Skip to main content

Stoffwechselwirkungen der Katecholamine

  • Chapter
Diabetes mellitus · A

Part of the book series: Handbuch der inneren Medizin ((INNEREN 7,volume 7 / 2 / A))

  • 52 Accesses

Zusammenfassung

Das sympathische Nervensystem befähigt durch seine Überträgerstoffe, Noradrenalin und Adrenalin, den Organismus, auch unter extremen Bedingungen lebenswichtige Funktionen und die Versorgung mit Stoffwechselenergie aufrechtzuerhalten. So schließen Cannon et al. (1924) aus ihrer klassischen Untersuchung der Abwehrmechanismen, die dem Organismus bei lebensbedrohendem Glucosemangel zur Verfügung stehen, daß das adrenerge System ein bemerkenswertes Beispiel für eine automatische Regelung darstellt. Bereits die klinischen Symptome der Hypoglykämie, wie Tachykardie, Blässe, Schweißausbruch und Pupillenerweiterung, weisen auf eine Erregung im sympathischen Bereich hin. Von den Autoren wurde die Konzentration der Katecholamine im Blut an der Frequenz des denervierten Herzens gemessen. Die Herzfrequenz stieg an, sobald der Blutzucker auf hypoglykämische Werte abfiel, und diese Reaktion wurde durch Glucose oder durch operative Entfernung der Nebennieren beseitigt. Damit war der Beweis erbracht, daß eine Hypoglykämie eine Aktivierung des Sympathicus und eine Abgabe von Katecholaminen aus dem Nebennierenmark auslöst. Dadurch wird Glucose aus der Leber mobilisiert und die Gefahr der Hypoglykämie abgewendet. Diese Funktion des sympathischen Systems ist auch in Versuchen an operativ sympathektomierten Tieren deutlich geworden. Die Blutglucose-Konzentration sympathektomierter Katzen unterschied sich nicht von Kontrollwerten, und auch auf kleine Insulindosen, die keine hypoglykämischen Symptome auslösten, reagierten die operierten Tiere normal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abramson, E.A., Arky, R.A.: Role of beta-adrenergic receptors in counterregulation to insulin induced hypoglycemia. Diabetes 17, 141–146(1968).

    PubMed  CAS  Google Scholar 

  • Ahlquist, R.P.: A study of the adrenergic receptors. Amer. J. Physiol. 153, 586–600(1948).

    PubMed  CAS  Google Scholar 

  • Altszuler, N.R., Steele, L, Ratinger, I., Bodo, R.C. de: Glucose metabolism and plasma insulin level during epinephrine infusion in the dog. Amer. J. Physiol. 212, 677–682(1967).

    PubMed  CAS  Google Scholar 

  • Armstrong, D.T., Steele, R., Altzuler, N.R., Dunn, A., Bishop, I.S., Bodo, R.C.D.E.: Regulation of plasma free fatty acid turnover. Amer. J. Physiol. 201, 9–15(1961).

    PubMed  CAS  Google Scholar 

  • Batzri, S., Sellinger, Z., Schramm, M., Robinovitsch, M. R.: Potassium release mediated by the epinephrine a receptor in rat parotid. J. biol. Chem. 248, 361–368(1973).

    PubMed  CAS  Google Scholar 

  • Baum, D., Porte, D., jr.: Alpha-adrenergic inhibition of immunoreactive insulin release during deep hypothermia. Amer. J. Physiol. 221, 303–311(1971).

    PubMed  CAS  Google Scholar 

  • Belleau, B.: Stereochemistry of adrenergic receptors: newer concepts on the molecular mechanism of action of catecholamines and antiadrenergic drugs at the receptor level. Ann. N.Y. Acad. Sci. 139, 580–605(1967).

    Article  PubMed  CAS  Google Scholar 

  • Beviz, A., Lundholm, L., Mohme-Lundholm, E., Svedmyr, N.: The effect of adrenaline on the carbohydrate metabolism in striated muscle. Acta physiol. scand. 69, 213–217(1967).

    Article  PubMed  CAS  Google Scholar 

  • Bishop, J.S., Larner, J.: Rapid activation-inactivation of liver uridine diphosphate glucose-glycogen transferase and phosphorylase by insulin and glucagon in vivo. J. biol. Chem. 242, 1354–1356(1967).

    PubMed  CAS  Google Scholar 

  • Bitensky, M. W., Gorman, R.E., Neufeld, A.H.: Selective effect of insulin on hepatic epinephrine responsive adenyl cyclase activity. Endocrinology 90, 1331–1335(1972).

