Cochlear Nerve and Cochlear Nucleus

  • E. F. Evans
Part of the Handbook of Sensory Physiology book series (SENSORY, volume 5 / 2)

Abstract

The first recordings of single neurone activity in the auditory system were made from the cochlear nucleus of the cat, by Galambos and Davis (1943). In these experiments the authors were attempting to record from fibres in the cochlear nerve; subsequently, however, they concluded that the recordings had been from aberrant cells of the cochlear nucleus lying central to the glial margin of the VIII nerve (Galambos and Davis, 1948). The first successful recordings from fibres of the cochlear nerve were made by Tasaki (1954) in the guinea pig. These classical but necessarily limited results were greatly extended by Rose, Galambos, and Hughes (1959) in the cat cochlear nucleus and by Katsuki and co-workers (Katsuki et al., 1958, 1961, 1962) in the cat and monkey cochlear nerve. Perhaps the most significant developments have been the introduction of techniques for precise control of the acoustic stimulus and the quantitative analysis of neuronal response patterns, notably by the laboratories of Kiang (e.g. Gerstein and Kiang, 1960; Kiang et al., 1962b, 1965a, 1967) and Rose (e.g. Rose et al., 1967; Hind et al., 1967). These developments have made possible a large number of quantitative investigations of the behaviour of representative numbers of neurons at these levels of the peripheral auditory system under a wide variety of stimulus conditions.

Keywords

Depression Retina Cyanide Acetylcholine Kanamycin 

Abbreviations

AP

Gross cochlear action potential.

CDT

Cubic difference tone (2f 1f 2).

CF

Characteristic (“best”) frequency.

cn

Cochlear nerve (acoustic, auditory, nerve).

CN

Cochlear nucleus.

DCN, VCN, AVN, PVN

Dorsal, ventral, antero- and postero-ventral divisions of CN.

FRC

Frequency response curve (plot of firing rate versus frequency at constant SPL).

FTC

Frequency threshold curve (“tuning curve”).

IHC

Inner hair cells of the organ of Corti.

OCB

Olivocochlear bundle.

OHC

Outer hair cells of the organ of Corti.

PST

Post or peri-stimulus time (applied to histogram).

Q10dB

CF/bandwidth of FTC at 10 dB above threshold.

