
  78. Lazarowitz, S. G., Compans, R. W., Choppin, P. W.: Influenza virus structural and nonstructural proteins in infected cells and their plasma membranes. Virology 46, 830–843 (1971)PubMedCrossRefGoogle Scholar
  79. Lazarowitz, S. G., Compans, R. W., Choppin, P. W.: Proteolytic cleavage of the hemagglutinin polypeptide of influenza virus. Function of the uncleaved polypeptide HA. Virology 52, 199–212 (1973)PubMedCrossRefGoogle Scholar
  80. Lee, L. T., Howe, C., Meyer, K., Cho, H. U.: Quantitative precipitin analysis of influenza virus host antigen and of sulfated mucopolysaccharides of chicken embryonic allantoic fluid. J. Immunol. 102, 114–1155 (1969)Google Scholar
  81. Lenard, J., Compans, R. W.: The membrane structure of lipid-containing viruses. Biochim. biophys. Acta (Amst.) (Review of Biomembranes) 344, 51–94 (1974)Google Scholar
  82. Ludwig, H., Becht, H., Rott, R.: Inhibition of herpes virus induced cell fusion by concanavalin A, antisera, and 2-deoxy-D-glucose. Manuscript in preparation (1974)Google Scholar
  83. Malhotra, S. K.: Organization of the cellular membranes. In: Progress in biophysics and molecular biology (J. A. V. Butler and D. Noble, eds.), vol. 20, p. 67–131. Oxford: Pergamon Press 1970Google Scholar
  84. Marchesi, V.T., Jackson, R. L., Segrest, J. P., Kahane, I.: Molecular features of the major glycoprotein of the human erythrocyte membrane. Fed. Proc. 32, 1833–1837 (1973)PubMedGoogle Scholar
  85. Martensson, E.: Glycosphingolipids of animal tissue. In: Progress in the chemistry of fats and other lipids (R. T. Holman, ed.), vol. X, p. 367–407. Oxford: Pergamon Press 1969Google Scholar
  86. McClelland, L., Hare, R.: The adsorption of influenza virus by red blood cells and a new in vitro method of measuring antibodies for influenza virus. Canad. publ. Hlth J. 32, 530–538 (1941)Google Scholar
  87. McSharry, J. J., Compans, R. W., Choppin, P. W.: Proteins of vesicular stomatitis virus and of phenotypically mixed vesicular stomatitis virus-simian virus 5 virions. J. Virol. 8, 722–729 (1971)PubMedGoogle Scholar
  88. McSharry, J. J., Wagner, R. R.: Lipid composition of purified vesicular stomatitis viruses. J. Virol. 7, 59–70 (1971a)PubMedGoogle Scholar
  89. McSharry, J. J., Wagner, R. R.: Carbohydrate composition of vesicular stomatitis virus. J.Virol. 7, 412–415 (1971b)PubMedGoogle Scholar
  90. Morgan, C., Howe, C.: Structure and development of viruses as observed in the electron microscope. IX. Entry of parainfluenza I (Sendai) virus. J. Virol. 2, 1122–1132 (1968)PubMedGoogle Scholar
  91. Nermut, M. V.: Further investigation on the fine structure of influenza virus. J. gen. Virol. 17, 317–331 (1972)PubMedCrossRefGoogle Scholar
  92. Neurath, A. R., Prince, A.M., Lippin, A.: Affinity chromatography of hepatitis B antigen on Concanavalin A linked to Sepharose. J. gen. Virol. 19, 391–395 (1973)PubMedCrossRefGoogle Scholar
  93. Noll, H., Aoyagi, T., Orlando, J.: The structural relationship of sialidase to the influenza virus surface. Virology 18, 154–157Google Scholar
  94. Oram, J. D., Ellwood, D. C., Appleyard, G., Stanley, J.L.: Agglutination of an arbovirus by Concanavalin A. Nature (Lond.) New Biol. 233, 50–51 (1971)Google Scholar
  95. Poste, G., Reeve, P.: Agglutination of normal cells by plant lectins following infection with nononcogenic viruses. Nature (Lond.) New Biol. 237, 113–114 (1972)CrossRefGoogle Scholar
  96. Quigley, J. P., Rifkin, D. B., Reich, E.: Phospholipid composition of Rous Sarcoma Virus, host cell membranes and other enveloped RNA viruses. Virology 46, 106–116 (1971)PubMedCrossRefGoogle Scholar
  97. Renkonen, O., Kääriäinen, L., Simons, K., Gahmberg, C. C.: The lipid class composition of Semliki Forest virus and of plasma membranes of the host cells. Virology 46, 318–326 (1971)PubMedCrossRefGoogle Scholar
