Dielectric Breakdown of Cell Membranes

  • U. Zimmermann
  • G. Pilwat
  • F. Riemann

Abstract

A Coulter Counter is a measuring device for counting and sizing non-conducting particles suspended in a conducting medium. This instrument is based on the principle that the electrical resistance in a small orifice, across which a voltage is applied, will change when a suspension of non-conducting particles is sucked through it. The current or voltage pulses arising are, to a first approximation, proportional to the size of the particles (size = shape factor X volume); this means that after linear electronic amplification and subsequent pulse height analysis the size distribution of each population under investigation can be obtained. Using conventional Coulter Counters, however, the measured size distribution is generally strongly distorted (skewed) due to inhomogeneities in the electric field strength in and near of the orifice; the pulse height becomes dependent on the path and orientation of each particle in the orifice (GROVER et al., 1969a, b, 1972; THOM, 1972). As described previously (ZIMMERMANN et al., 1973) the distortion arising from the inhomogeneous field can be eliminated by hydrodynamic focusing of the suspension flow. Then the particles travel on the same pathway, parallelly oriented, along the central axis through the orifice, and a true measurement of the real size distribution of the population can be obtained.

Keywords

Permeability Albumin Platinum Benzyl Suffix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ALLEN, R.S., MASON, S.G., Proc. Roy. Soc. Ser. A. Math. Phys. Sci. 267, 45–76 (1962)CrossRefGoogle Scholar
  2. BERNHARDT, J., PAULY, H., Biophysik 10, 89–98 (1973)PubMedCrossRefGoogle Scholar
  3. BODEMANN, H., PASSOW, H., J. Membrane Biol. 8, 1–26 (1972)CrossRefGoogle Scholar
  4. COSTER, H.G.L., Biophys. J. 5, 669–686 (1965)PubMedCrossRefGoogle Scholar
  5. COSTER, H.G.L., Aust. J. Biol. Sci. 22, 365–374 (1969)Google Scholar
  6. COSTER, H.G.L., Biophys. J. 13, 1119–1123 (1973)PubMedCrossRefGoogle Scholar
  7. DEUTICKE, B., GERLACH, E., Klinische Wochenschrift 19, 977–983 (1967)CrossRefGoogle Scholar
  8. GROVER, N.B., NAAMAN, J., BEN-SASSON, S., DOLJANSKI, E., Biophys. J. 9, 1398–1414 (1969a)PubMedCrossRefGoogle Scholar
  9. GROVER, N.B., NAAMAN, J., BEN-SASSON, S., DOLJANSKI, F., NADAV, F., Biophys. J. 9, 1415–1425 (1969b)PubMedCrossRefGoogle Scholar
  10. GROVER, N.B., NAAMAN, J., BEN-SASSON, S., DOLJANSKI, F., Biophys. J. 12, 1099–1117 (1972)PubMedCrossRefGoogle Scholar
  11. HUTNER, S.H., PROVASOLI, L., FILFUS, J., Ann. N.Y. Acad. Sci. 56, 852–862 (1953)PubMedCrossRefGoogle Scholar
  12. KAUSS, H., Z. Pflanzenphysiol. 56, 453–465 (1967)Google Scholar
  13. METCALFE, J.C., in Permeability and Function of Biological Membranes (eds. L. Bolis, A. Katchalsky, R.D. Keynes, W.R. Loewenstein, B.A. Pethica), pp. 222–234, North-Holland Publishing Company, Amsterdam and London 1970Google Scholar
  14. NEUMANN, E., ROSENHECK, K., J. Membrane Biol. 10, 279–290 (1972)CrossRefGoogle Scholar
  15. SCHWARZ, G., J. Phys. Chem. 66, 2636–2642 (1962)CrossRefGoogle Scholar
  16. SEEIVAN, P., in Permeability and Function of Biological Membranes (eds. L. Bolis, A. Katachalsky, R.D. Keynes, W.R. Loewenstein, B.A. Pethica), pp. 40–56, North-Holland Publishing Company, Amsterdam and London 1970Google Scholar
  17. THOM, R., AEG-Telefunken publication No. N1/EP/V (1972)Google Scholar
  18. ZIMMERMANN, U., PILWAT, G., RIEMANN, F., Biophys. J., in press (1974a)Google Scholar
  19. ZIMMERMANN, U., PILWAT, G., RIEMANN, F., Z. Naturforsch. 29c, 304–305 (1974b)Google Scholar
  20. ZIMMERMANN, U., SCHULZ, J., PILWAT, G., Biophys. J. 13, 1005–1013 (1973)PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • U. Zimmermann
  • G. Pilwat
  • F. Riemann

There are no affiliations available

Personalised recommendations