    Article  PubMed  CAS  Google Scholar 

  • Bitensky, M.W., Russel, V., Blanco, M.: Independent variation of glucagon and epinephrine responsive components of hepatic adenylcyclase as a function of age, sex, and steroid hormones. Endocrinology 86, 154–159(1970).

    Article  PubMed  CAS  Google Scholar 

  • Blecher, M., Merlino, N.S., Roane, J.T., Flynn, P.D.: Independence of the effects of epinephrine, glucagon and adenocorticotropin on glucose utilisation from those on lipolysis in isolated rat adipose cells. J. biol. Chem. 244, 3423–3429(1969).

    PubMed  CAS  Google Scholar 

  • Bloom, B.M., Goldman, I.M.: The nature of catecholamine-adenine mononucleotide interactions in adrenergic mechanisms. Advanc. Drug Res. 3, 121–169(1966).

    Google Scholar 

  • Brewsher, P.D., Ashmore, J.: Ketogenic and lipolytic effect of glucagon on liver. Biochem. biophys. Res. Commun. 24, 431–436(1966).

    Article  Google Scholar 

  • Brody, M.J., Dixon, M.L.: Vascular reactivity in experimental diabetes mellitus. Circulat. Res. 14, 494–501(1964).

    PubMed  CAS  Google Scholar 

  • Burn, J.H., Hutcheon, D.E., Parker, R.H.O.: Adrenaline and noradrenaline in the suprarenal medulla after insulin. Brit. J. Pharmacol. 5, 417–423(1950).

    PubMed  CAS  Google Scholar 

  • Burns, J.J., Colville, K.J., Lindsay, L.A., Salvador, R.A.: Blockade of some metabolic effects of catecholamines by N-isopropyl-methoxamine. J. Pharmacol, exp. Ther. 144, 163–171(1964).

    CAS  Google Scholar 

  • Buse, M. G., Johnson, A.H., Kuperminc, D., Buse, J.: Effect of alpha adrenergic blockade on insulin secretion in man. Metabolism 19, 219–225(1970).

    Article  PubMed  CAS  Google Scholar 

  • Butcher, R. W., Ho, R.J., Meng, H.C., Sutherland, E. W.: Adenosine-3′, 5′-monophosphate in biological material. II. The measurement of adenosine-3′, 5′-monophosphate in tissues and the role of the cyclic nucleotide in the lipolytic response of fat to epinephrine. J. biol. Chem. 240, 4515–4525(1965).

    PubMed  CAS  Google Scholar 

  • Byers, S.O., Friedman, M.: Insulin hypoglycemia enhanced by beta adrenergic blockade. Proc. Soc. exp. Biol. (N.Y.) 122, 114–115(1966).

    CAS  Google Scholar 

  • Cahill, G. F., Leboeuf, B., Flinn, R.B.: Studies on adipose tissue in vitro. VI. Effect of epinephrine on glucose metabolism. J. biol. Chem. 235, 1246–1250(1960).

    PubMed  CAS  Google Scholar 

  • Cannon, W. B., Mciver, A.B., Bliss, S. W.: Studies on the conditions of activity in endocrine glands. XIII. A sympathetic and adrenal mechanism for mibilizing sugar in hypoglycemia. Amer. J. Physiol. 69, 46–66(1924).

    CAS  Google Scholar 

  • Cerasi, E., Luft, R., Efendic, S.: Effect of adrenergic blocking agents on insulin response to glucose infusion in man. Acta endocr. (Kbh.) 69, 335–346(1972).

    CAS  Google Scholar 

  • Chesney, T.M.C.C., Schofield, J. G.: Studies on the secretion of pancreatic glucagon. Diabetes 18, 627–632(1969).

    PubMed  CAS  Google Scholar 

  • Cheung, W. Y., Williamson, J. R.: Kinetics of adenosine monophosphate changes in rat heart following epinephrine administration. Nature (Lond.) 207, 979–980(1965).

    Article  CAS  Google Scholar 

  • Claasen, V., Noach, E.L.: Dichloro-isuprel inhibition of sympathomimetic hyperglycaemia. Arch. int. Pharmacodyn. 126, 332–340(1960).

    Google Scholar 

  • Cleveland, D., Davis, L.: Further studies on the effect of hypothalamic lesions upon carbohydrate metabolism. Brain 59, 459–465(1936).