  98. Rifkin, D. B., Compans, R. W.: Identification of the spike proteins of Rous sarcoma virus. Virology 46, 485–489 (1971)PubMedCrossRefGoogle Scholar
  99. Rifkin, D. B., Compans, R. W., Reich, E.: A specific labeling procedure for proteins on the outer surface of membranes. J. biol. Chem. 247, 231 (1972)Google Scholar
  100. Rott, R., Becht, H., Klenk, H.-D., Scholtissek, C.: Interactions of Concanavalin A with the membrane of influenza virus infected cells and with envelope components of the virus particle. Z. Naturforsch. 27b, 227–233 (1972)Google Scholar
  101. Rott, R., Drzeniek, R., Saber, S., Reichert, E.: Blood group substances, Forssman and mononucleosis antigens in lipid-containing RNA viruses. Arch. ges. Virusforsch. 19, 273 (1966)CrossRefGoogle Scholar
  102. Rothman, J. E., Engelman, J. M.: Molecular mechanism for the interaction of phospholipid with cholesterol. Nature (Lond.) New Biol. 237, 42–44 (1972)CrossRefGoogle Scholar
  103. Schäfer, W.: Units isolated after splitting fowl plague virus. In: Ciba foundation symposium on the nature of viruses, p. 91–103 (1956)Google Scholar
  104. Schäfer, W., Zillig, W.: Über den Aufbau des Virus-Elementarteilchens der klassischen Geflügelpest. I. Gewinnung, physikalisch-chemische und biologische Eigenschaften einiger Spaltprodukte. Z. Naturforsch. 9b, 779–788 (1954)Google Scholar
  105. Scheid, A., Caliguiri, L. A., Compans, R. W., Choppin, P. W.: Isolation of paramyxovirus glycoproteins. Association of both hemagglutinating and neuraminidase activities with the larger SV5 glycoproteins. Virology 50, 640–652 (1972)PubMedCrossRefGoogle Scholar
  106. Scheid, A., Choppin, P. W.: Isolation and purification of the envelope proteins of Newcastle disease virus. J. Virol. 11, 263–271 (1973)PubMedGoogle Scholar
  107. Scheid, A., Choppin, P. W.: Identification of biological activities of paramyxovirus glycoproteins. Activation of cell fusion, hemolysis and infectivity by proteolytic cleavage of an inactive precursor protein of Sendai virus. Virology (1974) in pressGoogle Scholar
  108. Schlesinger, M. J., Schlesinger, S., Burge, B. W.: Identification of a second glycoprotein in Sindbis virus. Virology 47, 539–541 (1972)PubMedCrossRefGoogle Scholar
  109. Schulze, I. T.: The structure of influenza virus. I. The polypeptides of the virion. Virology 42, 890–904 (1970)PubMedCrossRefGoogle Scholar
  110. Schulze, I. T.: The structure of influenza virus. II. A model based on the morphology and composition of subviral particles. Virology 47, 181–196 (1972)PubMedCrossRefGoogle Scholar
  111. Schulze, I. T.: Structure of the influenza virion. Advanc. Virus Res. 18, 1–55 (1973)CrossRefGoogle Scholar
  112. Schulze, I. T.: Changes in the biological activities of influenza virus concomitant with attachment of sialic acid to the virion hemagglutinin. In: Negative strand viruses (R.D. Barry and B. W. J. Mahy, eds.). London: Academic Press 1974, in pressGoogle Scholar
  113. Sefton, B. M., Burge, B. W.: Biosynthesis of the Sindbis virus carbohydrates. J. Virol. 12, 1366–1374 (1973)PubMedGoogle Scholar
  114. Seto, J. T., Becht, H., Rott, R.: Isolation and purification of surface antigens from disrupted paramyxoviruses. Med. Microbiol. Immunol. 159, 1–12 (1973)PubMedCrossRefGoogle Scholar
  115. Seto, J. T., Becht, H., Rott, R.: Effect of specific antibodies on biological functions of the envelope components of Newcastle disease virus (1974). Manuscript in preparationGoogle Scholar
  116. Sharon, N., Lis, M.: Lectins: Cell-agglutinating and sugar-specific proteins. Science 177, 949–959 (1972)PubMedCrossRefGoogle Scholar
  117. Simons, K., Garoff, H., Helenius, A., Kääriäinen, L., Renkonen, O.: Structure and assembly of virus membranes. In: Perspectives in membrane biology (C. Gitler, ed.) 1974, in pressGoogle Scholar
  118. Skehel, J. J.: The characterization of subviral particles derived from influenza virus. Virology 44, 409–417 (1971)PubMedCrossRefGoogle Scholar
  119. Skehel, J. J., Schild, G.: The polypeptide composition of influenza A viruses. Virology 44, 396–408 (1971)PubMedCrossRefGoogle Scholar
  120. Springer, G. F., Tritel, H.: Blood group A active substances in embryonated chicken eggs and their relation to egg-grown virus. Science 138, 687–688 (1962)PubMedCrossRefGoogle Scholar
  121. Stanley, P., Gandhi, S. S., White, D. O.: The polypeptides of influenza virus. VII. Synthesis of the hemagglutinin. Virology 53, 92–106 (1973)PubMedCrossRefGoogle Scholar
  122. Stanley, P., Haslam, E. A.: The polypeptides of influenza virus. V. Localization of polypeptides in the virion by iodination techniques. Virology 46, 764–773 (1971PubMedCrossRefGoogle Scholar
  123. Stewart, M. L., Summers, D. F., Soeiro, R., Fields, B. N., Maizel Jr., J. V.: Puri fication of oncornaviruses by agglutination with Concanavalin A. Proc. nat. Acad Sci. (Wash.) 70, 1308–1312 (1973)CrossRefGoogle Scholar
  124. Strauss, J. H., Jr., Burge, B.W., Darnell, E. R.: Carbohydrate content of the membrane protein of Sindbis virus. J. molec. Biol. 47, 437 (1970)PubMedCrossRefGoogle Scholar
  125. Strauss, J. H., Jr., Burge, B. W., Pfefferkorn, E. R., Darnell, J. E.: Identification of the membrane protein and “core” protein of Sindbis virus. Proc. nat. Acad. Sci. (Wash.) 59, 533 (1968)CrossRefGoogle Scholar
  126. Suttajit, M., Winzler, R. J.: Effect of modification of N-acetylneuraminic acid on the binding of glycoproteins to influenza virus and on susceptibility to cleavage by neuraminidase. J. biol. Chem. 246, 3398–3404 (1971)PubMedGoogle Scholar
  127. Tiffany, J. M., Blough, H. A.: Myxovirus envelope proteins: A directing influence on the fatty acids of membrane lipids. Science 163, 573–574 (1969a)PubMedCrossRefGoogle Scholar
  128. Tiffany, J. M., Blough, H. A.: Fatty acid composition of three strains of Newcastle disease virus. Virology 37, 492–493 (1969b)PubMedCrossRefGoogle Scholar
  129. Tiffany, J. M., Blough, H.A.: Estimation of the number of surface projections on myxo- and paramyxoviruses. Virology 41, 392–394 (1970)PubMedCrossRefGoogle Scholar
  130. Tiffany, J. M., Blough, H.A.: Attachment of myxoviruses to artificial membranes: Electron microscopic studies. Virology 44, 18–28 (1971)PubMedCrossRefGoogle Scholar
  131. Utermann, G., Simon, K.: Studies on the amphipathic nature of the membrane proteins in Semliki Forest virus. J. molec. Biol. in press (1974)Google Scholar
  132. Wagner, R. R., Kiley, M. P., Snyder, R. M., Schnaitman, C.: Cytoplasmic comparti-mentalization of the protein and ribonucleic acid species of vesicular stomatitis virus. J. Virol. 9, 672–683 (1972a)PubMedGoogle Scholar
  133. Wagner, R. R., Prevec, L., Brown, F., Summers, D. F., Sokol, F., Macleed, R.: Classification of rhabdovirus proteins: a proposal. J. Virol. 10, 1228–1230 (1972b)PubMedGoogle Scholar
  134. Watkins, J. F.: Cell fusion in virology. In: Perspectives in virology, vol. VII. (M. Pollard, ed.), p. 159–178. New York and London: Academic Press 1971Google Scholar
  135. Wrigley, N. G., Skehel, J. J., Charlwood, P. A., Brand, C. M.: The size and shape of influenza virus neuraminidase. Virology 51, 525–529 (1973)PubMedCrossRefGoogle Scholar
  136. Zarling, J. M., Trevethia, S. S.: Expression of Concanavalin A binding sites in rabbit kidney cells infected with vaccinia virus. Virology 45, 313–316 (1971)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • Hans-Dieter Klenk
    • 1
  1. 1.Institut für VirologieJustus Liebig-Universität GießenGermany

Personalised recommendations