SON

Superior olivary nucleus

SPL

Sound pressure level relative to 2 x 10-4 dyne/cm2 (2 x 10-5 N/m2).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allanson, J.T., Whitfield, I. C.: The cochlear nucleus and its relation to theories of hearing. 3rd London Symposium on Information Theory, pp. 269–284. London: Butterworth 1956.Google Scholar
  2. Anderson, D.J., Rose, J.E., Hind, J.E., Brugge, J.F.: Temporal position of discharges in single auditory nerve fibres within the cycle of a sine-wave stimulus: frequency and intensity effects. J. acoust. Soc. Amer. 49, 1131–1139 (1971).Google Scholar
  3. Aran, J.M.: The electrocochleogram: recent results in children and in some pathological cases Arch. Ohr-, Nas.- u. Kehlk.-Heilk. 198, 128–141 (1971).Google Scholar
  4. Aran, J.M., Delaunay, J.: Neural responses of end organ of the guinea pig. VIIIth nerve action potentials evoked by click and tone pips (filtered clicks) of different frequencies. Rev. Laryng. (Bordeaux) 90, 598–614 (1969).Google Scholar
  5. Arthur, R.M., Pfeiffer, R.R., Suga,N.: Properties of “two-tone inhibition” in primary auditory neurones. J. Physiol. (Lond.) 212, 593–609 (1971).Google Scholar
  6. Barlow, H.B., Levick,W.R.: The mechanism of directionally sensitive units in rabbits’ retina. J. Physiol. (Lond.) 178, 477–504 (1965).Google Scholar
  7. Bassett, I.G., Eastmond, E. J.: Echolocation: measurement of pitch versus distance for sounds reflected from a flat surface. J. acoust. Soc. Amer. 36, 911–916 (1964).Google Scholar
  8. Békésy, G. von: Über die mechanische Frequenzanalyse in der Schnecke verschiedener Tiere. Akust. Z. 9, 3–11 (1944).Google Scholar
  9. Békésy, G. von: Experiments in hearing. New York: McGraw-Hill 1960.Google Scholar
  10. Békésy, G. von: Resonance in the cochlea? Sound 3, 86–91 (1969).Google Scholar
  11. Békésy, G. von: Travelling waves as frequency analysers in the cochlea. Nature (Lond.) 225, 1207–1209 (1970).Google Scholar
  12. Boerger, G., Gruber, J.: In: Frequency Analysis and Periodicity Detection in Hearing, pp. 147–149. Leiden: Sijthoff 1970.Google Scholar
  13. Boerger, G., Gruber,J., Klinke, R.: Interaurales Übersprechen bei der Katze. Naturwissenschaften 55, 234 (1968).PubMedGoogle Scholar
  14. Bogdanski, D.F., Galambos: In: Neural Mechanisms of Auditory and Vestibular systems, pp. 143–148. Springfield, Ill.: Thomas 1960.Google Scholar
  15. Bone, R.C., Crowley, D., Rauchbach, E.: VIIIth nerve round window action potentials masked by high frequency noise in rats and guinea pigs: a comparative study. Laryngoscope (St. Louis) 82, 1499–1513 (1972).Google Scholar
  16. Brugge, J.F., Anderson, D.J., Hind, J.E., Rose, J.E.: Time structure of discharges in single auditory nerve fibres of the squirrel monkey in response to complex periodic sounds. J. Neurophysiol. 32, 386–407 (1969).PubMedGoogle Scholar
  17. Butler, R.A., Honrubia,V., Johnstone, B.M., Fernandez, C.: Cochlear function under metabolic impairment. Ann. Otol. (St. Louis) 71, 648–656 (1962).Google Scholar
  18. Cajal, S.R.Y.: Histologie du système nerveux, Vol. 1. Madrid: Institute Ramon Y Cajal 1909.Google Scholar
  19. Campbell, F.W., Cooper, G. F., Enroth-Cugell, C.: The spatial selectivity of the visual cells of the cat. J. Physiol. (Lond.) 203, 223–235 (1969).Google Scholar
  20. Capps, M. J., Ades, H.W.: Auditory frequency discrimination after transection of olivocochlear bundle in squirrel monkeys. Exp. Neurol 21, 147–158 (1968).PubMedGoogle Scholar
  21. Coats, A.C., Dickey, J.R.: Non-surgical recording of human auditory nerve action potentials and cochlear microphonics. Ann. Otol. (St. Louis) 79, 844–852 (1970).Google Scholar
  22. Cohen, E.S., Brawer, J.R., Morest, D.K.: Projections of the cochlea to the dorsal cochlear nucleus in the cat. Exp. Neurol. 35, 470–479 (1972).PubMedGoogle Scholar
  23. Comis, S.D.: Centrifugal inhibitory processes affecting neurones in the cat cochlear nucleus. J. Physiol. (Lond.) 210, 751–760 (1970).Google Scholar
  24. Comis, S.D., Davies, W.E.: Acetylcholine as a transmitter in the cat auditory system. J. Neuroehem. 16, 423–429 (1969).Google Scholar
  25. Comis, S.D., Pickles, V.O.: Centrifugal pathways and the detection of signals in noise. J. Physiol. (Lond.) 226, 58P (1972).Google Scholar
  26. Comis, S.D., Whitfield, I.C.: The effect of acetylcholine on neurones of the cochlear nucleus. J. Physiol. (Lond.) 183, 22–23P (1966).Google Scholar
  27. Comis, S.D., Whitfield, I.C.: Influence of centrifugal pathways on unit activity in cochlear nucleus. J. Neurophysiol. 31, 62–68 (1968).PubMedGoogle Scholar
  28. Cullen, J.K., Jr., Ellis, M.S., Berlin, C.I., Lousteau, R.J.: Human acoustic nerve action potential recordings from the tympanic membrane without anaesthesia. Acta Oto-laryng. (Stockh.) 74, 15–22 (1972).Google Scholar
  29. Daigneault, E.A., Brown, R.D., Pruett, J.: Cochlear round window recorded responses to acetylcholine and click stimulation following decentralization. Acta Oto-laryng. (Stockh.) 66, 10–16 (1968).Google Scholar
  30. Dallos, P.: Combination tone 2f1fh in microphonic potentials. J. acoust. Soc. Amer. 46, 1437–1444 (1969).Google Scholar
  31. Dallos, P.: Comments on “correspondence between cochlear microphonic sensitivity and behavioural threshold in the cat”. J. acoust. Soc. Amer. 50, 1554 (1971).Google Scholar
  32. Dallos, P.: Cochlear potentials and cochlear mechanics. In: Basic Mechanisms in Hearing, pp. 335–372. New York: Academic Press 1973.Google Scholar
  33. Dallos, P., Billone, M.C., Durrant, J.D., Wang, C-y., Raynor, S.: Cochlear inner and outer hair cells: functional differences. Science 177, 356–358 (1972)PubMedGoogle Scholar
  34. Davis, H.: A model for transducer action in the cochlea. Cold Spr. Harb. Symp. quant. Biol. 30, 181–189 (1965).Google Scholar
  35. Davis, H., Deatherage, B.H., Rosenblut, B., Fernandez, C., Kimfra, R., Smith, C.A.: Modifications of cochlear potentials produced by streptomycin poisoning and by venous obstruction. Laryngoscope (St. Louis) 68, 596–627 (1958).Google Scholar
  36. Deatherage, B.H., Eldredge, D.H., Davis, H.: Latency of action potential in the cochlea of the guinea pig. J. acoust. Soc. Amer. 31, 479–486 (1959).Google Scholar
  37. De Boer, E.: On the “residue” in hearing (Thesis). Netherlands: Excelsior 1956.Google Scholar
  38. De Boer, E.: Measurement of critical band-width in cases of perception deafness. Proc. 3rd Internat. Congr. on Acoustics Stuttgart 1, pp. 100–102. Amsterdam: Elsevier 1959.Google Scholar
  39. De Boer, E.: Reverse correlation. I. A heuristic introduction to the technique of triggered correlation with applications to the analysis of compound systems. Proc. kon. nederl. Akad. Wet. 71, 472–486 (1968).Google Scholar
  40. De Boer, E.: Reverse correlation. II. Initiation of nerve impulses in the inner ear. Proc. kon. Nederl. Akad. Wet. 72, 129–151 (1969).Google Scholar
  41. De Boer, E.: Synchrony between acoustic stimuli and nerve fibre discharges. In: Frequency Analysis and Periodicity Detection in Hearing, pp. 204–212. Leiden: Sijthoff 1970.Google Scholar
  42. De Boer, E., de Jongh, H.R.: Computer simulation of cochlear filtering. Proc. 7th Internat. Congr. on Acoustics, pp. 393–396. Budapest: Akademiai Kiado 1971.Google Scholar
  43. De Boer, E., Jongkees, L.B.W.: On cochlear sharpening and cross-correlation methods. Acta Oto-laryng. (Stockh.) 65, 97–104 (1968).Google Scholar
  44. De Boer, E., Kuyper, P.: Triggered correlation. IEEE Trans. Biomed. Eng. 15, 169–179 (1968).PubMedGoogle Scholar
  45. De Boer, E., Smoorenburg, G.F., Kuyper, P.: Proposed explanation of synchrony of auditory-nerve impulses to combination tones. J. acoust. Soc. Amer. 46, 1579–1581 (1969).Google Scholar
  46. De Jongh, H.R.: About coding in the VIIIth nerve. In: Hearing Theory 1972, pp. 70–77. Eindhoven: IPO 1972.Google Scholar