    Article  CAS  Google Scholar 

  • Cohen, G., Holland, B., Sha, J., Goldenberg, M.: Plasma concentrations of epinephrine and norepinephrine during intravenous infusions in man. J. clin. Invest. 38, 1935–1941(1959).

    Article  PubMed  CAS  Google Scholar 

  • Coore, H. G., Randle, P. J.: Regulation of insulin secretion studied with pieces of rabbit pancreas incubated in vitro. Biochem. J. 93, 66–78(1964).

    PubMed  CAS  Google Scholar 

  • Cori, C.F., Cori, G. T., Buchwald, K. W.: The mechanism of epinephrine action. Amer. J. Physiol. 93, 273–283(1930).

    CAS  Google Scholar 

  • Craig, J. W., Rall, T. W., Larner, J.: The influence of insulin and epinephrine on adenosine 3′, 5′-phosphate and glycogen transferase in muscle. Biochim. biophys. Acta (Amst.) 177, 213–219(1969).

    Article  CAS  Google Scholar 

  • Crane, R.K., Sols, A.: The association of hexokinase with particulate fractions of brain and other tissue homogenates. J. biol. Chem. 203, 273–292(1953).

    PubMed  CAS  Google Scholar 

  • Crespin, S.R., Greenough, W. R., Steinberg, D.: Stimulation of insulin secretion by infusion of free fatty acids. J. clin. Invest. 48, 1934–1943(1969).

    Article  PubMed  CAS  Google Scholar 

  • Cseuz, R., Wenger, T.L., Kunos, G., Szentivanyi, M.: Changes of adrenergic reaction pattern in experimental diabetes mellitus. Endocrinology 93, 752–755(1973).

    Article  PubMed  CAS  Google Scholar 

  • Curry, D.L., Curry, K.P.: Hypothermia and insulin secretion. Endocrinology 87, 750–755(1970).

    Article  PubMed  CAS  Google Scholar 

  • Deckert, R., Lauridsen, U.B., Madsen, S.N., Deckert, M.: Serum insulin following isoprenaline in normal and diabetic persons. Horm. Metab. Res. 4, 229–232(1972).

    Article  PubMed  CAS  Google Scholar 

  • Duner, H.: The influence of the blood glucose level on the secretion of adrenaline and noradrenaline from the suprarenal. Acta physiol. scand. 28, Suppl. 102, 1–77(1953).

    CAS  Google Scholar 

  • Ellis, S.: The metabolic effects of epinephrine and related amines. Pharmacol. Rev. 8, 485–562(1956).

    PubMed  CAS  Google Scholar 

  • Esterhuizen, A. C., Spriggs, T.L.B., Lever, J. D.: Nature of islet cell innervation in the cat pancreas. Diabetes 17, 33–36(1968).

    PubMed  CAS  Google Scholar 

  • Euler, U.S. von: The nature of adrenergic nerve mediators. Pharmacol. Rev. 3, 247–277(1951).

    Google Scholar 

  • Euler, U.S. von, Luft, R.: Effect of insulin on urinary excretion of adrenaline and noradrenaline. Metabolism 1, 528–532(1952).

    Google Scholar 

  • Exton, J. H., Friedman, N., Wong, E.H.A., Brineaux, J. P., Corbin, J. D., Park, C.R.: Interaction of glucocorticoids with glucagon and epinephrine in the control of gluconeogenesis and glycogenos is in liver and of lipolysis in adipose tissue. J. biol. Chem. 247, 3579–3588(1972).

    PubMed  CAS  Google Scholar 

  • Exton, J. H., Malette, L.E., Jefferson, L.S., Wong, E.H.A., Friedman, N., Miller, T.B., Park, C.R.: The hormonal control of hepatic gluconeogenesis. Recent Progr. Hormone Res. 26, 411–461(1970).

    PubMed  CAS  Google Scholar 

  • Exton, J. H., Park, C.R.: Control of gluconeogenesis in liver. J. biol. Chem. 242, 2622–2636(1967).

    PubMed  CAS  Google Scholar 

  • Fine, M.B., Williams, R.H.: Effects of fasting, epinephrine and glucose, and insulin on hepatic uptake of nonesterified fatty acids. Amer. J. Physiol. 199, 403–406(1960).

    PubMed  CAS  Google Scholar 

  • Fleming, W.W., Kenny, A.D.: The effect of fasting on the hyperglycemic response to catecholamines in rats. Brit. J. Pharmacol. 22, 267–274(1964).

