Advertisement

Isolation and Transplantation Experiments

  • S. Hörstadius

Abstract

The story of experimental embryology begins with attempts to study the development of single early cleavage cells. Blastomeres of ascidian eggs were killed by CHABRY (1887) and ROUX (1888) killed blastomeres of amphibian eggs by pricking them with a needle and the behaviour of their living partners was followed. ROUX has been called the father of experimental embryology (Entwicklungsmechanik). A few years later, DRIESCH (1891) and FIEDLER (1891) isolated blastomeres of 2-cell stages of sea urchin eggs by shaking. Later, it was discovered by HERBST that isolation is facilitated by lack of calcium ions in seawater which loosens the contact between cleavage cells (1900). A flow of papers in the decades at the turn of the century by Theodor BOVERI, Hans DRIESCH, Curt HERBST, Thomas Hunt MORGAN, and others, gave the sea urchin egg a position as one of the foremost objects for developmental physiology, a position held ever since.

Keywords

Bilateral Symmetry Animal Pole Ciliated Band Vegetal Material Paracentrotus Lividus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGRELL, I., 1958. A cytoplasmic production of ribonucleic acid during the cell cycle of the micromeres in the sea urchin embryo. Arkiv Zool. Ser. 2, 11, 435–438.Google Scholar
  2. BERG, W.E., 1965. Rates of protein synthesis in whole and half embryos of the sea urchin. Exp. Cell Res. 40, 469–489.PubMedGoogle Scholar
  3. BERG, W.E., CHENG, A.C., 1962. Tests for diffusible morphogenic substances in the sea urchin embryo. Acta Embryol. Morphol. Exp. 5, 167–171.Google Scholar
  4. BERG, W.E., TAYLOR, D.A., HUMPHREYS, W.J., 1962. Distribution of mitochondria in echinoderm embryos as determined by electron microscopy. Develop. Biol. 4, 165–176.PubMedGoogle Scholar
  5. BOVERI, TH., 1889. Ein geschlechtlich erzeugter Organismus ohne mütterliche Eigenschaften. S.B. Ges. Morph. Physiol. München 5, 73–80.Google Scholar
  6. BOVERI, TH., 1901a. Die Polarität von Ovocyte, Ei und Larve des Strongylocentrotus lividus. Zool. Jb. Abt. Anat. Ontog. 14, 630–653.Google Scholar
  7. BOVERI, TH., 1901b. Über die Polarität des Seeigeleies. Verh. phys.-med. Ges. Würzburg (N.F.) 34, 145–175.Google Scholar
  8. BOVERI, TH., 1902. Über mehrpolige Mitosen als Mittel zur Analyse des Zellkerns. Verh. phys.-med. Ges. Würzburg 35, 67–88.Google Scholar
  9. BOVERI, TH., 1905. Zellenstudien V. Jena Z. Naturwiss. 39, 445.Google Scholar
  10. BOVERI, TH., 1908. Zellenstudien VI. Die Entwicklung dispermer Seeigeleier. Ein Beitrag zur Befruchtungslehre und zur Theorie des Kerns. Jena Z. Naturwiss. 43, 1.Google Scholar
  11. BOVERI, TH., 1910. Die Potenzen der Ascaris-Blastomeren bei abgeänderter Furchung. Festschr. Richard Hertwig 3, 131–214.Google Scholar
  12. BOVERI, TH., 1914. Über die Charaktere von Echiniden-Bastardlarven bei verschiedenem Mengenverhältnis mütterlicher und väterlicher Substanzen. Verh. phys.-med. Ges. Würzburg (N.F.) 43, 117.Google Scholar
  13. BOVERI, TH., 1918. Zwei Fehlerquellen bei Merogonieversuchen und die Entwicklungsfähigkeit merogonischer und partiell-merogonischer Seeigelbastarde. Arch. f. Entw. Mech. 44, 417–471.Google Scholar
  14. CHABRY, L., 1887. Contribution à l’émbryologie normale et tératologique des ascidies simples. J. Anat. Phys. 23, 167–319.Google Scholar
  15. CHILD, C.M., 1916a. Experimental control and modification of larval development in the sea urchin in relation to axial gradients. J. Morphol. 28, 65–133.Google Scholar
  16. CHILD, C.M., 1916b. Axial susceptibility gradients in the early development of the sea urchin. Biol. Bull. (Woods Hole) 30, 391–405.Google Scholar
  17. CHILD, C.M., 1936. Differential reduction of vital dyes in the early development of echinoderms. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 135, 426–456.Google Scholar
  18. CZIHAK, C, HÖRSTADIUS, S., 1970. Transplantation of RNA-labeled micromeres into animal halves of sea urchin embryos. A contribution to the problem of embryonic induction. Develop. Biol. 22, 15–30.PubMedGoogle Scholar
  19. DE ANGELIS, E., RUNNSTRÖM, J., 1970. The effect of temporary treatment of animal half embryos with lithium and the modification of this effect by simultaneous exposure to Actinomycin D. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 164, 236–246.Google Scholar
  20. DE VINCENTIIS, M., HÖRSTADIUS, S., RUNNSTRÖM, J., 1966. Studies on controlled and released respiration in animal and vegetal halves of the embryo of the sea urchin, Paracentrotus lividus. Exp. Cell Res. 41, 535–544.PubMedGoogle Scholar
  21. DRIESCH, H., 1891. Entwicklungsmechanische Studien. I. Der Wert der beiden ersten Furchungszellen in der Echinodermenentwicklung. Experimentelle Erzeugung von Teil- und Doppelbildungen. Z. wiss. Zool. 53, 160–184.Google Scholar
  22. DRIESCH, H., 1892. Entwicklungsmechanische Studien III–VI. Z. wiss. Zool. 55, 1–62.Google Scholar
  23. DRIESCH, H., 1893a. Entwicklungsmechanische Studien VII–X. Mitth. Zool. Stat. Neapel 11, 221–253.Google Scholar
  24. DRIESCH, H., 1893b. Zur Verlagerung der Blastomeren des Seeigeleies. Anat. Anz. 8, 348–357.Google Scholar
  25. DRIESCH, H., 1896a. Die taktische Reizbarkeit der Mesenchymzellen von Echinus microtuberculatus. Arch. f. Entw. Mech. 3, 362–380.Google Scholar
  26. DRIESCH, H., 1896b. Betrachtungen über die Organisation des Eies und ihre Genese. Arch. f. Entw. Mech. 4, 75–125.Google Scholar
  27. DRIESCH, H., 1900a. Die isolierten Blastomeren des Echinidenkeimes. Arch. f. Entw. Mech. 10, 361–410.Google Scholar
  28. DRIESCH, H., 1900b. Studien über das Regulationsvermögen der Organismen. IV. Arch. f. Entw. Mech. 10, 411–434.Google Scholar
  29. DRIESCH, H., 1901. Die organischen Regulationen. Leipzig.Google Scholar
  30. DRIESCH, H., 1902. Neue Ergänzungen zur Entwicklungsphysiologie des Echinidenkeimes. Arch. f. Entw. Mech. 14, 500–531.Google Scholar
  31. DRIESCH, H., 1906. Studien zur Entwicklungsphysiologie der Bilateralität. Arch. f. Entw. Mech. 21, 756–791.Google Scholar
  32. DRIESCH, H., 1908. Zur Theorie der organischen Symmetrie. Arch. f. Entw. Mech. 26, 130–145.Google Scholar
  33. FIEDLER, K., 1891. Entwicklungsmechanische Studien an Echinodermeneiern. Festschr. Nägeli u. Kölliker, Zürich, 189–196.Google Scholar
  34. FOERSTER, M., ÖRSTRÖM, A., 1933. Observations sur la predetermination de la partie ventrale dans l’oeuf d’oursin. Trav. Stat. biol. Roscoff, 11, 63–83.Google Scholar
  35. FRY, H.J., 1927. The cross-fertilization of enucleated Echinarachnius eggs by Arbacia sperm. Biol. Bull. (Woods Hole) 53, 173.Google Scholar
  36. GARBOWSKI, M.T., 1905. Über die Polarität des Seeigeleies. Bull. int. Acad. Sci. Cracovie, 599–635.Google Scholar
  37. GIUDICE, G., HÖRSTADIUS, S., 1965. Effect of actinomycin D on the segregation of animal and vegetal potentialities in the sea urchin egg. Exp. Cell Res. 39, 117–120.PubMedGoogle Scholar
  38. GUSTAFSON, TR., 1952. Studies on the determination of the oral side of the sea urchin egg. II. The dorso-ventral structure of the unfertilized egg. Arkiv Zool. Ser. 2,3 Nr. 19, 273–282.Google Scholar
  39. GUSTAFSON, TR., 1969. Fertilization and development. Chem. Zool. 3, 149–206.Google Scholar
  40. GUSTAFSON, TR., HÖRSTADIUS, S., 1955. Vegetalization and animalization in the sea urchin egg induced by antimetabolites. Exp. Cell Res. Suppl. 3, 170–180.Google Scholar
  41. GUSTAFSON, TR., HÖRSTADIUS, S., 1956. 2-Thio-5-methyl-cytosine, an animalizing agent. Zool. Anz. 156, 102–106.Google Scholar
  42. GUSTAFSON, TR., HÖRSTADIUS, S., 1957. Changes in determination of the sea urchin egg induced by amino acids. Pubbl. Sta. Zool. Napoli 29, 407–424.Google Scholar
  43. HAGSTRÖM, B., LÖNNING, S., 1965. Studies of cleavage and development of isolated sea urchin blastomeres. Sarsia 18, 1–9.Google Scholar
  44. HAGSTRÖM, B., LÖNNING, S., 1969. Time-lapse and electron microscopic studies of sea urchin micromeres. Protoplasma 68, 271–288.PubMedGoogle Scholar
  45. HARVEY, E.B., 1933. Development of the parts of sea-urchin eggs separated by centrifugal force. Biol. Bull. (Woods Hole) 64, 125–148.Google Scholar
  46. HARVEY, E.B., 1956. The American Arbacia and other sea urchins. Princeton Univ. Press, 1–298.Google Scholar
  47. HEFFNER, B., 1908. Über experimentell erzeugte Mehrfachbildungen des Skeletts bei Echinodermenlarven. Arch. f. Entw. Mech. 26, 1–46.Google Scholar
  48. HERBST, C., 1892. Experimentelle Untersuchungen über den Einfluß der veränderten chemischen Zusammensetzung des umgebenden Mediums auf die Entwicklung der Tiere. I. Z. wiss. Zool. 55, 446–518.Google Scholar
  49. HERBST, C., 1893. Experimentelle Untersuchungen über den Einfluß der veränderten chemischen Zusammensetzung des umgebenden Mediums auf die Entwicklung der Tiere. II. Weiteres über die Wirkung der Lithiumsalze und ihre theoretische Bedeutung. Mitth. Zool. Stat. Neapel 11, 136–220.Google Scholar
  50. HERBST, C., 1896. D:o III–VI. Arch. f. Entw. Mech. 2, 455–516.Google Scholar
  51. HERBST, C., 1897. Über die zur Entwicklung der Seeigellarven notwendigen anorganischen Stoffe, ihre Rolle und ihre Vertretbarkeit. I. Arch. f. Entw. Mech. 5, 649–793.Google Scholar
  52. HERBST, C., 1900. Über das Auseinandergehen von Furchungs- und Gewebezellen in kalkfreiem Medium. Arch. f. Entw. Mech. 9, 424–463.Google Scholar
  53. HERBST, C., 1904. Über die zur Entwicklung der Seeigellarven notwendigen anorganischen Stoffe, ihre Rolle und ihre Vertretbarkeit. III, Arch. f. Entw. Mech. 17, 306.Google Scholar
  54. HERBST, C., 1907. Vererbungsstudien. V. Arch. f. Entw. Mech. 24, 185–238.Google Scholar
  55. HÖRSTADIUS, S., 1927. Studien über die Determination bei Paracentrotus lividus Lk. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 112, 239–246.Google Scholar
  56. HÖRSTADIUS, S., 1928a. Transplantationsversuche am Keim von Paracen-trotus lividus Lk. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 113, 312–322.Google Scholar
  57. HÖRSTADIUS, S., 1928b. Über die Determination des Keimes bei Echinodermen. Acta Zool. (Stockholm) 9, 1–191.Google Scholar
  58. HÖRSTADIUS, S., 1931. Über die Potenzverteilung im Verlaufe der Eiachse. Arkiv Zool. 23, 1–6.Google Scholar
  59. HÖRSTADIUS, S., 1935. Über die Determination im Verlaufe der Eiachse bei Seeigeln. Pubbl. Sta. Zool. Napoli 14, 251–479.Google Scholar
  60. HÖRSTADIUS, S., 1936a. Über die zeitliche Determination im Keim von Paracentrotus lividus Lk. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 135, 1–39.Google Scholar
  61. HÖRSTADIUS, S., 1936b. Weitere Studien über die Determination im Verlaufe der Eiachse bei Seeigeln. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 135, 40–68.Google Scholar
  62. HÖRSTADIUS, S., 1936c. Studien über heterosperme Seeigelmerogone nebst Bemerkungen über einige Keimblattchimären. Mém. Mus. Hist. nat. Belg. 2me sér. fasc. 3, 801–880.Google Scholar
  63. HÖRSTADIUS, S., 1938. Schnürungsversuche an Seeigelkeimen. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 138, 197–258.Google Scholar
  64. HÖRSTADIUS, S., 1939. The mechanics of sea urchin development, studied by operative methods. Biol. Rev. 14, 132–179.Google Scholar
  65. HÖRSTADIUS, S., 1950. Transplantation experiments to elucidate interactions and regulations within the gradient system of the developing sea urchin egg. J. Exp. Zool. 113, 245–276.Google Scholar
  66. HÖRSTADIUS, S., 1952. Induction and inhibition of reduction gradients by the micromeres in the sea urchin egg. J. Exp. Zool. 120, 421–436.Google Scholar
  67. HÖRSTADIUS, S., 1953a. Vegetalization of the sea urchin egg by dinitrophenol and animalization by trypsin and ficin. J. Embryol. Exp. Morphol. 1, 327–348.Google Scholar
  68. HÖRSTADIUS, S., 1953b. The effect of lithium ions on centrifuged eggs of Paracentrotus lividus. Pubbl. Sta. Zool. Napoli 24, 45–60.Google Scholar
  69. HÖRSTADIUS, S., 1955. Reduction gradients in animalized and vegetalized sea urchin eggs. J. Exp. Zool. 129, 249–256.Google Scholar
  70. HÖRSTADIUS, S., 1957. On the regulation of bilateral symmetry in plutei with exchanged meridional halves and in giant plutei. J. Embryol. Exp. Morphol. 5, 60–73.Google Scholar
  71. HÖRSTADIUS, S., 1963. Vegetalization of sea urchin larvae by chloramphenicol. Develop. Biol. 7, 144–151.Google Scholar
  72. HÖRSTADIUS, S., 1965a. Über die fortschreitende Determination in Furchungsstadien von Seeigeleiern. Z. Naturforsch. 20b, 331–333.Google Scholar
  73. HÖRSTADIUS, S., 1965b. Über die animalisierende Wirkung von Trypsin auf Seeigelkeime. Zool. Jb. Abt. Physiol. 71, 241–244.Google Scholar
  74. HÖRSTADIUS, S., 1973. Experimental Embryology of Echinoderms. Oxford: Clarendon Press, 1–192.Google Scholar
  75. HÖRSTADIUS, S., GUSTAFSON, TR., 1947. Change of determination in the sea urchin egg through the action of propanediol phosphate, phosphogluconic acid, and lactate. Zool. Bidr. Uppsala 25, 571–581.Google Scholar
  76. HÖRSTADIUS, S., GUSTAFSON, TR., 1954. The effect of 3 antimetabolites on sea urchin development. J. Embryol. Exp. Morphol. 2, 216–226.Google Scholar
  77. HÖRSTADIUS, S., IMMERS, J., RUNNSTRÖM, J., 1966. The incorporation of 35SO4 in whole embryos and meridional, animal and vegetal halves of the sea urchin Paracentrotus lividus. Exp. Cell Res. 43, 444–450.PubMedGoogle Scholar
  78. HÖRSTADIUS, S., JOSEFSSON, L., 1972. Morphogenetic substances from sea urchin eggs. Isolation of animalizing substances from developing eggs of Paracentrotus lividus. Acta Embryol. Exp. 1972, 7–23.Google Scholar
  79. HÖRSTADIUS, S., JOSEFSSON, L., RUNNSTRÖM, J., 1967. Morphogenetic agents from unfertilized eggs of the sea urchin Paracentrotus lividus. Develop. Biol, 16, 189–202.PubMedGoogle Scholar
  80. HÖRSTADIUS, S., STRÖMBERG, ST., 1940. Untersuchungen über Umdeter-minierung von Fragmenten des Seeigeleies durch chemische Agentien. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 140, 409–462.Google Scholar
  81. HÖRSTADIUS, S., WOLSKY, A., 1936. Studien über die Determination der Bilateralsymmetrie des jungen Seeigelkeimes. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 135, 69–113.Google Scholar
  82. JENKINSON, J.W., 1911a. On the development of isolated pieces of the gastrulae of the sea urchin Strongylocentrotus lividus. Arch. f. Entw. Mech. 32, 269.Google Scholar
  83. JENKINSON, J.W., 1911b. On the origin of the polar and bilateral structure of the egg of the sea urchin. Arch. f. Entw. Mech. 32, 699–716.Google Scholar
  84. JOSEFSSON, L., HÖRSTADIUS, S., 1969. Morphogenetic substances from sea urchin eggs. Isolation of animalizing and vegetalizing substances from unfertilized eggs of Paracentrotus lividus. Develop. Biol. 20, 481–500.PubMedGoogle Scholar
  85. KÜHN, A., 1955. Vorlesungen über Entwicklungsphysiologie. Berlin, Göttingen, Heidelberg, 1–506.Google Scholar
  86. LENICQUE, P., HÖRSTADIUS, S., GUSTAFSON, TR., 1953. Change of distribution of mitochondria in animal halves of sea urchin eggs by the action of micromeres. Exp. Cell Res. 5, 400–403.PubMedGoogle Scholar
  87. LINDAHL, P.E., 1932a. Zur Kenntnis des Ovarialeies bei dem Seeigel. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 126, 373–390.Google Scholar
  88. LINDAHL, P.E., 1932b. Zur experimentellen Analyse der Determination der Dorsoventralachse beim Seeigelkeim. I. Versuche mit gestreckten Eiern. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 127, 300–302.Google Scholar
  89. LINDAHL, P.E., 1933. Über “animalisierte” und “vegetativisierte” Seeigellarven. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 128, 661–664.Google Scholar
  90. LINDAHL, P.E., 1936. Zur Kenntnis der physiologischen Grundlagen der Determination im Seeigelkeim. Acta Zool. (Stockholm) 17, 179–365.Google Scholar
  91. LINDAHL, P.E., LUNDIN, J., 1948. Removal of the fertilization membranes from large quantities of sea urchin eggs. Science 108, 481–482.PubMedGoogle Scholar
  92. LOEB, J., 1899. On the nature of the process of fertilization and the artificial production of normal larvae (plutei) from the unfertilized eggs of the sea urchin. Amer. J. Physiol. 3, 135–138.Google Scholar
  93. LYON, E.P., 1906a. Some results of centrifugalizing the eggs of Arbacia. Amer. J. Physiol. 15, 21.Google Scholar
  94. LYON, E.P., 1906b. Results of centrifugalizing eggs. Arch. f. Entw. Mech. 23, 151.Google Scholar
  95. MARKMAN, B., 1958. Studies on the formation of the fertilization membrane in sea urchins. Acta Zool. (Stockholm) 39, 103–115.Google Scholar
  96. MARKMAN, B., 1961a. Regional differences in isotopic labelling of nucleic acid and protein in early sea urchin development. Exp. Cell Res. 23, 118–129.PubMedGoogle Scholar
  97. MARKMAN, B., 1961b. Differences in isotopic labelling of nucleic acid and protein in early sea urchin development. Exp. Cell Res. 23, 197–200.PubMedGoogle Scholar
  98. MARKMAN, B., 1963. Morphogenetic effects of some nucleotide metabolites and antibiotics on early sea urchin development. Arkiv Zool. Ser. 2, 16 Nr. 12, 207–217.Google Scholar
  99. MARKMAN, B., 1967. Isotopic labelling of nucleic acids in sea urchin embryos developing from animal and vegetal halves in relation to protein and nucleic acid content. Exp. Cell Res. 46, 1–18.PubMedGoogle Scholar
  100. MARKMAN, B., RUNNSTRÖM, J., 1963. Animal and vegetal halves of sea urchin larvae subjected to temporary treatment with actinomycin C and mitomycin C. Exp. Cell Res. 31, 615–618.PubMedGoogle Scholar
  101. MARKMAN, B., RUNNSTRÖM, J., 1970. The removal by actinomycin D of the effect of endogenous or exogenous animalizing agents in sea urchin development. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 165, 1–7.Google Scholar
  102. MORGAN, TH.H., 1894. Experimental studies on echinoderm eggs. Anat. Anz. 9, 141–152.Google Scholar
  103. MORGAN, TH.H., LYON, E.P., 1907. The relation of the substances of the egg, separated by a strong centrifugal force, to the location of the embryo. Arch. f. Entw. Mech. 24, 147.Google Scholar
  104. MORGAN, TH.H., SPOONER, G.B., 1909. The polarity of the centrifuged egg. Arch. f. Entw. Mech. 28, 104.Google Scholar
  105. OKAZAKI, K., 1971. Spicule formation in sea urchin larvae; observations in vivo and in vitro. Symp. Cell Biol. (Japan) 22, 163–171.Google Scholar
  106. PEASE, D.C., 1941. Echinoderm bilateral determination in chemical concentration gradients. I. J. exp. Zool. 86, 381–404.Google Scholar
  107. PEASE, D.C., 1942a. Idem II. J. exp. Zool. 89, 329–345Google Scholar
  108. PEASE, D.C., 1942b. Idem III. J. exp. Zool. 89, 347–356.Google Scholar
  109. PLOUGH, H.H., 1927. Defective pluteus larvae from isolated blasto-meres of Arbacia and Echinarachnius. Biol. Bull. (Woods Hole) 52, 373–393.Google Scholar
  110. ROUX, W., 1888. Über die künstliche Hervorbringung halber Embryonen durch Zerstörung einer der beiden ersten Furchungskugeln, sowie über die Nachentwicklung (Postgeneration) der fehlenden Körperhälfte. Virchows Arch. Anat. Phys. 114, 113 und 246.Google Scholar
  111. RUNNSTRÖM, J., 1914. Analytische Studien über die Seeigelentwicklung. I. Arch. f. Entw. Mech. 40, 526–564.Google Scholar
  112. RUNNSTRÖM, J., 1917. Analytische Studien über die Seeigelentwicklung. III. Arch. f. Entw. Mech. 43, 223–328.Google Scholar
  113. RUNNSTRÖM, J., 1925. Experimentelle Bestimmung der Dorso-Ventralachse bei dem Seeigelkeim. Arkiv Zool. 18A, Nr. 4, 1–6.Google Scholar
  114. RUNNSTRÖM, J., 1926. Über die Verteilung der Potenzen der Urdarm-bildung bei dem Seeigelkeim. Acta Zool. (Stockholm) 7, 117–121.Google Scholar
  115. RUNNSTRÖM, J., 1928a. Plasmabau und Determination bei dem Ei von Paracentrotus lividus Lk. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 113, 556–581.Google Scholar
  116. RUNNSTRÖM, J., 1928b. Zur experimentellen Analyse der Wirkung des Lithiums auf den Seeigelkeim. Acta Zool. (Stockholm) 9, 365–424.Google Scholar
  117. RUNNSTRÖM, J., 1929. Über Selbstdifferenzierung und Induktion bei dem Seeigelkeim. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 117, 112–145.Google Scholar
  118. RUNNSTRÖM, J., HÖRSTADIUS, S., IMMERS, J., FUDGE-MASTRANGELO, M., 1964. An analysis of the role of sulfate in the embryonic differentiation of the sea urchin (Paracentrotus lividus). Revue Suisse Zool. 71, 21–54.Google Scholar
  119. RUNNSTRÖM, J., KRISZAT, G., 1952. Animalizing action of iodosobensoic acid in the sea urchin development. Exp. Cell Res. 3, 497–499.Google Scholar
  120. SELENKA, E., 1878. Zoologische Studien. I. Befruchtung des Eies von Toxopneustes variegatus. Leipzig.Google Scholar
  121. SELENKA, E., 1883. Die Keimblätter der Echinodermen. Studien über die Entwicklungsgeschichte der Tiere. 1:2. Wiesbaden.Google Scholar
  122. SPEMANN, H., 1906. Über eine neue Methode der embryonalen Transplantation. Verh. Deutsch. Zool. Ges., 195–202.Google Scholar
  123. SPIEGEL, M., TYLER, A., 1966. Protein synthesis in micromeres of the sea urchin egg. Science 151, 1233–1234.PubMedGoogle Scholar
  124. TAYLOR, C.V., TENNENT, D.H., 1924. Preliminary report on the development of egg fragments. Yb. Carnegie Inst. Wash. 23, 201–206.Google Scholar
  125. TERNI, T., 1914. Studio sulle larve atipiche (blastulae permanenti) degli Echinoidi. Analisi della limitata equipotentialità dell’uovo di Echinoide. Mitth. Zool. Stat. Neapel 22, 59–97.Google Scholar
  126. THEEL, H., 1892. On the development of Echinocyamus pusillus (O.F. Müller). Nova Acta R. Soc. Scient. upsal. Ser. III, 15 (6), 1–57.Google Scholar
  127. VOGT, W., 1925. Gestaltungsanalyse am Amphibienkeim mit örtlicher Vitalfärbung. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 106, 542–610.Google Scholar
  128. VON BAER, K.E., 1828. Über Entwicklungsgeschichte der Tiere, Beobachtung und Reflexion. Königsberg.Google Scholar
  129. VON UBISCH, L., 1925a. Entwicklungsphysiologische Studien an Seeigelkeimen. I. Über die Beziehung der ersten Furchungsebene zur Larvensymmetrie, und die prospektive Bedeutung der Eibezirke. Z. wiss. Zool. 124, 361–381.Google Scholar
  130. VON UBISCH, L., 1925b. D:o II. Die Entstehung von Einheitslarven aus verschmolzenen Keimen. Z. wiss. Zool. 124, 457–468.Google Scholar
  131. VON UBISCH, L., 1925c. D:o III. Die normale und durch Lithium beeinflusste Anlage der Primitivorgane bei animalen und vegetativen Halbkeimen von Echinocyamus pusillus. Z. wiss. Zool. 124, 469–486.Google Scholar
  132. VON UBISCH, L., 1925d. Über die Entodermisierung ektodermaler Bezirke des Echinoiden-Keimes und die Reversion dieses Vorganges. Verh. phys.-med. Ges. Würzburg 50, 13–19.Google Scholar
  133. VON UBISCH, L., 1929. Über die Determination der larvalen Organe und der Imaginalanlage bei Seeigeln. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 117, 80–122.Google Scholar
  134. VON UBISCH, L., 1933. Untersuchungen über Formbildung. IV. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 129, 45–67.Google Scholar
  135. VON UBISCH, L., 1934. Untersuchungen über Formbildung. VI. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 131, 95–112.Google Scholar
  136. VON UBISCH, L., 1939. Keimblattchimärenforschung an Seeigellarven. Biol. Rev. 14, 88–103.Google Scholar
  137. WILSON, E.B., MATTHEWS, A.P., 1895. Maturation, fertilization and polarity in the echinoderm egg. J. Morphol. 10, 319–342.Google Scholar
  138. ZOJA, R., 1895. Sullo sviluppo dei blastomeri isolati dalle uova di alcune meduse (e di altri organismi). II. Arch. f. Entw. Mech. 2, 1–37.Google Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • S. Hörstadius

There are no affiliations available

Personalised recommendations