  47. Derbyshire, A. J., Davis, H.: The action potentials of the auditory nerve. Amer. J. Physiol. 113, 476–504 (1935).Google Scholar
  48. Desmedt, J.E.: Neurophysiological mechanisms controlling acoustic input. In: Neural Mechanisms of Auditory and Vestibular Systems, pp. 152–164. Springfield, Ill.: Thomas 1960.Google Scholar
  49. Desmedt, J.E., Monaco, P.: The pharmacology of a centrifugal inhibitory pathway in the cat’s acoustic system. In: Pharmacological Analysis of Central nervous action. Proc. 1st Internat. Pharmacol. Meeting. London: Pergamon 1962.Google Scholar
  50. Dewson, J.H. III: Efferent olivocochlear bundle: some relationships to noise masking and to stimulus attenuation. J. Neurophysiol. 30, 817–832 (1967).PubMedGoogle Scholar
  51. Dewson, J.H. III: Efferent olivocochlear bundle: some relationships to stimulus discrimination in noise. J. Neurophysiol. 31, 122–130 (1968).PubMedGoogle Scholar
  52. Dix, M.R., Hallpike, O.S., Hood, J.D.: Observations upon the loudness recruitment phenomenon with especial reference to the differential diagnosis of disorders of the internal ear and VIII nerve. Proc. roy. Soc. Med. 41, 516–526 (1948).PubMedGoogle Scholar
  53. Duifhuis, H.: A tentative firing model for the auditory receptor. LP.O.-A.P.R. 5, 18–24 (1970).Google Scholar
  54. Duifhuis, H.: Audibility of high harmonics in a periodic pulse. II. Time effect. J. acoust. Soc. Amer. 49, 1155–1162 (1971).Google Scholar
  55. Duifhuis, H.: Perceptual Analysis of Sound (Thesis). Eindhoven: 1972.Google Scholar
  56. Dunker, E.G., Grubel, G., Pfalz, R.: Beeinflussung von spontanaktiven, deafferentierten Einzelneuronen des Nucleus cochlearis der Katze durch Tonreizung der Gegenseite. Pflügers Arch. ges. Physiol. 278, 610–623 (1964).Google Scholar
  57. Elberling, C., Salomon, G.: Electrical potentials from the inner ear in man, in response to transient sounds generated in a closed acoustic system. Rev. Laryng. Suppl. pp. 691–706 (1971).Google Scholar
  58. Engebretson, A.M., Eldredge, D.H.: Model for the nonlinear characteristics of cochlear potentials. J. acoust. Soc. Amer. 44, 548–554 (1968).Google Scholar
  59. Enger, P.S.: Single unit activity in the peripheral auditory system of a teleost fish. Acta physiol. scand. 59, Suppl. 210 (1963).Google Scholar
  60. Erulkar, S.D., Butler, R.A., Gerstein, G.L.: Excitation and inhibition in cochlear nucleus. II. Frequency modulated tones. J. Neurophysiol. 31, 537–548 (1968).PubMedGoogle Scholar
  61. Evans, E.F.: Upper and lower levels of the auditory system: a contrast of structure and function. In: Neural Networks, pp. 24–33. Berlin-Heidelberg-New York: Springer 1968.Google Scholar
  62. Evans, E.F.: Narrow “tuning” of cochlear nerve fibre responses in the guinea pig. J. Physiol. (Lond.) 206, 14–15P (1970a).Google Scholar
  63. Evans, E.F.: Narrow tuning of the responses of cochlear nerve fibres emanating from the exposed basilar membrane. J. Physiol. (Lond.) 208, 75P–76P (1970b).Google Scholar
  64. Evans, E.F.: Central mechanisms relevant to the neural analysis of simple and complex sounds. In: Pattern Recognition in Biological and Technical Systems, pp. 328–343. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  65. Evans, E.F.: Does frequency sharpening occur in the cochlea? In: Hearing Theory 1972, pp. 27–34. Eindhoven: IPO 1972a.Google Scholar
  66. Evans, E.F.: The frequency response and other properties of single fibres in the guinea-pig cochlear nerve. J. Physiol. (Lond.) 226, 263–287 (1972b).Google Scholar
  67. Evans, E. F.: Neural processes for the detection of acoustic patterns and for sound localization. In: The Neurosciences: Third Study Program, pp. 131–145. Boston: M.I.T. Press 1974a.Google Scholar
  68. Evans, E.F.: The effects of hypoxia on the tuning of single cochlear nerve fibres. J. Physiol. (Lond.) 238, 65–67P (1974b).Google Scholar
  69. Evans, E.F.: Normal and abnormal functioning of the cochlear nerve. In: Sound Reception in Mammals. Symp. Zoo. Soc. Lond. In Press. London: Academic Press. 1974c.Google Scholar
  70. Evans, E.F.: Auditory Frequency selectivity and the cochlear nerve. In: Facts and Models in Hearing, pp. 118–129. Berlin-Heidelberg-New York: Springer. 1974d.Google Scholar
  71. Evans, E.F., Klinke, R.: Reversible effects of cyanide and Furosemide on the tuning of single cochlear fibres. J. Physiol. (Lond.) 242, 129–131P (1974).Google Scholar
  72. Evans, E.F., Nelson, P.G.: Behaviour of neurones in cochlear nucleus under steady and modulated tonal stimulation. Fed. Proc. 25, 463 (1966a).Google Scholar
  73. Evans, E.F., Nelson, P.G.: Responses of neurones in cat cochlear nucleus to modulated tonal stimuli. J. acoust. Soc. Amer. 40, 1275–1276 (1966b).Google Scholar
  74. Evans, E.F., Nelson, P.G.: An intranuclear pathway to the dorsal division of the cochlear nucleus of the cat. J. Physiol. (Lond.) 196, 76P–78P (1968).Google Scholar
  75. Evans, E.F., Nelson, P. G.: The responses of single neurones in the cochlear nucleus of the cat as a function of their location and the anaesthetic state. Exp. Brain Res. 17, 402–427 (1973a).PubMedGoogle Scholar
  76. Evans, E.F., Nelson, P.G.: On the relationship between the dorsal and ventral cochlear nucleus. Exp. Brain Res. 17, 428–442 (1973b).PubMedGoogle Scholar
  77. Evans, E.F., Whitfield, I.C.: Classification of unit responses in the auditory cortex of the unanaesthetised and unrestrained cat. J. Physiol. (Lond.) 171, 476–493 (1964).Google Scholar
  78. Evans, E.F., Wilson, J.P.: Frequency sharpening of the cochlea: the effective bandwidth of cochlear nerve fibres. Proc. 7 th Internat. Congr. on Acoustics, Vol. 3, pp. 453–456. Budapest: Akademiai Kiado 1971.Google Scholar
  79. Evans, E.F., Wilson, J.P.: Frequency selectivity of the cochlea. In: Basic Mechanisms in Hearing, pp. 519–551. New York: Academic Press 1973.Google Scholar
  80. Evans, E.F., Rosenberg, J., Wilson, J.P.: The effective bandwidth of cochlear nerve fibres. J. Physiol. (Lond.) 207, 62P–63P (1970).Google Scholar
  81. Evans, E.F., Rosenberg, J., Wilson, J.P.: The frequency resolving power of the cochlea. J. Physiol. (Lond.) 216, 58P–59P (1971).Google Scholar
  82. Fernald, R.: A neuron model with spatially distributed synaptic input. Biophys. J. 11, 323–340 (1971).PubMedGoogle Scholar
  83. Fex, J.: Auditory activity in centrifugal and centripetal cochlear fibres in cat. Acta physiol. scand. Suppl. 189, 1–68 (1962).PubMedGoogle Scholar
  84. Fex, J.: Crossed cochlear efferents activated by sound through both ears. Acta physiol. scand. Suppl. 213, 41 (1963).Google Scholar
  85. Fex, J.: Auditory activity in uncrossed centrifugal cochlear fibres in cat. Acta physiol. scand. 64, 43–57 (1965).PubMedGoogle Scholar
  86. Finck, A.: Physiological correlate of tonal masking. J. acoust. Soc. Amer. 39, 1056–1062 (1966).Google Scholar
  87. Flanagan, J.L.: Computational models for basilar-membrane displacement. J. acoust. Soc. Amer. 34, 1370–1376 (1962).Google Scholar
  88. Flock, Å.: Sensory transduction in hair cells. In: Handbook of Sensory Physiology, Vol. 1. Principles of Receptor Physiology, Chap. 14. Berlin-Heidelberg-New York: Springer 1971.Google Scholar
  89. Frishkopf, L.S.: Excitation and inhibition of primary auditory neurones in the little brown bat. J. acoust. Soc. Amer. 36, 1016A (1964).Google Scholar
  90. Frishkopf, L.S., Goldstein, M.H.: Responses to acoustic stimuli from single units in the eighth nerve of the bullfrog. J. acoust. Soc. Amer. 35, 1219–1228 (1963).Google Scholar
  91. Frishkopf, L.S., Capranica, R.R., Goldstein, M.H., Jr.: Neural coding in the bullfrog’s auditory system: a teleological approach. Proc. IEEE 56, 969–980 (1968).Google Scholar
  92. Furman, G.G., Frishkopf, L.S.: Model of neural inhibition in the mammalian cochlea. J. acoust. Soc. Amer. 36, 2194–2201 (1964).Google Scholar
  93. Furukawa, T., Ishii, Y.: Neurophysiological studies on hearing in goldfish. J. Neurophysiol. 30, 1377–1403 (1967).PubMedGoogle Scholar