    PubMed  CAS  Google Scholar 

  • Furchtgott, R. F.: The pharmacological differentiation of adrenergic receptors. Ann. N.Y. Acad. Sci. 139, 553–570(1967).

    Article  Google Scholar 

  • Goldfien, A.: Effects of glucose deprivation on the sympathetic outflow to the adrenal medulla and adipose tissue. Pharmacol. Rev. 18, 303–311(1966).

    PubMed  CAS  Google Scholar 

  • Gordon, R.S., Cherkes, A.: Production of unesterified fatty acids from isolated rat adipose tissue incubated in vitro. Proc. Soc. exp. Biol. (N.Y.) 97, 150–151(1958).

    CAS  Google Scholar 

  • Hasselblatt, A.: Interrelations between lipid and carbohydrate metabolism. Naunyn-Schmiedebergs. Arch. Pharmak. 269, 331–346(1971).

    CAS  Google Scholar 

  • Haugaard, N., Hess, M.E.: Actions of autonic drugs on phosphorylase activity and function. Pharmacol. Rev. 17, 27–69(1965).

    PubMed  CAS  Google Scholar 

  • Heimberg, M., Fizette, N.B.: The action of norepinephrine on the transport of fatty acids and triglycerides by the isolated perfused rat liver. Biochem. Pharmacol. 12, 392–394(1968).

    Article  Google Scholar 

  • Heimberg, M., Weinstein, I., Kohout, M.: The effect of glucagon, dibutyryl cyclic adenosine 3′-, 5′-monophosphate, and concentration of free fatty acid on hepatic lipid metabolism. J. biol. Chem. 244, 5131–5139(1969).

    PubMed  CAS  Google Scholar 

  • Himms-Hagen, J.: Sympathetic regulation of metabolism. Pharmacol. Rev. 19, 367–461(1967).

    PubMed  CAS  Google Scholar 

  • Huijing, F.R., Larner, J.: On the mechanism of action of adenosine-3′-5′-cyclophosphate. Proc. nat. Acad. Sci. (Wash.) 56, 647–653(1966).

    Article  CAS  Google Scholar 

  • Issekutz, B., Allen, M.: Effect of catecholamines and methylprednisolone on carbohydrate metabolism of dogs. Metabolism 21, 48–59(1972).

    Article  PubMed  CAS  Google Scholar 

  • Kipnis, D.M., Helmreich, E., Cori, C. F.: Studies of tissue permeability. IV The distribution of glucose between plasma and muscle. J. biol. Chem. 234, 165–170(1959).

    PubMed  CAS  Google Scholar 

  • Kosaka, K., Ide, T., Kuzuya, T., Miki, E., Kuzuya, N., Okinaka, S.: Insulin like activity in pancreatic vein blood after glucose loading and epinephrine hyperglycemia. Endocrinology 75, 9–14(1964).

    Article  PubMed  CAS  Google Scholar 

  • Kukovetz, W.R., Hess, M.E., Shanfield, J., Haugaard, N.: The action of sympathomimetic amines on isometric contraction and phosphorylase activity of the isolated rat heart. J. Pharmacol. exp. Ther. 127, 122–127(1959).

    PubMed  CAS  Google Scholar 

  • Kuo, J. F., Renzo, E.C. de: A comparison of the effects of lipolytic and antilipolytic agents on adenosine 3′-5′-monophosphate levels in adipose cells as determined by prior labeling with adenine-C-8-14C. J. biol. Chem. 244, 2252–2260(1969).

    PubMed  CAS  Google Scholar 

  • Lands, A.M., Arnold, A., McAuliff, J. P., Luduena, F. P., Brown, T. G.: Differentiation of receptor systems activated by sympathomimetic amines. Nature (Lond.) 214, 597–598(1967).

    Article  CAS  Google Scholar 

  • Loubatieres, A., Mariani, M.M., Chapal, J., Houareau, M.H., Rondot, A.M.: Action nocive de l’adrenaline pur la structure histologique des ilots de Langerhans du pancreas. Action protective de la dihydroergotamine. Diabetologia 1, 13–20(1965).

    Article  CAS  Google Scholar 

  • Madison, L.L., Seyffert, W.A., Unger, R. H., Barker, B.: Effect of plasma free fatty acids on plasma glucagon and serum insulin concentration. Metabolism 17, 301–304(1968).

