Alterations of Body Fluids and Electrolyte Metabolism

  • Julien L. Van Lancker

Abstract

The body fluids do not constitute a homogeneous solution of electrolytes. Body fluids are classically categorized as intracellular and extracellular. The extracellular compartment is further divided into an intra- and extravascular compartment. The intravascular fluid constitutes the blood plasma, but even blood plasma does not form a homogeneous compartment. The composition of plasma varies with anatomical location and physiological conditions. The electrolyte compositions of plasma obtained from venous and arterial blood differ, and there are diurnal variations in the electrolyte concentrations of the plasma.

Keywords

Folic Acid NADH Leucine Apatite Mannitol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dick, D.A.T.: Cell water. London: Butterworth and Col., Ltd. 1966Google Scholar
  2. 2.
    Potts, W.T.W.: Osmotic and ionic regulation. Annu. Rev. Physiol. 30, 73–104 (1968)PubMedGoogle Scholar
  3. 3.
    Gottschalk, C.W.: Osmotic concentrations and dilution of the urine. Amer. J. Med. 36, 670–685 (1964)PubMedGoogle Scholar
  4. 4.
    Barker, J.N.: The renal countercurrent concentrating mechanism. Med. Clin. N. Amer. 47, 873–886 (1963)PubMedGoogle Scholar
  5. 5.
    Barajas, L.: Renin secretion: An anatomical basis for tubular control. Science 172, 485–487 (1971)PubMedGoogle Scholar
  6. 6.
    Kotyk, A., Janacek, K.: Cell membrane transport; principles and techniques. In: The kidney, p. 433–444. New York: Plenum Press 1970Google Scholar
  7. 7.
    Ullrich, K.J., Marsh, D.J.: Kidney, water and electrolyte metabolism. Annu. Rev. Physiol. 25, 91–142 (1963)PubMedGoogle Scholar
  8. 8.
    Bland, J.H.: Introductory remarks: Some usual, unusual properties of liquids in general and water in particular. Fed. Proc. 25, 951–953 (1966)PubMedGoogle Scholar
  9. 9.
    Scatchard, G.: Water: a review. Fed. Proc. 25, 954–957 (1966)PubMedGoogle Scholar
  10. 10.
    Berendsen, H.J.C., Migchelsen, C.: Hydration structure of collagen and influence of salts. Fed. Proc. 25, 998–1002 (1966)PubMedGoogle Scholar
  11. 11.
    Berendsen, H.J.C.: Water structure in biological systems. Fed. Proc. 25, 971–976 (1966)PubMedGoogle Scholar
  12. 12.
    Catchpool, J.F.: Effect of anesthetic agents on water structure. Fed. Proc. 25, 979–985 (1966)PubMedGoogle Scholar
  13. 13.
    Kavanau, J.L.: Remarks on water structure. Fed. Proc. 25, 977–978 (1966)PubMedGoogle Scholar
  14. 14.
    Klotz, I.M.: Water. In: Horizons in biochemistry (Kasha, M., and Pullman, B., eds.), p. 523–550. New York: Academic Press 1962Google Scholar
  15. 15.
    Skou, J.C.: The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim. biophys. Acta (Amst.) 23, 394–401 (1957)Google Scholar
  16. 16.
    Martinez-Maldonado, M., Allen, J.C., Eknoyan, G., Suki, W., Schwartz, A.: Renal concentrating mechanism: Possible role for sodium-potassium activated adenosine triphosphatase. Science 165, 807–808 (1969)PubMedGoogle Scholar
  17. 17.
    Katz, A.I., Epstein, F.H.: Physiologic role of sodium-potassium-activated adenosine triphosphatase in the transport of cations across biologic membranes. New Engl. J. Med. 278, 253–261 (1968)PubMedGoogle Scholar
  18. 18.
    Bransome, E.D., Jr.: Adrenal cortex. Annu. Rev. Physiol. 30, 171–212 (1968)PubMedGoogle Scholar
  19. 19.
    Fanestil, D.D.: Mechanism of action of aldosterone. Annu. Rev. Med. 20, 223–232 (1969)PubMedGoogle Scholar
  20. 20.
    Edelman, I.S., Fimognari, G.M.: On the biochemical mechanism of action of aldosterone. Recent Progr. Hormone Res. 24, 1–44 (1968)PubMedGoogle Scholar
  21. 21.
    Ehrlich, E.N.: Aldosterone, the adrenal cortex, and hypertension. Annu. Rev. Med. 19, 373–398 (1968)PubMedGoogle Scholar
  22. 22.
    Forster, R.P.: Kidney, water and electrolytes. Annu. Rev. Physiol. 27, 183–232 (1965)PubMedGoogle Scholar
  23. 23.
    Hartroft, P.M.: The juxtaglomerular complex. Annu. Rev. Med. 17, 113–122 (1966)PubMedGoogle Scholar
  24. 24.
    Barajas, L., Latta, H.: Structure of the juxtaglomerular apparatus. Circulat. Res. 21, Suppl. II, 15–28 (1967)PubMedGoogle Scholar
  25. 25.
    Laragh, J.H.: Renin, angiotensin, aldosterone, and hormonal regulation of arterial pressure and salt balance; introductory remarks. Fed. Proc. 26, 39–41 (1967)PubMedGoogle Scholar
  26. 26.
    Tobian, L.: Renin release and its role in renal function and the control of salt balance and arterial pressure. Fed. Proc. 26, 48–54 (1967)PubMedGoogle Scholar
  27. 27.
    Vander, A.J.: Control of renin release. Physiol. Rev. 47, 359–382 (1967)PubMedGoogle Scholar
  28. 28.
    Mills, I.H.: Renal regulation of sodium excretion. Annu. Rev. Med. 21, 75–98 (1970)PubMedGoogle Scholar
  29. 29.
    Gill, J.R., Bartter, F.C.: Adrenergic nervous system in sodium metabolism. II. Effects of guanethidine on the renal response to sodium deprivation in normal man. New Engl. J. Med. 275, 1466–1471 (1966)PubMedGoogle Scholar
  30. 30.
    Paglia, D.E., Holland, P., Baughan, M.A., Valentine, W.N.: Occurrence of defective hexosephosphate isomerization in human erythrocytes and leukocytes. New Engl. J. Med. 280, 66–71 (1969)PubMedGoogle Scholar
  31. 31.
    Lee, M.R.: Renin-secreting kidney tumours, a rare but remediable cause of serious hypertension. Lancet 1971II, 254–255Google Scholar
  32. 32.
    Knox, F.G.: Role of the proximal tubule in the regulation of urinary sodium excretion. Mayo Clin. Proc. 48, 565–573 (1973)PubMedGoogle Scholar
  33. 33.
    Kaplan, N.M.: Secondary aldosteronism: With observations on the definition of hypokalemia. Amer. J. clin. Path. 54, 316–323 (1970)Google Scholar
  34. 34.
    Engel, A.G.: Evolution and content of vacuoles in primary hypokalemic periodic paralysis. Mayo Clin. Proc. 45, 774–814 (1970)PubMedGoogle Scholar
  35. 35.
    Zarkowsky, H.S., Oski, F.A., Sha’afi, R., Shohet, S.B., Nathan, D.G.: Congenital hemolytic anemia with high sodium, low potassium red cells. I. Studies of membrane permeability. New Engl. J. Med. 278, 573–581 (1968)PubMedGoogle Scholar
  36. 36.
    Wakim, K.G.: Predominance of hyponatremia over hypo-osmolarity in simulation of the dialysis disequilibrium syndrome. Mayo Clin. Proc. 44, 433–460 (1969)PubMedGoogle Scholar
  37. 37.
    Kernan, R.P.: Cell K. London: Butterworth & Co., Ltd. 1965Google Scholar
  38. 38.
    Josephson, B.: Chemistry and therapy of electrolyte disorders. In: Potassium metabolism, p. 51–67. Springfield, Ill.: Charles C. Thomas Publisher 1960Google Scholar
  39. 39.
    Diamond, J.M., Wright, E.M.: Biological membranes: the physical basis of ion and non-electrolyte selectivity. Annu. Rev. Physiol. 31, 581–646 (1969)PubMedGoogle Scholar
  40. 40.
    Bates, R.G.: Acids, bases and buffers. Ann. N.Y. Acad. Sci. 133, 25–33 (1966)PubMedGoogle Scholar
  41. 41.
    Siggaard-Andersen, O.: Titratable acid or base of body fluids. Ann. N.Y. Acad. Sci. 133, 41–58 (1966)PubMedGoogle Scholar
  42. 42.
    Astrup, P., Engle, K., Jorgensen, K., Siggaard-Andersen, O.: Definitions and terminology in blood acid-base chemistry. Ann. N.Y. Acad. Sci. 133, 59–65 (1966)PubMedGoogle Scholar
  43. 43.
    Butler, T.C., Waddell, W.J., Poole, D.T.: The pH of intracellular water. Ann. N.Y. Acad. Sci. 133, 73–77 (1966)PubMedGoogle Scholar
  44. 44.
    Elkinton, J.R.: Acid-base disturbances in renal disease. Ann. N.Y. Acad. Sci. 133, 195–209 (1966)PubMedGoogle Scholar
  45. 45.
    Bittar, E.E.: Cell pH. London: Butterworth & Co., Ltd. 1963Google Scholar
  46. 46.
    Lotspeich, W.D.: Metabolic aspects of acid-base change. Science 155, 1066–1075 (1967)PubMedGoogle Scholar
  47. 47.
    Maren, T.H.: Carbonic anhydrase: Chemistry, physiology and inhibition. Physiol. Rev. 47, 595–781 (1967)PubMedGoogle Scholar
  48. 48.
    Enns, T.: Facilitation by carbonic anhydrase of carbon dioxide transport. Science 155, 44–47 (1967)PubMedGoogle Scholar
  49. 49.
    Giebisch, G.: Coupled ion and fluid transport in the kidney. New Engl. J.Med. 287, 913–919 (1972)PubMedGoogle Scholar
  50. 50.
    Schwartz, W.B., van Ypersele de Strihou, Kassirer, J.P.: Role of anions in metabolic alkalosis and potassium deficiency. New Engl. J. Med. 279, 630–639 (1968)PubMedGoogle Scholar
  51. 51.
    Redgate, E.S.: Hypothalamic influence on respiration. Ann. N.Y. Acad. Sci. 109, 606–618 (1963)PubMedGoogle Scholar
  52. 52.
    Gill, J.R., Jr.: Edema. Annu. Rev. Med. 21, 269–280 (1970)PubMedGoogle Scholar
  53. 53.
    Robin, E.D., Cross, C.E., Zelis, R.: Pulmonary edema. Part II. New Engl. J. Med. 288, 292–304 (1973)PubMedGoogle Scholar
  54. 54.
    Johnston, C.I., Davis, J.O., Howards, S.S., Wright, F.S.: Cross-circulation experiments on the mechanism of the natriuresis during saline loading in the dog. Circulat. Res. 20, 1–10 (1967)PubMedGoogle Scholar
  55. 55.
    Urquhart, J., Davis, J.O., Higgins, T.J., Jr.: Stimulation of spontaneous secondary hyperaldosteronism by intravenous infusion of angiotensin II in dogs with an arteriovenous fistula. J. clin. Invest. 43, 1355–1366 (1964)PubMedGoogle Scholar
  56. 56.
    Davis, J.: The physiology of congestive heart failure. In: Handbook of physiology: Circulation (Hamilton, W.F., and Dow, P., eds.), p. 2071–2122. Washington, D.C.: Amer. Physiol. Soc. 1965Google Scholar
  57. 57.
    Davis, J.O.: The mechanisms of salt and water retention in cardiac failure. Hosp. Prac. 5, 63–76 (1970)Google Scholar
  58. 58.
    Thorn, G.W.: Approach to the patient with “idiopathic edema” or “periodic swelling.” J. Amer. med. Ass. 206, 333–338 (1968)Google Scholar
  59. 59.
    Barnes, F.W., Jr., Schoenheimer, R.: On biological synthesis of purines and pyrimidines. J. biol. Chem. 151, 123–139 (1943)Google Scholar
  60. 60.
    Krebs, H.A., Henseleit, K.: Untersuchungen über die Harnstoffbildung im Tierkörper. Klin. Wschr. 11, 757–759 (1932)Google Scholar
  61. 61.
    Rubin, H.: The behavior of cells before and after virus-induced malignant transformation. Harvey Lect. Series 61, 118–143 (1965–66)Google Scholar
  62. 62.
    Berger, R., Broyer, M.: Anomalies héréditaires du cycle de l’urée. Presse méd. 76, 1183–1184 (1968)PubMedGoogle Scholar
  63. 63.
    Perkoff, G.T., Thomas, C.L., Newton, J.D., Sellman, J.C., Tyler, F.H.: Mechanism of impaired glucose tolerance in uremia and experimental hyperazotemia. Diabetes 7, 375–383 (1958)PubMedGoogle Scholar
  64. 64.
    Merrill, J.P., Hampers, C.L.: Uremia. I. New Engl. J. Med. 282, 953–961 (1970)PubMedGoogle Scholar
  65. 65.
    Hampers, C.L., Soeldner, J.S., Doak, P.B., Merrill, J.P.: Effect of chronic renal failure and hemodialysis on carbohydrate metabolism. J. clin. Invest. 45, 1719–1731 (1966)PubMedGoogle Scholar
  66. 66.
    Herschman, J.M., Givens, J.R., Cassidy, C.E., Astwood, E.B.: Long-term outcome of hyperthyroidism treated with antithyroid drugs. J. clin. Endocr. 26, 803–807 (1966)Google Scholar
  67. 67.
    Renkin, E.M., Robinson, R.R.: Glomerular filtration. New Engl. J. Med. 290, 785–792 (1974)PubMedGoogle Scholar
  68. 68.
    Wright, F.S.: Intrarenal regulation of glomerular filtration rate. New Engl. J. Med. 291, 135–141 (1974)PubMedGoogle Scholar
  69. 69.
    Morel, F., de Rouffignac, C.: Kidney. In: Annual review of physiology (Comroe, J.H., Jr., Edelman, I.S., and Sonnenschein, R.R., eds.), vol. 35, p. 17–54. Palo Alto, Calif.: Annual Reviews Inc. 1973Google Scholar
  70. 70.
    Dahl, J.L., Hokin, L.E.: The sodium-potassium adenosinetriphosphatase. In: Annual review of biochemistry (Snell, E.E., Boyer, P.D., Meister, A., and Richardson, C.C., eds.), vol. 43, p. 327–356. Palo Alto, Calif.: Annual Reviews Inc. 1974Google Scholar
  71. 71.
    Baker, P.F.: The sodium pump in animal tissues and its role in the control of cellular metabolism and function. In: Metabolic pathways (Hokin, L.E., ed.), third ed., vol. VI: Metabolic transport, p. 243–268. New York: Academic Press 1972Google Scholar
  72. 72.
    Caldwell, P.C.: Membranes and ion transport (Bittar, E.E., ed.), vol. I, p. 433. New York: Wiley-Interscience 1970Google Scholar
  73. 73.
    Lewy, P.R., Quintanilla, A., Levin, N.W., Kessler, R.H.: Renal energy metabolism and sodium reabsorption. In: Annual review of medicine (Creger, W.P., Coggins, C.H., and Hancock, E.W., eds.), vol. 24, p. 365–384. Palo Alto, Calif.: Annual Reviews Inc. 1973Google Scholar
  74. 74.
    Oparil, S., Haber, E.: The renin-angiotensin system, I. New Engl. J. Med. 291, 389–401 (1974)PubMedGoogle Scholar
  75. 75.
    Peart, W.S.: Renin-angiotensin system. New Engl. J. Med. 292, 302–306 (1975)PubMedGoogle Scholar
  76. 76.
    Conn, J.W.: Primary aldosteronism and primary reninism. Hosp. Pract. 9, 131–140 (1974)Google Scholar
  77. 77.
    Eddy, R.L., Sanchez, S.A.: Renin-secreting renal neoplasm and hypertension with hypokalemia. Ann. intern. Med. 75, 725–729 (1971)PubMedGoogle Scholar
  78. 78.
    Lin, K-T D., Deutsch, H.F.: Human carbonic anhydrases. XII. The complete primary structure of the Cisozyme. J. biol. Chem. 249, 2329–2337 (1974)PubMedGoogle Scholar
  79. 79.
    Felig, P., Wahren, J.: Protein turnover and amino acid metabolism in the regulation of gluconeogenesis. Fed. Proc. 33, 1092–1097 (1974)PubMedGoogle Scholar
  80. 80.
    Orrenius, S., Ericsson, J.L.E.: Enzyme-membrane relationship in phenobarbital induction of synthesis of drug-metabolizing enzyme system and proliferation of endoplasmic membranes. J. Cell Biol. 28, 181–198 (1966)PubMedGoogle Scholar
  81. 81.
    Svoboda, D.J., Reddy, J.K.: Some biologic properties of microbodies (peroxisomes). In: Pathobiology annual (Ioachim, H.L., ed.), vol.4, p. 1–32. New Yorl: Appleton-Century-Crofts 1974Google Scholar
  82. 82.
    Bricker, N.S.: Adaptations in chronic uremia: Pathophysiologic “tradeoffs”. Hosp. Pract. 9, 119–126 (1974)Google Scholar
  83. 83.
    Kelch, R.P., Kaplan, S.L., Biglieri, E.G., Daniels, G.H.: Hereditary adrenocortical unresponsiveness to adrenocorticotropic hormone. J. Pediat. 81, 726–736 (1972)PubMedGoogle Scholar
  84. 84.
    Askari, A. (ed.): Properties and functions of (Na++K+)-activated adenosinetriphosphatase. N.Y. Acad. Sci. 242, 1–741 (1974)Google Scholar
  85. 85.
    Oshima, G., Gecse, A., Erdos, E.G.: Angiotensin I-converting enzyme of the kidney cortex. Biochim. biophys. Acta (Amst.) 350, 26–37 (1974)Google Scholar
  86. 86.
    Murakami, K., Inagami, T.: Isolation of pure and stable renin from hog kidney. Biochem. biophys. Res. Commun. 62, 757–763 (1975)PubMedGoogle Scholar
  87. 87.
    Lonsdale, K.: Human stones. Science 159, 1199–1207 (1968)PubMedGoogle Scholar
  88. 88.
    Lonsdale, K.: Human stones. Sci. Amer. 219, 104–111 (1968)PubMedGoogle Scholar
  89. 89.
    Williams, H.E.: Nephrolithiasis. New Engl. J. Med. 290, 33–38 (1974)PubMedGoogle Scholar
  90. 90.
    Boyce, W.H., King, J.S., Jr.: Present concepts concerning the origin of matrix and stones. Ann. N.Y. Acad. Sci. 104, 563–578 (1963)PubMedGoogle Scholar
  91. 91.
    King, J.S., Jr., Boyce, W.H.: Immunological studies on serum and urinary proteins in urolith matrix in man, II. Metabolic aspects of urolithiasis in man and animals. Ann. N.Y. Acad. Sci. 104, 579–591 (1963)Google Scholar
  92. 92.
    Keeler, R.F.: Silicon metabolism and silicon-protein matrix interrelationship in bovine urolithiasis. Ann. N.Y. Acad. Sci. 104, 592–611 (1963)PubMedGoogle Scholar
  93. 93.
    Kritchevsky, D., Nair, P.P.: Chemistry of the bile acids. In: The bile acids (Nair, P.P., and Kritchevsky, D., eds.), vol. 1, p. 1–10. New York: Plenum Press 1971Google Scholar
  94. 94.
    Danielsson, H.: Mechanisms of bile acid biosynthesis. In: The bile acids (Nair, P.P., and Kritchevsky, D., eds.), vol. 2, p. 1–32. New York: Plenum Press 1973Google Scholar
  95. 95.
    Miettinen, T.A.: Clinocal implications of bile acid metabolism in man. In: The bile acids (Nair, P.P., and Kritchevsky, D., eds.), vol. 2, p. 191–247. New York: Plenum Press 1973Google Scholar
  96. 96.
    Bekersky, I., Mosbach, E.H.: Effects of hormones on bile acid metabolism. In: The bile acids (Nair, P.P., and Kritchevsky, D., eds.), vol. 2, p. 249–257. New York: Plenum Press 1973Google Scholar
  97. 97.
    Lack, L., Weiner, I.M.: Bile salt transport systems. In: The bile acids (Nair, P.P., and Kritchevsky, D., eds.), vol. 2, p. 33–54. New York: Plenum Press 1973Google Scholar
  98. 98.
    Carey, J.B., Jr.: Bile salt metabolism in man. In: The bile acids (Nair, P.P., and Kritchevsky, D., eds.), vol. 2, p. 55–82. New York: Plenum Press 1973Google Scholar
  99. 99.
    Palmer, R.H.: Experimental cholelithiasis. In: The bile acids (Nair, P.P., and Kritchevsky, D., eds.), vol. 2, p. 153–190. New York: Plenum Press 1973Google Scholar
  100. 100.
    Javitt, N.B., McSherry, C.K.: Pathogenesis of cholesterol gallstones. Hosp. Prac. 8, 39–48 (1973)Google Scholar
  101. 101.
    Grundy, S.M.: Cholesterol—Bile acid interactions in gallstone pathogenesis. Hosp. Prac. 8, 57–65 (1973)Google Scholar
  102. 102.
    Evans, D.F., Cussler, E.L.: Physicochemical considerations in gallstone pathogenesis. Hosp. Prac. 9, 133–140 (1974)Google Scholar
  103. 103.
    Gunn, A., Keddie, N.: Some clinical observations on patients with gallstones. Lancet 1972II, 239–241Google Scholar
  104. 104.
    King, J.E., Schoenfield, L.J.: Lithocholic acid, cholestasis, and liver disease. Mayo Clin. Proc. 47, 725–730 (1972)PubMedGoogle Scholar
  105. 105.
    Tompkins, R.K., King, W., III.: Investigations of the enterobiliary metabolism of lecithin. Surgery 75, 243–252 (1974)PubMedGoogle Scholar
  106. 106.
    Grundy, S.M., Metzger, A.L., Adler, R.D.: Mechanisms of lithogenic bile formation in American Indian women with cholesterol gallstones. J. clin. Invest. 51, 3026–3043 (1972)PubMedGoogle Scholar
  107. 107.
    Smallwood, R.A., Jablonski, P., Watts, J. McK.: Intermittent secretion of abnormal bile in patients with cholesterol gall stones. Brit. med. J. 4, 263–266 (1972)PubMedGoogle Scholar
  108. 108.
    Simmons, F., Ross, A.P.J., Bouchier, I.A.D.: Alterations in hepatic bile composition after cholecystectomy. Gastroenterology 63, 466–471 (1972)PubMedGoogle Scholar
  109. 109.
    Popper, H., Schaffner, F.: Pathophysiology of cholestasis. Hum. Path. 1, 1–24 (1970)PubMedGoogle Scholar
  110. 110.
    Greim, H., Czygan, P., Popper, H.: Mechanism of necrosis induced by hepatotoxic bile acids. In: IV. Workshop on experimental liver injury. “Pathogenesis and mechanisms of liver cell necrosis”, Freiburg, November 9 and 10, 1974 (Abstract)Google Scholar
  111. 111.
    Shaffer, E.A., Braasch, J.W., Small, D.M.: Bile composition at and after surgery in normal persons and patients with gallstones. Influence of cholecystectomy. New Engl. J. Med. 287, 1317–1322 (1972)PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1976

Authors and Affiliations

  • Julien L. Van Lancker
    • 1
  1. 1.Department of PathologyU.C.L.A. School of MedicineLos AngelesUSA

Personalised recommendations