  94. Furukawa, T., Ishii, Y., Matsuura,S.: Synaptic delay and time course of synaptic potentials at the junction between hair cells and eighth nerve fibres in the goldfish. Jap. J. Physiol. 22, 617–636 (1972).Google Scholar
  95. Galambos, R.: Inhibition of activity in single auditory nerve fibres by acoustic stimulation. J. Neurophysiol. 7, 287–303 (1944).Google Scholar
  96. Galambos, R.: Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J. Neurophysiol. 19, 424–437 (1956).PubMedGoogle Scholar
  97. Galambos, R.: Studies of the auditory system with implanted electrodes. In: Neural Mechanisms of the Auditory and Vestibular Systems, pp. 137–151. Springfield, Ill.: Thomas 1960.Google Scholar
  98. Galambos, R., Davis, H.: Responses of single auditory nerve fibres to acoustic stimulation. J. Neurophysiol. 6, 39–57 (1943).Google Scholar
  99. Galmbos, R., Davis, H.: Action potentials from single auditory nerve fibres ? Science 108, 513 (1948).Google Scholar
  100. Galley, N., Klinke, R., Pause, M., Storch, W.-H.: The effect of flaxedil (gallamine trie-thiodide) on the efferent endings in the cochlea. Pflügers Arch. 330, 1–4 (1971).PubMedGoogle Scholar
  101. Gässler, G.: Über die Hörschwelle für Schallereignisse mit verschieden breitem Frequenz-spektrum. Acustica 4, 408 (1954).Google Scholar
  102. Geisler, C.D.: A model of the peripheral auditory system responding to low frequency tones. Biophys. J. 8, 1–15 (1968).PubMedGoogle Scholar
  103. Gersteln, G.L., Kiang, N.Y.S.: An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys. J. 1, 15–28 (1960).Google Scholar
  104. Gerstein, G.L., Butler, R.A., Erulkar, S.D.: Excitation and inhibition in cochlear nucleus. I. Tone burst stimulation. J. Neurophysiol. 31, 526–536 (1958).Google Scholar
  105. Glattke, T. J.: Unit responses of the cat cochlear nucleus to amplitude-modulated stimuli. J. acoust. Soc. Amer. 45, 419–425 (1969).Google Scholar
  106. Goblick, T.J., Jr., Pfeiffer, R.R.: Time-domain measurements of cochlear non-linearities using combination click stimuli. J. acoust. Soc. Amer. 46, 924–938 (1969).Google Scholar
  107. Gold, T.: Hearing. II. The physical basis of the action of the cochlea. Proc. roy. Soc. B 135, 492–498 (1948).Google Scholar
  108. Goldberg, J.M., Greenwood, D.D.: Response of the neurons of the dorsal and postoventral cochlear nuclei of the cat to acoustic stimuli of long duration. J. Neurophysiol. 29, 72–93 (1966).PubMedGoogle Scholar
  109. Goldstein, J.L.: Auditory non-linearity. J. acoust. Soc. Amer. 41, 676–689 (1967).Google Scholar
  110. Goldstein, J.L.: In: Frequency Analysis and Periodicity Detection in Hearing, pp. 230–245. Leiden: Sijthoff 1970.Google Scholar
  111. Goldstein, J.L.: Evidence from aural combination tones and musical notes against classical temporal periodicity theory. In: Hearing Theory, 1972, pp. 186–208. Eindhoven: IPO 1972.Google Scholar
  112. Goldstein, J.L., Kiang, N.Y.S.: Neural correlates of the aural combination tone 2f1 — f2. Proc. IEEE 56, 981–992 (1968).Google Scholar
  113. Goldstein, J.L., Baer, T., Kiang, N.Y.S.: A theoretical treatment of latency, group-delay and tuning characteristics for auditory-nerve responses to clicks and tones. In: Physiology of the Auditory System, pp. 133–141. Baltimore, Md.: National Educational Consultants 1971.Google Scholar
  114. Gray, P. R.: Conditional probability analyses of the spike activity of single neurons. Biophys. J. 7, 759–777 (1967).PubMedGoogle Scholar
  115. Greenwood, D. D.: Auditory masking and the critical band. J. acoust. Soc. Amer. 33, 484–502 (1961).Google Scholar
  116. Greenwood, D. D., Goldberg, J. M.: Response of neurons in the cochlear nuclei to variations in noise bandwidth and to tone-noise combinations. J. acoust. Soc. Amer. 47, 1022–1040 (1970).Google Scholar
  117. Greenwood, D. D., Maruyama, N.: Excitatory and inhibitory response areas of auditory neurons in the cochlear nucleus. J. Neurophysiol. 28, 863–892 (1965).PubMedGoogle Scholar
  118. Grubel, G., Dunker, D., Rehren, D.V.: Zur Funktionsweise des efferenten auditorischen Systems. I. Mitteilung. Pflügers Arch. ges. Physiol. 281, 109 (1964).Google Scholar
  119. Guinan, J.J. Jr., Peake, W.T.: Middle ear characteristics of anaesthetized cats. J. acoust. Soc. Amer. 41, 1237–1261 (1967).Google Scholar
  120. Hall, J.L.: Comment on “Proposed explanation of synchrony of auditory-nerve impulses to combination tones”. J. acoust. Soc. Amer. 50, 1555–1556 (1971).Google Scholar
  121. Harris, G.G.: Brownian motion and the threshold of hearing. Int. Audiol. 7, 111–120 (1968).Google Scholar
  122. Harrison, J.M., Irving, R.: The anterior ventral cochlear nucleus. J. comp. Neurol 124, 15–42 (1965).PubMedGoogle Scholar
  123. Harrison, J.M., Irving, R.: The organization of the posterior ventral cochlear nucleus in the rat. J. comp. Neurol. 126, 391–402 (1966).PubMedGoogle Scholar
  124. Harrison, J.M., Warr, B.: A study of the cochlear nuclei and ascending pathways of the medulla. J. comp. Neurol. 119, 341–380 (1962).PubMedGoogle Scholar
  125. Hawkins, J.E. Jr., Stevens, S.S.: The masking of pure tones and of speech by white noise. J. acoust. Soc. Amer. 22, 6–13 (1950).Google Scholar
  126. Heffner, R., Heffner, H., Masterton, B.: Behavioural measurements of absolute and frequency difference thresholds in guinea pig. J. acoust. Soc. Amer. 49, 1888–1895 (1971).Google Scholar
  127. Held, R., Ingle, D., Schneider, G.E., Trevarthen, C.B.: Locating and identifying: two modes of visual processing. Psychol. Forsch. 31, 44–62; 299–348 (1967/68).Google Scholar
  128. Hiesey, R.W., Schubert, E.D.: Cochlear resonance and phase-reversal signals. J. acoust. Soc. Amer. 51, 518–519 (1972).Google Scholar
  129. Hind, J.E.: Physiological correlates of auditory stimulus periodicity. Audiol. 11, 42–57 (1972).Google Scholar
  130. Hind, J.E., Anderson, D.J., Brugge, J.F., Rose, J.E.: Coding of information pertaining to paired low-frequency tones in single auditory nerve fibres of the squirrel monkey. J. Neuro-physiol. 30, 794–816 (1967).Google Scholar
  131. Hind, J.E., Rose, J.E., Brugge, J.F., Anderson, D.J.: Two-tone masking effects in squirrel monkey auditory nerve fibres. In: Frequency Analysis and Periodicity Detection in Hearing, pp. 193–200. Leiden: Sijthoff 1970.Google Scholar
  132. Hirsh, I.J.: The influence of interaural phase on interaural summation and inhibition. J. acoust. Soc. Amer. 20, 536–544 (1948).Google Scholar
  133. Houtgast, T.: Psychophysical evidence for lateral inhibition in hearing. J. acoust. Soc. Amer. 51, 1885–1894 (1972).Google Scholar
  134. Houtsma, A.J.M., Goldstein, J. L.: The central origin of the pitch of complex tones: evidence from musical interval recognition. J. acoust. Soc. Amer. 51, 520–529 (1972).Google Scholar
  135. Huggins, W.H., Licklider, J.C.R.: Place mechanisms of auditory frequency analysis. J. acoust. Soc. Amer. 23, 290–299 (1951).Google Scholar
  136. Huxley, A.F.: Is resonance possible in the cochlea after all? Nature (Lond.) 221, 935–940 (1969).Google Scholar
  137. Igarashi, M., Alford, B.R., Nakai, Y., Gordon, W.P.: Behavioural auditory function after transection of crossed olivo-cochlear bundle in the cat. I. Pure-tone threshold and perceptual signal-to-noise ratio. Acta Oto-laryng. (Stockh.) 73, 455–466 (1972).Google Scholar
  138. Irvine, D.R.F., Webster, W.R.: Studies of peripheral gating in the auditory system of cats. Electroenceph. clin. Neurophysiol. 32, 545–556 (1972).PubMedGoogle Scholar
  139. Ishii, D., Balogh, K., Jr.: Distribution of efferent nerve endings in the organ of Corti. Acta Oto-laryng. (Stockh.) 66, 282–288 (1968).Google Scholar
  140. Ishii, Y., Matsuura, S., Furukawa, T.: An input-output relation at the synapse between hair cells and eighth nerve fibres in goldfish. Jap. J. Physiol. 21, 91–98 (1971).Google Scholar
  141. Iurato, S.: Fibre efferente dirette e crociate alle cellule acustiche dell’organo del Corti. Monit. Zool. ital. Suppl. 72, 62–63 (1964).Google Scholar
  142. Johnstone, J.R., Johnstone, B.M.: Unit responses from the lizard auditory nerve. Exp. Neurol. 24, 528–537 (1969).PubMedGoogle Scholar
  143. Johnstone, B.M., Sellick, P.M.: The peripheral auditory apparatus. Quart Rev. Biophys. 5, 1–58 (1972).Google Scholar
  144. Johnstone, B.M., Taylor, K.J., Boyle, A. J.: Mechanics of the guinea pig cochlea. J. acoust. Soc. Amer. 47, 504–509 (1970).Google Scholar
  145. Jungert, S.: Auditory pathways in the brainstem. A neurophysiological study. Acta oto-laryng. (Stockh.) Suppl. 138, 5–67 (1958).Google Scholar
  146. Karlan, M.S., Tonndorf, J., Khanna, S.M.: Dual origin of the cochlear microphonics: inner and outer hair cells. Ann. Otol. (St. Louis) 81, 696–704 (1972).Google Scholar
  147. Katsuki, Y., Sumi, T., Uchiyama, H., Watenabe, T.: Electric responses of auditory neurons in cat to sound stimulation. J. Neurophysiol. 21, 569–588 (1958).PubMedGoogle Scholar
  148. Katsuki, Y., Watenabe, T., Suga, N.: Interaction of auditory neurons in response to two sound stimuli in cat. J. Neurophysiol. 22, 603–623 (1959).PubMedGoogle Scholar
  149. Katsuki, Y., Kanno, Y., Suga, N.: Primary auditory neurons of the monkey. Jap. J. Physiol. 11, 678–683 (1961).Google Scholar
  150. Katsuki, Y., Suga, N., Kanno, Y.: Neural mechanisms of the peripheral and central auditory system in monkeys. J. acoust. Soc. Amer. 34, 1396–1410 (1962).Google Scholar
  151. Keidel, W.D.: Physiologie des Innenrohres. In: Hals-Nasen-Ohren-Heilkunde, Vol. III/1, pp. 235–310 (1965).Google Scholar
  152. Keidel, W.D.: Biophysics, mechanics and electrophysiology of the cochlea. In: Frequency Analysis and Periodicity Detection in Hearing, pp. 60–79. Leiden: Sijthoff 1970.Google Scholar
  153. Khanna, S.M., Sears, R.E., Tonndorf, J.: Some properties of longitudinal shear waves: a study of computer stimulation. J. acoust. Soc. Amer. 43, 1077–1084 (1968).Google Scholar
  154. Kiang, N.Y.-s: Stimulus coding in the auditory nerve and cochlear nucleus. Acta Oto-laryng. (Stockh.) 59, 186–200 (1965).Google Scholar
  155. Kiang, N.Y.-s: A survey of recent developments in the study of auditory physiology. Ann. Otol. (St. Louis) 77, 656–676 (1968).Google Scholar
  156. Kiang, N.Y.-s, Moxon, E.C.: Physiological considerations in artificial stimulation of the inner ear. Ann. Otol. (St. Louis) 81, 714–730 (1972).Google Scholar
  157. Kiang, N.Y.-s., Peake, W.T.: Components of electrical responses recorded from the cochlea. Ann. Otol. (St. Louis) 69, 448–458 (1960).Google Scholar
  158. Kiang, N.Y.-s., Goldstein, M.H., Jr., Peake, W.T.: Temporal coding of neural responses to acoustic stimuli. IRE Trans. Inf. Theory 8, 113–119 (1962a).Google Scholar
  159. Kiang, N.Y.-s., Watenabe, T., Thomas, E.C., Clark, L.F.: Stimulus coding in the cat’s auditory nerve. Ann. Otol. (St. Louis) 71, 1009–1026 (1962b).Google Scholar
  160. Kiang, N.Y.-s., Watenabe, T., Thomas, E.C., Clark, L.F.: Discharge patterns of single fibres in the cat’s auditory nerve. Cambridge, Mass.: M.I.T. Press 1965a.Google Scholar
  161. Kiang, N.Y.-s., Pfeiffer, R.R., Warr, W.B., Backus, A.S.N.: Stimulus coding in the cochlear nucleus. Ann. Otol. (St. Louis) 74, 463–485 (1965b).Google Scholar
  162. Kiang, N.Y.-s., Sachs, M.B., Peake, W.T.: Shapes of tuning curves for single auditory nerve fibres. J. acoust. Soc. Amer. 42, 1341–1342 (1967).Google Scholar
  163. Kiang, N. Y.-s., Baer, T., Marr, E.M., Demont, D.: Discharge rates of single auditory nerve fibres as functions of tone level. J. acoust. Soc. Amer. 46, 106 (1969).Google Scholar
  164. Kiang, N.Y.-s., Moxon, E.C., Levine, R.A.: Auditory-nerve activity in cats with normal and abnormal cochleas. In: Sensorineural Hearing Loss, pp. 241–268. London: Churchill 1970.Google Scholar
  165. Kiang, N.Y.-s., Morest, D.K., Godfrey, D.A., Guinan, J.J., Jr., Kane, E.C.: Stimulus coding at caudal levels of the cat’s auditory system. I. Response characteristics of single units. In: Basic Mechanisms in Hearing, pp. 455–475. New York: Academic Press 1973.Google Scholar
  166. Klinke, R., Galley, N.: The efferent innervation of the vestibular and auditory receptors. Physiol. Rev. 54, 316–357 (1974).Google Scholar
  167. Klinke, R., Boerger, G., Gruber, J.: Studies of the functional significance of efferent innervation in the auditory system: efferent neuronal activity as influenced by contralateral-applied sound. Pflügers Arch. 306, 165–175 (1969).PubMedGoogle Scholar
  168. Koerber, K.L., Pfeiffer, R.R., Warr, W.B., Klang, N.Y.-s.: Spontaneous spike discharges from single units in the cochlear nucleus after destruction of the cochlea. Exp. Neurol. 16, 119–130 (1966).PubMedGoogle Scholar
  169. Konishi, M.: Time resolution by single auditory neurones in birds. Nature (Lond.) 222, 566–567 (1969a).Google Scholar
  170. Konishi, M.: Comparative neurophysiological studies of hearing and vocalizations in songbirds. Z. vergl. Physiol. 66, 257–272 (1970).Google Scholar
  171. Konishi, M.: Hearing, single-unit analysis and vocalizations in songbirds. Science 166, 1178–1181 (1969b).PubMedGoogle Scholar
  172. Konishi, T., Nielsen, D. W.: The temporal relationship between motion of the basilar membrane and initiation of nerve impulses in the auditory nerve fibres. J. acoust. Soc. Amer. 53, 325 (1973).Google Scholar
  173. Konishi, T., Teas, D.C., Wernick, J.S.: Effects of electrical current applied to cochlear partition on discharges in individual auditory nerve fibres. I. Prolonged direct current polarization. J. acoust. Soc. Amer. 47, 1519–1526 (1970).Google Scholar
  174. Levine, R.A.: Phase locking in response of single neuron in cat cochlear nucleus to low-frequency tonal stimuli. J. Neurophysiol. 34, 467–483 (1971).Google Scholar
  175. Lev, A., Sohmer, H.: Sources of averaged neural responses recorded in animal and human subjects during cochlear audiometry (electrocochleogram). Arch. Ohr.-, Nas.-, Kehlk.-Heilk. 201, 79–90 (1972).Google Scholar
  176. Licklider, J.C.R.: “Periodicity” pitch and “phase” pitch. J. acoust. Soc. Amer. 26, 945 (1954).Google Scholar
  177. Liff, H.: Responses from single auditory units in the eighth nerve of the leopard frog. J. acoust. Soc. Amer. 45, 512–513 (1969).Google Scholar
  178. Liff, H. J., Goldstein, M.H., Jr.: Peripheral inhibition in auditory fibres in the frog. J. acoust. Soc. Amer. 47, 1538–1547 (1970).Google Scholar
  179. Lim, D. J.: Fine morphology of the tectorial membrane. Arch. Otolaryng. 96, 199–215 (1972).PubMedGoogle Scholar
  180. Lorente de Nó, R.: Anatomy of eighth nerve. The central projection of the nerve ending of the internal ear. Laryngoscope 43, 1–38 (1933a).Google Scholar
  181. Lorente de Nó, R.: Anatomy of the eighth nerve: III. General plan of structure of primary cochlear nucleus. Laryngoscope 43, 327–350 (1933b).Google Scholar
  182. Lynn, P.A., Sayers, B.McA.: Cochlear innervation, signal processing, and their relation to auditory time-intensity effects. J. acoust. Soc. Amer. 47, 525–533 (1970).Google Scholar
  183. Manley, G. A.: Frequency sensitivity of auditory neurons in the caiman cochlear nucleus. Z. vergl. Physiol. 66, 251–256 (1970a).Google Scholar
  184. Manley, G. A.: Comparative studies of auditory physiology in reptiles. Z. vergl. Physiol. 67, 363–387 (1970b).Google Scholar
  185. Manley, G.A.: Some aspects of the evolution of hearing in vertebrates. Nature 230, 506–509 (1971).PubMedGoogle Scholar
  186. Marsh, J.T., Worden, F.G.: Sound evoked frequency-following responses in the central auditory pathway. Laryngoscope 78, 1149–1163 (1968).PubMedGoogle Scholar
  187. Marsh, J.T., Worden, F.G., Smith, J.C.: Auditory frequency-following response: neural or artifact ? Science 169, 1222–1223 (1970).PubMedGoogle Scholar
  188. Marsh, J.T., Smith, J.C., Worden, F.G.: Receptor and neural responses in auditory masking of low frequency tones. EEG and clin. Neurophysiol. 32, 63–74 (1972).Google Scholar
  189. Mast, T.E.: Study of single units of the cochlear nucleus of the chinchilla. J. acoust. Soc. Amer. 48, 505–512 (1970a).Google Scholar
  190. Mast, T.E.: Binaural interaction and contralateral inhibition in dorsal cochlear nucleus of chinchilla. J. Neurophysiol. 33, 108–115 (1970b).PubMedGoogle Scholar
  191. McClelland, K.D., Brandt, J.F.: Pitch of frequency modulated sinusoids. J. acoust. Soc. Amer. 45, 1489–1498 (1969).Google Scholar
  192. Miller, J.P., Watson, C.S., Covell, W.P.: Deafening effects of noise on the cat. Acta Otolaryng. (Stockh.) Suppl. 176, 1–91 (1963).Google Scholar
  193. Moller, A.R.: Unit responses in the cochlear nucleus of the rat to pure tones. Acta physiol. scand. 75, 530–541 (1969a).PubMedGoogle Scholar
  194. Moller, A.R.: Unit responses in the cat cochlear nucleus to repetitive transient sounds. Acta physiol. scand. 75, 542–551 (1969b).PubMedGoogle Scholar
  195. Moller, A.R.: Unit responses in the cochlear nucleus of the rat to sweep tones. Acta physiol. scand. 76, 503–512 (1969c).PubMedGoogle Scholar
  196. Moller, A.R.: Unit responses in the cochlear nucleus of the rat to noise and tones. Acta physiol. scand. 78, 289–298 (1970a).PubMedGoogle Scholar
  197. Moller, A.R.: Studies of the damped oscillatory response of the auditory frequency analyser. Acta physiol. scand. 78, 299–314 (1970b).PubMedGoogle Scholar
  198. Moller, A.R.: Unit responses in the rat cochlear nucleus to tones of rapidly varying frequency and amplitude. Acta physiol. scand. 81, 540–556 (1971).PubMedGoogle Scholar
  199. Moller, A.R.: Coding of amplitude and frequency modulated sounds in the cochlear nucleus of the rat. Acta physiol. scand. 186, 223–238 (1972a).Google Scholar
  200. Moller, A.R.: Coding of sounds in lower levels of the auditory system. Quart. Rev. Biophys. 53, 59–155 (1972b).Google Scholar
  201. Molnar, C.E., Pfeiffer, R.R.: Interpretation of spontaneous spike discharge patterns in the cochlear nucleus. Proc. IEEE 56, 993–1004 (1968).Google Scholar
  202. Molnar, C.E., Loeffel, R.G., Pfeiffer, R.R.: Distortion compensating condenser earphone driver for physiological studies. J. acoust. Soc. Amer. 43, 1177–1178 (1968).Google Scholar
  203. Moushegian, G., Rupert, A., Galambos, R.: Microelectrode study of ventral cochlear nucleus of the cat. J. Neurophysiol. 25, 515–529 (1962).PubMedGoogle Scholar
  204. Moushegian, G., Rupert, R.L., Stillman, R.D., Weiss, I.P.: Inhibition in the auditory nerve. J. acoust. Soc. Amer. 50, 1558–1560(L), (1971).Google Scholar
  205. Moxon, E.C.: Auditory nerve responses to electric stimuli. M.I.T. Q.P.R. 90, 270–275 (1968).Google Scholar
  206. Nelson, P.G., Evans, E.F.: Relationship between dorsal and ventral cochlear nuclei. In: Physiology of the Auditory System, pp. 169–174. Baltimore: National Educational Consultants Inc. 1971.Google Scholar
  207. Nieder, P.: Addressed exponential delay line theory of cochlear organization. Nature 230, 255–257 (1971).PubMedGoogle Scholar
  208. Nieder, P., Nieder, I.: Antimasking effect of crossed olivocochlear bundle stimulation with loud clicks in guinea pig. Exp. Neurol. 28, 179–188 (1970).PubMedGoogle Scholar
  209. Nomoto, M., Suga, N., Katsuki, Y.: Discharge pattern and inhibition of primary auditory nerve fibres in the monkey. J. Neurophysiol. 27, 768–787 (1964).PubMedGoogle Scholar
  210. Osen, K.K.: Cytoarchitecture of the cochlear nuclei in the cat. J. comp. Neurol. 136, 453–483 (1969).PubMedGoogle Scholar
  211. Osen, K.K.: Course and termination of the primary afferents in the cochlear nuclei of the cat. Arch. ital. Biol. 108, 21–51 (1970).PubMedGoogle Scholar
  212. Papez, J.W.: Comparative Neurology (1929). Reprinted. New York: Hafner Publ. Co. 1967.Google Scholar
  213. Peake, W.T., Kiang, N.Y.-s.: Cochlear responses to condensation and rarefaction clicks. Biophys. J. 2, 23–34 (1962).PubMedGoogle Scholar
  214. Pfalz, R.K.J.: Centrifugal inhibition of afferent secondary neurons in the cochlear nucleus by sound. J. acoust. Soc. Amer. 34, 1472–1477 (1962).Google Scholar
  215. Pfeiffer, R.R.: Anteroventral cochlear nucleus: waveforms of extracellularly recorded spike potentials. Science 154, 667–668 (1966a).PubMedGoogle Scholar
  216. Pfeiffer, R.R.: Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp. Brain Res. 1, 220–235 (1966b).PubMedGoogle Scholar
  217. Pfeiffer, R.R.: A model for two-tone inhibition of single cochlear nerve fibres. J. acoust. Soc. Amer. 48, 1373–1378 (1970).Google Scholar
  218. Pfeiffer, R.R., Kiang, N.Y.-s.: Spike discharge patterns of spontaneously and continuously stimulated activity in the cochlear nucleus of anaesthetized cats. Biophys. J. 5, 301–316 (1965).PubMedGoogle Scholar
  219. Pfeiffer, R., Kim, D.O.: Response patterns of single cochlear nerve fibres to click stimuli: descriptions for cat. J. acoust. Soc. Amer. 52, 1669–1677 (1972).Google Scholar
  220. Pfeiffer, R.R., Kim, D.O.: Considerations of nonlinear response properties of single cochlear nerve fibers. In: Basic Mechanisms in Hearing, pp. 555–587, New York: Academic Press. 1973.Google Scholar
  221. Pfeiffer, R.R., Molnar, C.E.: Cochlear nerve fibre discharge patterns: relationship to the cochlear microphonic. Science 167, 1614–1616 (1970).PubMedGoogle Scholar
  222. Piddington, R.W.: Central control of auditory input in the goldfish. II. Evidence of action in the free-swimming animal. J. exp. Biol. 55, 585–610 (1971).PubMedGoogle Scholar
  223. Plomp, R.: Rate of decay of auditory sensation. J. acoust. Soc. Amer. 36, 277–282 (1964a).Google Scholar
  224. Plomp, R.: The ear as a frequency analyser. J. acoust. Soc. Amer. 36, 1628–1636 (1964b).Google Scholar
  225. Poljak, S.: The connections of the acoustic nerve. J. Anat. 60, 465–469 (1926).Google Scholar
  226. Portmann, M., Le Bert, G., Aran, J.-M.: Potentials cochléaires obtenus chez l’homme en dehors de toute intervention chirurgicale. Rev. Laryng. Bordeaux 88, 157–164 (1967).PubMedGoogle Scholar
  227. Portmann, M., Aran, J.-M., Lagourgue, P.: Testing for “recruitment” by electrocochleography: preliminary results. Ann. Otol St. Louis. 82, 36–43 (1973).Google Scholar
  228. Powell, T.P.S., Cowan, W.M.: An experimental study of the projection of the cochlea. J. Anat. (Lond.) 96, 269–284 (1962).Google Scholar
  229. Powell, T.P.S., Erulkar, S.D.: Transneuronal cell degeneration in the auditory relay nuclei of the cat. J. Anat. (Lond.) 96, 249–268 (1962).Google Scholar
  230. Price, G.R.: Correspondence between cochlear microphonic sensitivity and behavioural threshold in the cat. J. acoust. Soc. Amer. 49, 1899–1901 (1971).Google Scholar
  231. Pugh, J.E., Jr., Anderson, D.J., Burgio, P.A., Horwitz, M.R.: The origin of N2 of the cochlear whole-nerve action potential. J. acoust. Soc. Amer. 53, 325 (1973).Google Scholar
  232. Radionova, E.A.: Measuring the intensity of a brief sound signal at the first neuron level of the auditory system. Soviet Physics-Acoustics 8, 350–355 (1963).Google Scholar
  233. Radionova, E.A.: Reactions of neurons in cochlear nucleus to acoustic signals of varying duration. J. Higher Nervous Activity USSR 15, 739 (1965).Google Scholar
  234. Radionova, E.A.: Two types of neurons in the cat’s cochlear nuclei and their role in audition. In: Sensory Processes at the neuronal and behavioural levels, pp. 135–155. New York: Academic Press 1971.Google Scholar
  235. Radionova, E.A., Pokov, A.V.: Electrophysiological examination of neurons in cochlear nucleus of the cat. FASEB Trans. Suppl. 25, T231–235 (1965).Google Scholar
  236. Rainbolt, H., Small, A.M.: Mach bands in auditory masking: an attempted replication. J. acoust. Soc. Amer. 51, 567–574 (1972).Google Scholar
  237. Rasmussen, G.L.: Selective silver impregnation of synaptic endings. In: New Research Techniques of Neuroanatomy, pp. 27–39. Springfield, Ill.: Thomas 1957.Google Scholar
  238. Rasmussen, G.L.: Efferent fibres of the cochlear nerve and cochlear nucleus. In: Neural Mechanisms of the Auditory and Vestibular Systems, pp. 105–115. Springfield, Ill.: Thomas 1960.Google Scholar
  239. Rasmussen, G. L.: Anatomic relationships of the ascending and descending auditory systems. In: Neurological Aspects of Auditory and Vestibular Disorders, pp. 5–19. Springfield, Ill.: Thomas 1964.Google Scholar
  240. Rasmussen, G. L.: Efferent connections of the cochlear nucleus. In: Sensorineural Hearing Processes and Disorders, pp. 61–75. Boston, Mass: Little, Brown & Co. 1967.Google Scholar
  241. Ratliff, F.: Mach Bands, p. 41. San Francisco: Holden-Day 1965.Google Scholar
  242. Rhode, W.S.: Observations of the vibration of the basilar membrane in squirrel monkeys using the Mossbauer technique. J. acoust. Soc. Amer. 49, 1218–1231 (1971).Google Scholar
  243. Rhode, W.: An investigation of cochlear mechanics using the Mossbauer effect. In: Basic Mechanisms in Hearing, pp. 49–63. New York: Academic Press 1973.Google Scholar
  244. Robles, L., Rhode, W. S., Geislee, C.D.: Measurements of the transient response of the basilar membrane using the Mossbauer technique. J. acoust. Soc. Amer. 53, 292 (1973).Google Scholar
  245. Rodieck, W., Kiang, N.Y.-s., Gerstein, G.L.: Some quantitative methods for the study of spontaneous activity of single neurons. Biophys. J. 2, 351–368 (1962).PubMedGoogle Scholar
  246. Rose, J.E.: Organization of frequency sensitive neurons in the cochlear nucleus complex of the cat. In: Neural Mechanisms of the Auditory and Vestibular Systems, pp. 116–136. Springfield, Ill.: Thomas 1960.Google Scholar
  247. Rose, J.E.: Discharges of single fibres in the mammalion auditory nerve. In: Frequency Analysis and Periodicity Detection in Hearing, pp. 176–188. Leiden: Sijthoff 1970.Google Scholar
  248. Rose, J.E., Galambos, R., Hughes, J.R.: Microelectrode studies of the cochlear nuclei of the cat. Johns Hopkins Hosp. Bull. 104, 211–251 (1959).Google Scholar
  249. Rose, J.E., Brugge, J.F., Anderson, D.J., Hind, J.E.: Phase-locked response to low frequency tones in single auditory nerve fibres of the squirrel monkey. J. Neurophysiol. 30, 769–793 (1967).PubMedGoogle Scholar
  250. Rose, J.E., Brugge, J.F., Anderson, D.J., Hind, J.E.: Patterns of activity in single auditory nerve fibres of the squirrel monkey. In: Hearing Mechanisms in Vertebrates, pp. 144–157. London: Churchill 1968.Google Scholar
  251. Rose, J.E., Brugge, J.F., Anderson, D.J., Hind, J.F.: Some possible neural correlates of combination tones. J. Neurophysiol. 32, 402–423 (1969).PubMedGoogle Scholar
  252. Rose, J.E., Hind, J.E., Anderson, D. J., Brugge, J.F.: Some effects of stimulus intensity on response of auditory nerve fibres in the squirrel monkey. J. Neurophysiol. 34, 685–699 (1971).PubMedGoogle Scholar
  253. Rosenblith, W.A.: Electrical responses from the auditory nervous system. Ann. Otolaryng. (St. Louis) 63, 839–860 (1954).Google Scholar
  254. Rupert, A.L., Moushegian, G.: Neuronal responses of kangaroo rat ventral cochlear nucleus to low frequency tones. Exp. Neurol. 26, 84–102 (1970).PubMedGoogle Scholar
  255. Rupert, A., Moushegian, G., Galambos, R.: Unit responses to sound from auditory nerve of the cat. J. Neurophysiol. 26, 449–465 (1963).PubMedGoogle Scholar
  256. Sachs, M.B.: Stimulus-response relation for auditory nerve fibres: two-tone stimuli. J. acoust. Soc. Amer. 45, 1025–1036 (1969).Google Scholar
  257. Sachs, M.B., Kiang, N.Y.-s.: Two-tone inhibition in auditory nerve fibres. J. acoust. Soc. Amer. 43, 1120–1128 (1968).Google Scholar
  258. Sando, I.: The anatomical interrelationships of the cochlear nerve fibres. Acta Oto-laryng. (Stockh.) 59, 417–436 (1965).Google Scholar
  259. Scharf, B.: Fundamentals of auditory masking. Audiol. 10, 30–40 (1971).Google Scholar
  260. Scharf, B., Hellman, R. P.: Model of loudness summation applied to impaired ears. J. acoust. Soc. Amer. 40, 71–78 (1966).Google Scholar
  261. Seaton, W.H., Trahiotis, C.: Comparison of direct and indirect measures of critical bands of monaural chinchilla. J. acoust. Soc. Amer. 53, 376 (1973).Google Scholar
  262. Siebert, W.M.: Some implications of the stochastic behaviour of primary auditory neurones. Kybernetik 2, 206–215 (1965).PubMedGoogle Scholar
  263. Siebert, W.M.: Stimulus transformations in the peripheral auditory system. In: Recognizing Patterns, pp. 104–133. Cambridge: M.I.T. Press 1968.Google Scholar
  264. Siebekt, W.M.: Frequency discrimination in the auditory system: place or periodicity mechanisms ? Proc. IEEE 58, 723–730 (1970).Google Scholar
  265. Simmons, F.B., Linehan, J.A.: Observations on a single auditory nerve fibre over a six week period. J. Neurophysiol. 31, 799–805 (1968).PubMedGoogle Scholar
  266. Small, A.M., Jr.: Pure tone masking. J. acoust. Soc. Amer. 31, 1619–1625 (1959).Google Scholar
  267. Smith, C.A., Dempsey, E.W.: Electron microscopy of the organ of Corti. Amer. J. Anat. 100, 337 (1957).Google Scholar
  268. Smith, R.L., Zwislocki, J.J.: Responses of some neurones of the cochlear nucleus to tone intensity increments. J. acoust. Soc. Amer. 50, 1520–1525 (1971).Google Scholar
  269. Smoorenburg, G.F.: Audibility region of combination tones. J. acoust. Soc. Amer. 52, 603–614 (1972a).Google Scholar
  270. Smoorenburg, G.F.: Combination tones and their origin. J. acoust. Soc. Amer. 52, 615–632 (1972b).Google Scholar
  271. Sohmer, H., Feinmesser, M.: Cochlear potentials recorded from the external ear in man. Ann. Otolaryng. (St. Louis) 76, 427 (1967).Google Scholar
  272. Spoendlin, H.: The organization of the cochlear receptor. In: Fortsch. Hals-, Nas-., Ohren-heilk. 13, 1–227 (1966).Google Scholar
  273. Spoendlin, H.: Ultrastructure and peripheral innervation pattern of the receptor in relation to the first coding of the acoustic message. In: Hearing Mechanisms in Vertebrates, pp. 89–119. London: Churchill 1968.Google Scholar
  274. Spoendlin, H.: Structural basis of peripheral frequency analysis. In: Frequency Analysis and Periodicity Detection in Hearing, pp. 2–36. Leiden: Sijthoff 1970.Google Scholar
  275. Spoendlin, H.: Degeneration behaviour of cochlear nerve. Arch. Ohr.-, Nas.-, Kehlk.-Heilk. 200, 275–291 (1971).Google Scholar
  276. Spoendlin, H.: Innervation densities of the cochlea. Acta Otolaryng. (Stockh.) 73, 235–248 (1972).Google Scholar
  277. Spoor, A., Eggermont, J.J.: Action potentials of the cochlea. Masking, adaptation and recruitment. Audiol. 10, 340–352 (1971).Google Scholar
  278. Spreng, M., Keidel, W.D.: Separierung von Cerebroaudiogramm (CAG), Neuroaudiogramm (NAG) und Otoaudiogramm (OAG) in der objektiven Audiometrie. Arch. Ohr.-, Nas.-, Kehl.-Heilk. 189, 225 (1967).Google Scholar
  279. Starr, A.: Suppression of single unit activity in cochlear nucleus of the cat following sound stimulation. J. Neurophysiol. 28, 850–862 (1965).PubMedGoogle Scholar
  280. Starr, A., Britt, R.: Intracellular recordings from cat cochlear nucleus during tone stimulation. J. Neurophysiol. 33, 137–147 (1970).PubMedGoogle Scholar
  281. Starr, A., Hellerstein, D.: Distribution of frequency following responses in cat cochlear nucleus to sinusoidal acoustic signals. Brain Res. 33, 367–378 (1971).PubMedGoogle Scholar
  282. Starr, A., Wernick, J.S.: Olivocochlear bundle stimulation: effects on spontaneous and tone evoked activities of single units in cat cochlear nucleus. J. Neurophysiol. 31, 549–564 (1968).PubMedGoogle Scholar
  283. Steele, C.R.: A possibility for sub-tectorial membrane fluid motion. In: Basic Mechanisms in Hearing, pp. 69–90. New York: Academic Press 1973.Google Scholar
  284. Stopp, P.E., Whitfield, I.C.: Unit responses from the brainstem nuclei in the pigeon. J. Physiol. (Lond.) 158, 165–177 (1961).Google Scholar
  285. Stotler, W.A.: The projection of the cochlear nerve on the acoustic relay nuclei of the medulla. Anat. Rec. 103, 561 (1949).Google Scholar
  286. Stotler, W.A.: An experimental study of the cells and connections of the superior olivary complex of the cat. J. comp. Neurol. 98, 401–432 (1953).PubMedGoogle Scholar
  287. Suga, N.: Single unit activity in cochlear nucleus and inferior colliculus of echo-locating bats. J. Physiol. (Lond.) 172, 449–474 (1963).Google Scholar
  288. Suga, N.: Analysis of frequency-modulated sounds by auditory neurones of echo-locating bats. J. Physiol. (Lond.) 179, 26–53 (1965a).Google Scholar
  289. Suga, N.: Functional properties of auditory neurones in the cortex of echolocating bats. J. Physiol. 181, 671–700 (1965b).PubMedGoogle Scholar
  290. Tasaki, L.: Nerve impulses in individual auditory nerve fibres of guinea pig. J. Neurophysiol. 17, 97–122 (1954).PubMedGoogle Scholar
  291. Tasaki, I.: Hearing. Ann. Rev. Physiol. 19, 417–438 (1957).Google Scholar
  292. Taub, H.B., Raab, D.H.: Fluctuations of N1 amplitude in relation to click-intensity discrimination. J. acoust. Soc. Amer. 46, 969–978 (1969).Google Scholar
  293. Teas, D.C., Eldredge, D.H., Davis, H.: Cochlear responses to acoustic transients: an interpretation of whole-nerve action potentials. J. acoust. Soc. Amer. 34, 1438–1459 (1962).Google Scholar
  294. Teas, D.C., Konishi, T., Nielsen, D.W.: Electrophysiological studies on the spatial distribution of the crossed olivocochlear bundle along the guinea pig cochlea. J. acoust. Soc. Amer. 51, 1256–1264 (1972).Google Scholar
  295. Terhardt, E.: Über akustische Rauhigkeit und Schwankungsstärke. Acustica 20, 215–224 (1968).Google Scholar
  296. Terhardt, E.: Frequency analysis and periodicity detection in the sensations of roughness and periodicity pitch. In: Frequency Analysis and Periodicity Detection in Hearing. Leiden: Sijthoff 1970.Google Scholar
  297. Tonndorf, J.: Time/frequency analysis along the partition of cochlear models: a modified place concept. J. acoust. Soc. Amer. 34, 1337–1350 (1962).Google Scholar
  298. Trahiotis, C., Elliott, D.N.: Behavioural investigation of some possible effects of sectioning the crossed olivo-cochlear bundle. J. acoust. Soc. Amer. 47, 592–596 (1970).Google Scholar
  299. Viernstein, L.J., Grossman, R.G.: Neural discharge patterns in the transmission of sensory information. Symp. on Inform. Th. 4, 252–269 (1961).Google Scholar
  300. Walsh, B.T., Miller, J.B., Gacek, R.R., Kiang, N.Y.-s.: Spontaneous activity in the eight cranial nerve of the cat. Int. J. Neurosci. 3, 221–236 (1972).Google Scholar
  301. Warr, W.B.: Fiber degeneration following lesions in the anterior ventral cochlear nucleus of the cat. Exptl. Neurol. 14, 453–474 (1966).Google Scholar
  302. Warr, W.B.: Fiber degeneration following lesions in the postero-ventral cochlear nucleus in the cat. Anat. Rec. 157, 338 (1962).Google Scholar
  303. Watenabe, T.: Fundamental study of the neural mechanism in cats subserving the feature extraction process of complex sounds. Jap. J. Physiol. 22, 569–583 (1972).Google Scholar
  304. Watenabe, T., Ohgushi, K.: FM sensitive auditory neuron. Proc. Jap. Acad. 44, 968–973 (1968).Google Scholar
  305. Watenabe, T., Simada, Z.: Auditory temporal masking: an electrophysiological study of single neurons in the cat cochlear nucleus and inferior colliculus. Jap. J. Physiol. 21, 537–550 (1971).Google Scholar
  306. Watson, C.S.: Masking of tones by noise for the cat. J. acoust. Soc. Amer. 35, 167–172 (1963).Google Scholar
  307. Weiss, T.F.: A model of the peripheral auditory system. Kybernetik 3, 153–175 (1966).PubMedGoogle Scholar
  308. Wightman, F.L.: Pitch as auditory pattern recognition. In: Hearing Theory 1972, pp. 161–171. Eindhoven: IPO 1972.Google Scholar
  309. Whitfield, I.C.: The Auditory Pathway. London: Arnold 1967.Google Scholar
  310. Whitfield, I.C.: The functional organization of the auditory pathways. J. Sound Vib. 8, 108–117 (1968).Google Scholar
  311. Whitfield, I.C.: Central nervous processing in relation to spatio-temporal discrimination of auditory patterns. In: Frequency Analysis and Periodicity Detection in Hearing, pp. 136–147. Leiden: Sijthoff 1970.Google Scholar
  312. Wiederhold, M.L.: Variations in the effects of electric stimulation of the crossed olivocochlear bundle on cat single auditory-nerve fibre responses to tone bursts. J. acoust. Soc. Amer. 48, 966–977 (1970).Google Scholar
  313. Wiederhold, M.L., Kiang, N.Y.-s.: Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibres in the cat. J. acoust. Soc. Amer. 48, 950–965 (1970).Google Scholar
  314. Wiederhold, M. L., Peake, W. T.: Efferent inhibition of auditory-nerve responses: dependence on acoustic-stimulus parameters. J. acoust. Soc. Amer. 40, 1427–1430 (1966).Google Scholar
  315. Wiener, F.M., Pfeiffer, R.R., Backus, A.S.N.: On the sound pressure transformation by the head and auditory meatus of the cat. Acta oto-laryng. (Stockh.) 61, 255–269 (1965).Google Scholar
  316. Wilson, J. P.: Psychoacoustics of obstacle detection using ambient or self-generated noise. In: Les Systèmes Sonars Animaux, pp. 89–114, 1967.Google Scholar
  317. Wilson, J.P.: An auditory after-image. In: Frequency Analysis and Periodicity Detection in Hearing, pp. 303–315. Leiden: Sijthoff 1970.Google Scholar
  318. Wilson, J.P.: Psychoacoustical and neurophysiological aspects of auditory pattern recognition. In: The Neurosciences Third Study Program, pp. 147–153. Boston: M.I.T. Press 1974.Google Scholar
  319. Wilson, J.P., Evans, E.F.: Grating acuity of the ear: Psychophysical and neurophysiological measures of frequency resolving power. Proc. 7 th Internat. Congr. on Acoustics, Vol. 3, pp. 397–400. Budapest: Akademiai Kiado 1971.Google Scholar
  320. Wilson, J.P., Johnstone, J.R.: Capacitive probe measures of basilar membrane vibration. In: Hearing Theory, pp. 172–181. Eindhoven: IPO 1972.Google Scholar
  321. Wilson, J.P., Johnstone, J.R.: Basilar membrane correlates of the combination tone 2f1 — f2. Nature 241, 206–207 (1973).PubMedGoogle Scholar
  322. Yoshie, N.: Auditory nerve action potential responses to clicks in man. Laryngoscope 78, 198–215 (1968).PubMedGoogle Scholar
  323. Yoshie, N.: Clinical cochlear response audiometry by means of an average response computer: non-surgical technique and clinical use. Rev. Laryng. Suppl., 646–670 (1971).Google Scholar
  324. Yoshie, N., Ohashi, T., Suzuki, T.: Non-surgical recording of auditory nerve action potentials in man. Laryngoscope 77, 76 (1967).PubMedGoogle Scholar
  325. Zwicker, E.: Die Grenzen der Hörbarkeit der Amplitudenmodulation und der Frequenzmodulation eines Tones. Acustica 2, 125 (1952).Google Scholar
  326. Zwicker, E.: Die Verdeckung von Schmalbandgeräuschen durch Sinustöne. Acustica 4, 415 (1954).Google Scholar
  327. Zwicker, E.: Der ungewöhnliche Amplitudengang der nichtlinearen Verzerrungen des Ohres. Acustica 5, 67–74 (1955).Google Scholar
  328. Zwicker, E.: Masking and physiological excitation as consequences of the ear’s frequency analysis. In: Frequency Analysis and Periodicity Detection in Hearing, pp. 376–394. Leiden: Sijthoff 1970.Google Scholar
  329. Zwicker, E.: Introduction to round-table-discussion on “critical bands”. Proc. 7th Internat. Cong, on Acoustics, Vol. 1, pp. 189–192. Budapest: Akademiai Kiado 1971.Google Scholar
  330. Zwicker, E., Fastl, H.: On the development of the critical band. J. acoust. Soc. Amer. 52, 699–702 (1972).Google Scholar
  331. Zwicker, E., Flottorp, G., Stevens, S.S.: Critical bandwidth in loudness summation. J. acoust. Soc. Amer. 29, 548–557 (1957).Google Scholar
  332. Zwislocki, J.J.: Central masking and neural activity in the cochlear nucleus. Audiol. 10, 48–59 (1971).Google Scholar

Copyright information

© Springer-Verlag Berlin, · Heidelberg 1975

Authors and Affiliations

  • E. F. Evans
    • 1
  1. 1.KeeleGreat Britain

Personalised recommendations