    Article  PubMed  CAS  Google Scholar 

  • Mayer, S., Moran, N.C., Fain, J.: The effect of adrenergic blocking agents on some metabolic actions of catecholamines. J. Pharmacol, exp. Ther. 134, 18–27(1961).

    CAS  Google Scholar 

  • Nathanielsz, P.W.: Effect of cold (4° C) on catecholamine excretion in the diabetic rat and its relation to autonomic neuropathy. Diabetes 18, 625–626(1969).

    PubMed  CAS  Google Scholar 

  • Nestel, P.J., Steinberg, D.: Fate of palmitate and of linoleate perfused through the isolated rat liver at high concentrations. J. Lipid Res. 4, 461–469(1963).

    PubMed  CAS  Google Scholar 

  • Newsholme, E.A., Randle, P.J., Manchester, K. L.: Regulation of glucose uptake by the muscle. 7. Effects of fatty acids, ketone bodies and pyruvate, and diabetes and starvation, hypophysectomy and adrenalectomy on concentration of hexose phosphates, nucleotides, and inorganic phosphate. Biochem. J. 93, 641–651(1964).

    PubMed  CAS  Google Scholar 

  • Northrop, G., Ryan, W.G., Schwartz, T.B.: Propranolol-induced insulin release in isolated rat islets of Langerhans. Diabetes 22, 91–93(1973). ØYE, J.: The action of adrenaline in cardiac muscle. Dissociation between phosphorylase activation and inotropic response. Acta physiol. scand. 65, 251–258(1965).

    PubMed  CAS  Google Scholar 

  • Park, C.R.: Diskussionsbemerkung; IDF-Congress, Stockholm, 1967.

    Google Scholar 

  • Park, C.R., Exton, J. H.: Glucagon and metabolism of glucose. In: Glucagon (Lefebvre, P.J., Unger, R. H., eds.), p. 77–108. Oxford: Pergamon Press 1972.

    Google Scholar 

  • Porte, D., jr.: A receptor mechanism for the inhibition of insulin release by epinephrine in man. J. clin. Invest. 46, 86–94(1967a).

    Article  PubMed  CAS  Google Scholar 

  • Porte, D., jr.: Beta-adrenergic stimulation of insulin release in man. Diabetes 16, 150–155(1967b).

    PubMed  CAS  Google Scholar 

  • Porte, D., jr.: Sympathetic regulation of insulin secretion. Its relation to diabetes mellitus. Arch. intern. Med. 123, 252–260(1969).

    Article  PubMed  CAS  Google Scholar 

  • Porte, D., jr., Graber, A.L., Kuzuya, T., Williams, R. H.: The effect of epinephrine on immunoreactive insulin levels in man. J. clin. Invest. 45, 228–236(1966).

    Article  PubMed  CAS  Google Scholar 

  • Posner, J.R., Stern, R., Krebs, E.G.: Effects of electrical stimulation and epinephrine on muscle phosphorylase phosphorylase b kinase, and adenosine 3′,-5′-phosphate. J. biol. Chem. 240, 982–985(1965).

    PubMed  CAS  Google Scholar 

  • Rappaport, A.M., Kawamura, T., Davidson, J. K., Lin, B.J., Ohira, S., Zeigler, M., Coddling, J.A., Hendersen, J., Haist, R.E.: Effects of hormones and of blood flow on insulin output of isolated pancreas in situ. Amer. J. Physiol. 221, 343–348(1971).

    PubMed  CAS  Google Scholar 

  • Robertson, R.P., Porte, D., jr.: Adrenergic modulation of basal insulin secretion in man. Diabetes 22, 1–8(1973a).

    PubMed  CAS  Google Scholar 

  • Robertson, R.P., Porte, D., jr.: The glucose receptor-a defective mechanism in diabetes mellitus distinct from the beta adrenergic receptor. J. clin. Invest. 52, 870–876(1973b).

    Article  CAS  Google Scholar 

  • Robison, G.A., Butcher, R.W., Sutherland, E.W.: Adenylcyclase as an adrenergic receptor. Ann. N.Y. Acad. Sci. 139, 703–723(1967).

    Article  PubMed  CAS  Google Scholar 

  • Robison, G.A., Butcher, R.W., Sutherland, E.W.: Cyclic AMP, New York, London: Academic Press 1971.

    Google Scholar 

  • Rosell-Perez, M., Larner, J.: Studies on UDPG-a-glucan transglucosylase. V. Two forms of the enzyme in dog sceletal muscle and their interconversion. Biochemistry (Wash.) 3, 81–88(1964).

    Article  CAS  Google Scholar 

  • Schalch, D.S., Kipnis, D.M.: The impairment of carbohydrate tolerance by elevated plasma free fatty acids. J. clin. Invest. 43, 1283–1284(1964).

    Google Scholar 

  • Schlossberg, T., Sawyer, M.E.M., Bixby, E.M.: Studies of homeostasis in normal, sympathectomized and ergotaminized animals. III. The effect of insulin. Amer. J. Physiol. 104, 190–194(1933).

    Google Scholar 

  • Schonfeld, G., Kipnis, D.M.: Effects of fatty acids on carbohydrate and fatty acid metabolism of rat diaphragma. Amer. J. Physiol. 215, 513–522(1968).

    PubMed  CAS  Google Scholar 

  • Shipp, J. C., Opie, L. H., Challoner, D.R.: Interactions between carbohydrate and fatty acid metabolism of isolated perfused rat heart. Metabolism 13, 852–867(1964).

    Article  PubMed  CAS  Google Scholar 

  • Sokal, J. E., Sarcione, E. J.: Failure of physiological concentrations of epinephrine to affect glycogen levels in the isolated rat liver. Nature (Lond.) 204, 881–883(1964).

    Article  CAS  Google Scholar 

  • Somogyi, M.: Mechanism of epinephrine hyperglycemia. Endocrinology 49, 774–781(1951).

    Article  PubMed  CAS  Google Scholar 

  • Steinberg, D., Nestel, P.J., Bütcher, E.R., Thompson, R. H.: Calorigenic effect of norepinephrine correlated with plasma free fatty acid turnover and oxidation. J. clin. Invest. 43, 167–176(1964).

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, E.W., Rall, T.W.: The relation of adenosine 3′-5′-phosphate and phosphorylase to the action of catecholamines and other hormones. Pharmacol. Rev. 12, 265–299(1960).

    CAS  Google Scholar 

  • Tarrant, M. E., Thompson, R. H. S., Wright, P. H.: Some aspects of lipid metabolism in rats treated with antiinsulin serum. Biochem. J. 84, 6–10(1962).

    PubMed  CAS  Google Scholar 

  • Tolbert, M. E. M., Bütcher, F. R., Fain, J. N.: Lack of correlation between catecholamine effects on cyclicadenosine 3′-5′-monophosphate and gluconeogenesis in isolated rat liver cells. J. biol. Chem. 248, 5686–5692(1973).

    PubMed  CAS  Google Scholar 

  • Verner, J. V., Blackard, W.G., Engel, F.L.: Some factors modifying the actions of hormones on glucose uptake by adipose tissue in vitro. Endocrinology 70, 420–428(1962).

    Article  PubMed  CAS  Google Scholar 

  • Walaas, O., Walaas, E.: Effect of epinephrine on rat diaphragm. J. biol. Chem. 187, 769–776(1950).

    PubMed  CAS  Google Scholar 

  • Westermann, E.: Sympathicus und Fettstoffwechsel. Acta neuroveg. (Wien) 30, 19–29(1967).

    Article  CAS  Google Scholar 

  • White, J.E., Engel, F.L.: A lipolytic action of epinephrine and norepinephrine on rat adipose tissue in vitro. Proc. Soc. exp. Biol. (N.Y.) 99, 375–378(1958).

    CAS  Google Scholar 

  • Wilber, J. P., Turtle, J. R., Crane, N.A.: Inhibition of insulin secretion by a phaeochromocytoma. Lancet 1966 II, 733.

    Article  Google Scholar 

  • Wright, P. H., Malaisse, W.J.: Effects of epinephrine, stress and excercise on insulin secretion by the rat. Amer. J. Physiol. 214, 1031–1034(1968).

    PubMed  CAS  Google Scholar 

  • Wulff, D.E.H., Hers, H. G.: The role of glucose, glucagon and glucocorticoids in the regulation of liver glycogen synthesis. Europ. J. Biochem. 6, 558–564(1968).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Hasselblatt, A. (1975). Stoffwechselwirkungen der Katecholamine. In: Cerasi, E., et al. Diabetes mellitus · A. Handbuch der inneren Medizin, vol 7 / 2 / A. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-66033-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-66033-7_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-66034-4

  • Online ISBN: 978-3-642-66033-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics