Skip to main content

Normal Development to Metamorphosis

  • Chapter
The Sea Urchin Embryo

Abstract

The sea-urchin egg completes reduction division within the ovary (Fig. 7.1 [1–2]). The unfertilized egg is a spherical cell about 90μm in diameter, surrounded by a transparent jelly coat about 30μm thick. The refractive index of the jelly coat is the same as that of seawater, making it invisible by ordinary microscope. In a suspension of India ink, however, it remains transparent because the ink particles do not penetrate it. It is easily stained with vital stains such as Janus green. Spermatozoa pass through the jelly coat at any point and enter the egg surface wherever they happen to reach it. The jelly is composed of polysaccharide and has a strong agglutinating effect on sperm, but its role in fertilization has not been fully explained. Even when the jelly coat is removed by seawater acidified at pH 5, fertilization and egg development proceed normally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • AGRELL, I., 1954. A mitotic gradient in the sea urchin embryo during gastrulation. Ark. Zool. 6, 213–217.

    Google Scholar 

  • AUCLAIR, W., SIEGEL, B.W., 1966. Cilia regeneration in the sea urchin embryo: evidence for a pool of ciliary proteins. Science 154, 913–915.

    PubMed  CAS  Google Scholar 

  • BALINSKY, B.I., 1959. An electron microscopic investigation of the mechanisms of adhesion of the cells in sea urchin blastula and gastrula. Exp. Cell Res. 16, 429–433.

    PubMed  CAS  Google Scholar 

  • BOVERI, T., 1901a. Die Polarität von Oocyte, Ei und Larve des Strongylocentrotus lividus. Zool. Jahrb. Abt. Anat. Ont. 14, 630–653.

    Google Scholar 

  • BOVERI, T., 1901b. Über die Polarität des Seeigeleies. Verh. Phys.-med. Ges. Würzburg 34, 145–176.

    Google Scholar 

  • CZIHAK, G., 1960. Untersuchungen über die Coelomanlagen und die Metamorphose des Pluteus von Psammechinus miliaris (GMELIN). Zool. Jb. Anat. 78 235–279.

    Google Scholar 

  • CZIHAK, G., 1960. Pseudoradiärsymmetrische Seeigelplutei. Roux’ Arch. Entwicklungsmech. 152 593–601.

    Google Scholar 

  • CZIHAK, G., 1962a. Entwicklungsphysiologie der Echinodermen. Fortschr. Zool. 14 237–267.

    Google Scholar 

  • CZIHAK, G., 1962b. Entwicklungsphysiologische Untersuchungen an Echiniden. (Topochemie der Blastula und Gastrula, Entwicklung der Bilateral- und der Coelomdivertikel). Roux’ Arch. Entwicklungsmech. 154, 29–211.

    Google Scholar 

  • DAN, K., 1952. Cyto-embryological studies of sea urchins. II. Blastula stage. Biol. Bull. 102, 74–89.

    Google Scholar 

  • DAN, K., 1954a. Further study on the formation of the “new membrane” in the eggs of the sea urchin, Hemicentrotus (Strongylocentrotus) pulcherrimus. Embryologia 2 99–114.

    Google Scholar 

  • DAN, K., 1954b. The cortical movement in Arbacia punctulata eggs through cleavage cycles. Embryologia 2, 115–122.

    Google Scholar 

  • DAN, K., 1957. Invertebrate Embryology, 199–212. Tokyo: Bai Fu Kan Press.

    Google Scholar 

  • DAN, K., 1960. Cyto-embryology of echinoderms and amphibia. Inter. Rev. Cytol. 9, 321–367.

    CAS  Google Scholar 

  • DAN, K., Dan, J.C., 1940. Behavior of the cell surface during cleavage III. On the formation of new surface in the eggs of Strongylocentrotus pulcherrimus. Biol. Bull. 78, 486–501.

    Google Scholar 

  • DAN, K., Dan, J.C., 1947. Behavior of the cell surface during cleavage VII. On the division mechanism of cells with excentric nuclei. Biol. Bull. 93, 139–162.

    PubMed  CAS  Google Scholar 

  • DAN, K., ONO, T., 1952. Cyto-embryological studies of sea urchins. I. The means of fixation of the mutual positions among the blastomeres of sea urchin larvae. Biol. Bull. 102, 58–73.

    Google Scholar 

  • DAN, K., NAKAJIMA, T., 1956. On the morphology of the mitotic apparatus isolated from Echinoderm eggs. Embryologia 3, 187–200.

    Google Scholar 

  • DAN, K., OKAZAKI, K., 1956. Cyto-embryological studies of sea urchins. III. Role of the secondary mesenchyme cells in the formation of the primitive gut in sea urchin larvae. Biol. Bull. 110, 29–42.

    Google Scholar 

  • DRIESCH, M., 1896. Die taktische Reizbarkeit der Mesenchymzellen von Echinus microtuberculatus. Arch. Entwicklungsmech. 3, 362–380.

    Google Scholar 

  • ENDO, Y., 1954. Relation of sperm entrance point and the first cleavage plane to polarity in sea urchin eggs. Zool. Mag. 63, 164–165.

    Google Scholar 

  • ENDO, Y., 1961. Changes in the cortical layer of sea urchin eggs at fertilization as studied with the electron microscope. Exp. Cell Res. 25, 383–397.

    PubMed  CAS  Google Scholar 

  • ENDO, Y., 1966. Development and Differentiation, 1–61. Tokyo: Iwanami Shoten.

    Google Scholar 

  • GIBBINS, J.R., TILNEY, L.G., PORTER, K.R., 1969. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. J. Cell Biol. 41, 201–226.

    PubMed  CAS  Google Scholar 

  • GUSTAFSON, T., KINNANDER, H., 1956. Microaquaria for time-lapse cinematographic studies of morphogenesis in swimming larvae and observations on sea urchin gastrulation. Exp. Cell Res. 11, 36–51.

    PubMed  CAS  Google Scholar 

  • GUSTAFSON, T., WOLPERT, L., 1961. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Directed movements of primary mesenchyme cells in normal and vegetalized larvae. Exp. Cell Res. 24, 64–79.

    PubMed  CAS  Google Scholar 

  • GUSTAFSON, T., WOLPERT, L., 1962. Cellular mechanism in the morphogenesis of the sea urchin larva. Change in shape of cell sheets. Exp. Cell Res. 27, 260–279.

    PubMed  CAS  Google Scholar 

  • GUSTAFSON, T., WOLPERT, L., 1963a. The cellular basis of morphogenesis and sea urchin development. Inter. Rev. Cytol. 15, 139–214.

    CAS  Google Scholar 

  • GUSTAFSON, T., WOLPERT, L., 1963b. Studies on the cellular basis of morphogenesis in the sea urchin embryo. Formation of the coelom, the mouth, and the primary pore-canal. Exp. Cell Res. 29, 561–582.

    Google Scholar 

  • GUSTAFSON, T., WOLPERT, L., 1967. Cellular movement and contact in sea urchin morphogenesis. Biol. Rev. 42, 442–498.

    PubMed  CAS  Google Scholar 

  • HAGSTRöM, B.E., LöNNING, S., 1965. Studies on cleavage and development of isolated sea urchin blastomeres. Sarsia 18, 1–9.

    Google Scholar 

  • HARVEY, E.B., 1949. The growth and metamorphosis of the Arbacia punctulata pluteus, and late development of the white halves of centrifuged eggs. Biol. Bull. 97, 287–299.

    PubMed  CAS  Google Scholar 

  • HARVEY, E.B., 1956. American Arbacia and other sea urchins. Princeton, N.J.: Princeton University Press.

    Google Scholar 

  • HERBST, C., 1896. Experimentelle Untersuchungen über den Einfluß der veränderten chemischen Zusammensetzung des umgebenden Mediums auf die Entwicklung der Tiere. III. Über das Ineinandergreifen von normaler Gastrulation und Lithiumentwicklung. Arch. Entwicklungsmech. 2, 455–516.

    Google Scholar 

  • HERBST, C., 1900. Über das Auseinandergehen von Furchungs- und Gewebezellen in Kalk-freiem Medium. Roux’ Arch. Entwicklungsmech. 9, 424–463.

    Google Scholar 

  • HIRAMOTO, Y., 1957. The thickness of the cortex and the refractive index of the protoplasm in sea urchin eggs. Embryologia 3, 361–374.

    Google Scholar 

  • HöRSTADIUS, S., 1928. Über die Determination des Keimes bei Echinodermen. Acta Zool. 9, 1–191.

    Google Scholar 

  • HöRSTADIUS, S., 1935. Über die Determination im Verlaufe der Eiachse bei Seeigeln. Pubbl. Staz. Zool. Napoli 14, 251–479.

    Google Scholar 

  • HöRSTADIUS, S., 1936a. Über die zeitliche Determination im Keim von Paracentrotus lividus. Arch. Entwicklungsmech. 135, 1–39.

    Google Scholar 

  • HöRSTADIUS, S., 1936b. Weitere Studien über die Determination im Verlaufe der Eiachse bei Seeigeln. Arch. Entwicklungsmech. 135, 40–68.

    Google Scholar 

  • HöRSTADIUS, S., 1939. The mechanics of sea urchin development, studied by operative methods. Biol. Rev. 14, 132–179.

    Google Scholar 

  • HöRSTADIUS, S., 1949. Experimental researches on the developmental physiology of the sea urchin. Pubbl. Staz. Zool. Napoli, Suppl. 21, 131–172.

    Google Scholar 

  • HSIAO, S.C., FUJII, W.K., 1963. Early ontogenic changes in the concentration of alkaline phosphatase in Hawaiian sea urchins. Exp. Cell Res. 32, 217–231.

    PubMed  CAS  Google Scholar 

  • HYMAN, L.H., 1955. The Invertebrates: Echinodermata, vol. IV, 413–588. New York, Toronto, London: McGraw-Hill Book Co.

    Google Scholar 

  • IMMERS, J., 1956. Changes in acid mucopolysaccharides attending the fertilization and development of the sea urchin. Ark. Zool. 9, 367–375.

    Google Scholar 

  • IMMERS, J., 1961. Comparative study of the localization of incorporated 14C-labeled amino acids and 35SO4 in the sea urchin ovary, egg, and embryo. Exp. Cell Res. 24, 356–378.

    PubMed  CAS  Google Scholar 

  • ISHIDA, J., 1936. An enzyme dissolving the fertilization membrane of sea urchin eggs. Annot. Zool. Japon. 15, 453–457.

    Google Scholar 

  • ISHIDA, J., 1954. Function of egg surface during fertilization in sea urchins. Cyto-chemistry Symposium 2, 65–80.

    Google Scholar 

  • ISHIDA, J., 1967. Cell Biology, 613–631. Tokyo: Asakura Shoten.

    Google Scholar 

  • IWAIKAWA, Y., 1967. Regeneration of cilia in the sea urchin embryo. Embryologia 9, 287–294.

    PubMed  CAS  Google Scholar 

  • KANE, R.E., 1970. Direct isolation of the hyaline layer protein released from the cortical granules on the sea urchin egg at fertilization. J. Cell Biol. 45, 615–622.

    PubMed  CAS  Google Scholar 

  • KANE, R.E., HERSH, R.T., 1959. The isolation and preliminary characterization of a major soluble protein of the sea urchin egg. Exp. Cell Res., 16, 59–69.

    PubMed  CAS  Google Scholar 

  • KANE, R.E., STEPHENS, R.E., 1969. A comparative study of the isolation of the cortex and the role of the calcium-insoluble protein in several species of sea urchin eggs. J. Cell Biol. 41, 133–144.

    PubMed  CAS  Google Scholar 

  • KINNANDER, H., GUSTAFSON, T., 1960. Further studies on the cellular basis of gastrulation in the sea urchin larva. Exp. Cell Res. 19, 278–290.

    PubMed  CAS  Google Scholar 

  • KOPAC, M.J., 1941. Disintegration of the fertilization membrane of Arbacia by the action of an “enzyme”. J. Cell Comp. Physiol. 18, 215–220.

    CAS  Google Scholar 

  • LILLIE, F.R., 1913. The mechanism of fertilization. Science 38, 524–528.

    PubMed  CAS  Google Scholar 

  • MACBRIDE, E.W., 1914. Text-book of embryology, vol. I. Invertebrata, 504–529. London: Macmillan and Co., Ltd.

    Google Scholar 

  • MONNE, L., SLAUTTERBACK, D.B., 1950. Differential staining of various polysaccharides in sea urchin. Exp. Cell Res. 1, 477–491.

    Google Scholar 

  • MONNE, L., HåRDE, S., 1951. On the formation of the blastocoel and similar embryonic cavities. Ark. Zool. 1, 463–469.

    Google Scholar 

  • MONNE, L., SLAUTTERBACK, D.B., 1952. On the staining of the cytoplasm with the Schiff reagent during the development of the eggs of Paracentrotus lividus. Ark. Zool. 3, 349–356.

    Google Scholar 

  • MOORE, A.R., 1933. Is cleavage rate a function of the cytoplasm or of the nucleus? J. Exp. Biol. 10, 230–236.

    Google Scholar 

  • MOORE, A.R., 1940. Osmotic and structural properties of the blastular wall in Dendraster excentricus. J. Exp. Zool. 84, 73–79.

    Google Scholar 

  • MOORE, A.R., BURT, A.S., 1939. On the locus and nature of the forces causing gastrulation in the embryos of Dendraster excentricus. J. Exp. Zool. 82, 159–168.

    Google Scholar 

  • MORGAN, T.H., 1893. Experimental studies on Echinoderm eggs. Anat. Anz. 9, 141–152.

    Google Scholar 

  • MORTENSEN, Th., 1921. Studies of the development and larval forms of echinoderms, 109–117. Copenhagen.

    Google Scholar 

  • MORTENSEN, Th., 1931. Contributions to the study of the development and larval forms of echinoderms. I–II. Kgl. Dansk. Vidensk. Selsk. Skr. Naturv. og Math. Ser. 9, 4, (1).

    Google Scholar 

  • MORTENSEN, Th., 1937. Contributions to the study of the development and larval forms of echinoderms. III. Kgl. Dansk. Vidensk. Selsk. Skr. Naturv. og Math. Ser. 9, 7, (1).

    Google Scholar 

  • MORTENSEN, Th., 1938. Contributions to the study of the development and larval forms of echinoderms. IV. Kgl. Dansk. Vidensk. Selsk. Skr. Naturv. og Math. Ser. 9, 7, (3).

    Google Scholar 

  • MOTOMURA, I., 1935. Determination of the embryonic axis in the eggs of amphibia and echinoderms. Sci. Rept. Tohoku Imp. Univ. Ser. IV, 10, 211–254.

    Google Scholar 

  • MOTOMURA, I., 1967. Formation of diastema in the cleaving egg of the sea urchin. Sci. Rept. Tohoku Univ. Ser. IV, 33, 135–142.

    Google Scholar 

  • NAKANO, E., 1956. Physiological studies on re-fertilization of the sea urchin egg. Embryologia 3, 139–165.

    Google Scholar 

  • NAKANO, E., OOHASHI, S., 1954. On the carbohydrate component of the jelly coat and related substances of eggs from Japanese sea urchins. Embryologia 2, 81–85.

    Google Scholar 

  • NAKANO, E., OKAZAKI, K., IWAMATSU, T., 1963. Accumulation of radioactive calcium in larvae of the sea urchin Pseudocentrotus depressus. Biol. Bull. 125, 125–132.

    CAS  Google Scholar 

  • OKAZAKI, K., 1956a. Exogastrulation induced by calcium deficiency in the sea urchin, Pseudocentrotus depressus. Embryologia 3, 23–36.

    Google Scholar 

  • OKAZAKI, K., 1956b. Skeleton formation of sea urchin larvae. I. Effect of Ca concentration of the medium. Biol. Bull. 110, 320–333.

    CAS  Google Scholar 

  • OKAZAKI, K., 1960. Skeleton formation of sea urchin larvae. II. Organic matrix of the spicule. Embryologia, 5, 283–320.

    Google Scholar 

  • OKAZAKI, K., 1965. Skeleton formation of sea urchin larvae. V. Continuous observation of the process of matrix formation. Exp. Cell Res. 40, 585–596.

    PubMed  CAS  Google Scholar 

  • OKAZAKI, K., 1970. Growth of the spicule in sea urchin larvae. Collagen Symposium VIII., 113–129.

    Google Scholar 

  • OKAZAKI, K., 1971a. In vitro culture of the micromeres and primary mesenchyme cells isolated from sea urchin embryos and larvae. In: Cells in Early Development (Jap. Soc. Dev. Biologists, ed.), 188–225. Tokyo: Iwanami Shoten Publ.

    Google Scholar 

  • OKAZAKI, K., 1971b. Spicule formation in sea urchin larvae; observations in vivo and in vitro. Symp. Cell Biol. (Japan) 22, 163–171.

    Google Scholar 

  • OKAZAKI, K., DAN, K., 1954. The metamorphosis of partial larvae of Peronella japonica Mortensen, a sand dollar. Biol. Bull. 106, 83–99.

    Google Scholar 

  • OKAZAKI, K., FUKUSHI, T., DAN, K., 1962. Cyto-embryological studies of sea urchins. IV. Correlation between the shape of the ectodermal cells and the arrangement of the primary mesenchyme cells in sea urchin larvae. Acta Embryol. Morph. Exp. 5, 17–31.

    Google Scholar 

  • OKAZAKI, K., NIIJIMA, L., 1964. Basement membrane in sea urchin larvae. Embryologia 8, 89–100.

    Google Scholar 

  • ONODA, K., 1931. Notes on the development of Heliocidaris crassispina with special reference to the structure of the larval body. Mem. Coll. Sci. Kyoto Imp. Univ. Ser. B, 7, 103–134.

    Google Scholar 

  • ONODA, K., 1936. Note on the development of some Japanese Echinoids with special reference to the structure of the larval body. Japan. J. Zool. 6, 637–654.

    Google Scholar 

  • PRENANT, M., 1926a. Sur le déterminisme de la forme spiculaire chez les larves d’oursins. Compt. Rend. Soc. Biol. 94, 433–435.

    Google Scholar 

  • PRENANT, M., 1926b. L’etude cytologique du calcaire. III. Observations sur le déterminisme de la forme spiculaire chez les larves pluteus d’oursins. Bull. Biol. France Belgique 60, 522–560.

    Google Scholar 

  • RUNNSTRöM, J., 1928. Zur experimentellen Analyse der Wirkung des Lithiums auf den Seeigelkeim. Acta Zool. 9, 365–424.

    Google Scholar 

  • RUNNSTRöM, J., 1931. Zur Entwicklungsmechanik des Skelettmusters bei dem Seeigelkeim. Arch. Entwicklungsmech., 124, 273–297.

    Google Scholar 

  • RUNNSTRöM, J., 1935. An analysis of the action of lithium on sea urchin development. Biol. Bull. 68, 378–383.

    Google Scholar 

  • RUNNSTRöM, J., HAGSTRöM, B.E., PERLMANN, P., 1959. Fertilization. In: The Cell — Biochemistry, Physiology, Morphology (J. Brachet, A.E. Mirsky, eds.), 327–397. New York: Academic Press, Inc.

    Google Scholar 

  • SCHMIDT, H., 1904. Zur Kenntnis der Larvenentwicklung von Echinus microtuberculatus. Verh. Phys-Med. Ges. Würzburg 36, 297–336.

    Google Scholar 

  • SCHMITT, F.O., 1941. Some protein patterns in cells. Growth 5 (Suppl.), 1–20.

    CAS  Google Scholar 

  • SHEARER, C, DE MORGAN, W., FUCHS, H., 1914. On the experimental hybridization of Echinoids. Phil. Trans. Roy. Soc. London B, 204, 255–362.

    Google Scholar 

  • STEPHENS, R.E., KANE, R.E., 1970. Some properties of hyalin. The calcium-insoluble protein of the hyaline layer of the sea urchin egg. J. Cell Biol. 44, 611–617.

    PubMed  CAS  Google Scholar 

  • SELENKA, E., 1883. Studien über Entwicklungsgeschichte der Tiere. 2. Die Keimblätter der Echinodermen. Wiesbaden.

    Google Scholar 

  • THEEL, H., 1892. On the development of Echinocyamus pusillus. Nova Acta Reg. Soc. Sci. Upsaliensis Ser. III, 15, 1–57.

    Google Scholar 

  • TYLER, A., 1941. The role of fertilizin in the fertilization of eggs of the sea urchin and other animals. Biol. Bull. 81, 190–204.

    Google Scholar 

  • Von UBISCH, L., 1937. Die normale Skelettbildung bei Echinocyamus pusillus und Psammechinus miliaris und die Bedeutung dieser Vorgänge für die Analyse der Skelette von Keimblatt-Chimären. Z. Wiss. Zool. 149, 402–476.

    Google Scholar 

  • Von UBISCH, L., 1939. Keimblattchimärenforschung an Seeigellarven. Biol. Rev. 14, 88–103.

    Google Scholar 

  • VASSEUR, E. 1948. Chemical studies on the jelly coat of the sea urchin egg. Acta Chem. Scand., 2, 900–913.

    CAS  Google Scholar 

  • VACQUIER, V.D., 1969. The isolation and preliminary analysis of the hyaline layer of sea urchin eggs. Exp. Cell Res. 54, 140–142.

    PubMed  CAS  Google Scholar 

  • WILSON, E.B., 1895. An atlas on the fertilization and karyokinesis of the ovum, 1–32. New York: Columbia University Press, Macmillan and Co.

    Google Scholar 

  • WOLPERT, L., GUSTAFSON, T., 1961a. Studies on the cellular basis of morphogenesis of the sea urchin embryo. Development of the skeletal pattern. Exp. Cell Res. 25, 311–325.

    PubMed  CAS  Google Scholar 

  • WOLPERT, L., GUSTAFSON, T., 1961b. Studies of the cellular basis of morphogenesis of the sea urchin embryo. The formation of the blastula. Exp. Cell Res. 25, 374–382.

    PubMed  CAS  Google Scholar 

  • WOLPERT, L., MERCER, E.H., 1963. An electron microscope study of the development of the blastula of the sea urchin embryo and its radial polarity. Exp. Cell Res. 30, 280–300.

    PubMed  CAS  Google Scholar 

  • WOODLAND, W., 1906. Studies in spicule formation. III. On the mode of formation of spicular skeleton in the pluteus of Echinus esculentus. Quart. J. Microscop. Sci. 49, 305–325.

    Google Scholar 

  • YASUMASU, I., 1958. Hatching enzyme of the sea urchins, Hemicentrotus pulcherrimus and Heliocidaris crassispina. Bull. Mar. Biol. Stat. Asamushi 9, 83–84.

    Google Scholar 

  • YASUMASU, I., 1960. Quantitative determination of hatching enzyme activity of sea urchin blastulae. J. Fac. Sci. Univ. Tokyo Sec. IV, 9, 39–47.

    Google Scholar 

  • YASUMASU, I., 1961. Crystallization of hatching enzyme of the sea urchin Anthocidaris crassispina. Sci. Papers of College of Gen. Educ. Univ. Tokyo 11, 275–280.

    Google Scholar 

  • YAZAKI, I., 1968. Immunological analysis of the calcium precipitable protein of the sea urchin eggs. I. Hyaline layer substance. Embryologia 10, 131–141.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Okazaki, K. (1975). Normal Development to Metamorphosis. In: Czihak, G. (eds) The Sea Urchin Embryo. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65964-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65964-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65966-9

  • Online ISBN: 978-3-642-65964-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics