Skip to main content

The Biophysics of Cleavage and Cleavage of Geometrically Altered Cells

  • Chapter
The Sea Urchin Embryo

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Most of the quantitative and experimentally obtained information about the cleavage mechanism in animal cells comes from studies of echinoderm eggs. No other cells offer the comparable advantages of abundance, size, shape, transparency and the absolute, simple control of division time by fertilization. Their division mechanisms seem similar to those of other eggs, and their appearance differs primarily in the relatively greater size of their asters. Egg cleavage requires energy and force, but useful data on how they are involved are scarce. Investigations have centered on identifying the physical mechanism and determining the role of the visible cell parts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • BEAMS, H.W., EVANS, T.C., 1940. Some effects of colchicine upon the first cleavage in Arbacia punctulata. Biol. Bull. 79, 188–198.

    Article  Google Scholar 

  • CHAMBERS, R., 1917. Microdissection studies. II. The cell aster: a reversible gelating phenomenon. J. Exp. Zool. 23, 483–505.

    Article  CAS  Google Scholar 

  • CHAMBERS, R., 1919. Changes in protoplasmic viscosity and their relation to cell division. J. Gen. Physiol. 2, 49–68.

    Article  PubMed  CAS  Google Scholar 

  • CHAMBERS, R., 1938. Structural and kinetic aspects of cell division. J. Cell Comp. Physiol. 12, 149–165.

    Article  Google Scholar 

  • CHAMBERS, R., CHAMBERS, E.L., 1961. Explorations into the nature of the living cell. Cambridge: Harvard University Press.

    Google Scholar 

  • COLE, K.S., 1932. Surface forces of the Arbacia egg. J. Cell Comp. Physiol. 1, 1–9.

    Article  Google Scholar 

  • CONKLIN, E.G., 1902. Karyokinesis and cytokinesis in the maturation, fertilization and cleavage of Crepidula and other Gasteropoda. J. Acad. Nat. Sci. of Phila., Ser. II, 12, 1–121.

    Google Scholar 

  • CONKLIN, E.G., 1938. Disorientations of development in Crepidula plana produced by low temperatures. Proc. Amer. Phil. Soc. 79, 179–211.

    Google Scholar 

  • CORNMAN, I., CORNMAN, M.E., 1951. The action of podophyllin and its fractions on marine eggs. Ann. N.Y. Acad. Sci. 51, 1443–1481.

    Article  PubMed  CAS  Google Scholar 

  • DAN, J.C., 1948. On the mechanism of astral cleavage. Physiol. Zool. 21, 191–218.

    PubMed  CAS  Google Scholar 

  • DAN, K., 1943. Behavior of the cell surface during cleavage. V. Perforation experiment. J. Fac. Sci. Tokyo Imp. Univ. 6, 297–321.

    Google Scholar 

  • DAN, K., 1963. Force of cleavage of the dividing sea urchin egg. In: Cell growth and cell division (R.J.C. HARRIS, ed.), 261–276. New York: Academic Press.

    Google Scholar 

  • DANIELLI, J.F., 1952. Division of the flattened egg. Nature 170, 496.

    Article  PubMed  CAS  Google Scholar 

  • FRY, H.J., PARKS, M.E., 1934. Studies of the mitotic figure. IV. Mitotic changes and viscosity changes in eggs of Arbacia, Cumingia, and Nereis. Protoplasma 21, 473–499.

    Article  CAS  Google Scholar 

  • GRAY, J., 1931. A textbook of experimental cytology, 203. New York: Macmillan.

    Google Scholar 

  • HARVEY, E.B., 1956. The American Arbacia and other sea urchins. Princeton: Princeton University Press.

    Google Scholar 

  • HEILBRUNN, L.V., 1920a. An experimental study of cell-division. J. Exp. Zool. 30, 211–237.

    Article  CAS  Google Scholar 

  • HEILBRUNN, L.V., 1920b. The physical effects of anesthetics upon living protoplasm. Biol. Bull. 39, 307–315.

    Article  Google Scholar 

  • HEILBRUNN, L.V., 1928. The colloid chemistry of protoplasm. Berlin: Borntrager.

    Google Scholar 

  • HENLEY, C, COSTELLO, D.P., 1965. The cytological effects of podophyllin and podophyllotoxin on the fertilized eggs of Chaetopterus. Biol. Bull. 128, 369–391.

    Article  CAS  Google Scholar 

  • HIRAMOTO, Y., 1956. Cell division without mitotic apparatus. Exp. Cell Res. 11, 630–636.

    Article  PubMed  CAS  Google Scholar 

  • HIRAMOTO, Y., 1957. The thickness of the cortex and the refractive index of the protoplasm in sea urchin eggs. Embryologia 3, 361–374.

    Article  Google Scholar 

  • HIRAMOTO, Y., 1958. A quantitative description of protoplasmic movement during cleavage in the sea urchin egg. J. Exp. Biol. 35, 407–424.

    Google Scholar 

  • HIRAMOTO, Y., 1963a. Mechanical properties of sea urchin eggs. I. Surface force and elastic modules of the cell membrane. Exp. Cell Res. 32, 59–75.

    Article  PubMed  CAS  Google Scholar 

  • HIRAMOTO, Y., 1963b. Mechanical properties of sea urchin eggs. II. Changes in mechanical properties from fertilization to cleavage. Exp. Cell Res. 32, 76–88.

    Article  PubMed  CAS  Google Scholar 

  • HIRAMOTO, Y., 1964. Further studies on the cell division without mitotic apparatus in sea urchin eggs. Biol. Bull. 127, 357–358.

    Google Scholar 

  • HIRAMOTO, Y., 1965. Further studies on cell division without mitotic apparatus in sea urchin eggs. J. Cell Biol. 25, 161–167.

    Article  PubMed  Google Scholar 

  • HIRAMOTO, Y., 1967. Observations and measurements of sea urchin eggs with a centrifuge microscope. J. Cell Physiol. 69, 219–230.

    Article  Google Scholar 

  • HIRAMOTO, Y., 1968. The mechanics and mechanism of cleavage in the sea urchin egg. Symp. Soc. Exp. Biol. 22, 311–327.

    PubMed  CAS  Google Scholar 

  • HIRAMOTO, Y., 1969. Mechanical properties of the protoplasm of the sea urchin egg. II. Fertilized egg. Exp. Cell Res. 56, 209–218.

    Article  PubMed  CAS  Google Scholar 

  • HIRAMOTO, Y., 1970. Rheological properties of sea urchin eggs. Biorheology 6, 201–234.

    PubMed  CAS  Google Scholar 

  • HIRAMOTO, Y., 1971. Analysis of cleavage stimulus by means of micromanipulation of sea urchin eggs. Exp. Cell Res. 68, 291–298.

    Article  PubMed  CAS  Google Scholar 

  • IKEDA, M., 1965. Behavior of sulphydryl groups of sea urchin eggs under the blockage of cell division by ultraviolet and heat shock. Exp. Cell Res. 40, 282–291.

    Article  PubMed  CAS  Google Scholar 

  • JUST, E.E., 1922. Studies on cell division. I. The effect of dilute sea water on the fertilized egg of Echinarachnius parma during the cleavage cycle. Am. J. Physiol. 61, 505–515.

    Google Scholar 

  • KINOSHITA, S., 1968. Relative deficiency of intracellular relaxing system observed in presumptive furrow region in induced cleavage in the centrifuged sea urchin egg. Exp. Cell Res. 51, 395–405.

    Article  PubMed  CAS  Google Scholar 

  • KINOSHITA, S., 1969. Periodical release of heparin-like polysaccharide within cytoplasm during cleavage of sea urchin egg. Exp. Cell Res. 56, 39–43.

    Article  PubMed  CAS  Google Scholar 

  • KINOSHITA, S., YAZAKI, I., 1967. The behavior and localization of intracellular relaxing system during cleavage in the sea urchin egg. Exp. Cell Res. 47, 449–458.

    Article  PubMed  CAS  Google Scholar 

  • KOBAYASHI, N., 1962. Cleavage of the sea urchin egg recovering from the cleavage-blocking effect of demecolcine. Embryologia 7, 68–80.

    Article  Google Scholar 

  • KOJIMA, M.K., 1969. Induction of nuclear changes and cleavage by repeated insufficient stimulations with activating reagents in the sea urchin egg. Embryologia 10, 334–342.

    Article  PubMed  CAS  Google Scholar 

  • LEWIS, W.H., 1942. The relation of viscosity changes of protoplasm to ameboid locomotion and cell division. In: The structure of protoplasm (W. SEIFRIZ, ed.), 163–197. Ames: Iowa State College Press.

    Google Scholar 

  • LINDAHL, P.E., 1932. Zur experimentellen Analyse der Dorsoventral-achse beim Seeigelkeim. I. Versuche mit gestreckten Eiern. Wilhelm Roux’ Arch. Entwicklungsmech. Organismen 127, 300–322.

    Google Scholar 

  • LORCH, I.J., 1952. Enucleation of sea urchin blastomeres with or without removal of asters. Quart. J. Micros. Sci. 93, 475–486.

    Google Scholar 

  • MARSLAND, D., 1939. The mechanism of cell division. Hydrostatic pressure effects upon dividing egg cells. J. Cell Comp. Physiol. 13, 15–22.

    Article  CAS  Google Scholar 

  • MARSLAND, D., 1950. The mechanisms of cell division; temperature-pressure experiments on the cleaving eggs of Arbacia punctulata. J. Cell Comp. Physiol. 36, 205–227.

    Article  CAS  Google Scholar 

  • MARSLAND, D., 1951. The action of hydrostatic pressure on cell division. Ann. N.Y. Acad. Sci. 51, Art. 8, 1327–1335.

    Article  PubMed  CAS  Google Scholar 

  • MARSLAND, D., 1956. Protoplasmic contractility in relation to gel structure: Temperature pressure experiments on cytokinesis and amoeboid movement. Internat. Rev. Cytol. 5, 199–227.

    Article  CAS  Google Scholar 

  • MARSLAND, D., 1970. Pressure-temperature studies on the mechanisms of cell division. In: High pressure effects on cellular processes (A.M. ZIMMERMAN, ed.), 259–312. New York: Academic Press.

    Google Scholar 

  • MERCER, E.H., WOLPERT, L., 1958. Electron microscopy of cleaving sea urchin eggs. Exp. Cell Res. 14, 629–632.

    Article  PubMed  CAS  Google Scholar 

  • MITCHISON, J.M., SWANN, M.M., 1952. Optical changes in the membranes of the sea urchin at fertilization, mitosis and cleavage. J. Exp. Biol. 29, 357–362.

    Google Scholar 

  • MITCHISON, J.M., SWANN, M.M., 1954. The mechanical properties of the cell surface. I. The cell elastimeter. J. Exp. Biol. 31, 443–472.

    Google Scholar 

  • MITCHISON, J.M., SWANN, M.M., 1955. The mechanical properties of the cell surface. III. The sea urchin egg from fertilization to cleavage. J. Exp. Biol. 32, 734–750.

    Google Scholar 

  • MONROY, A., MONTALENTI, G., 1947. Variations of the submicroscopic structure of the cortical layer of fertilized and parthenogenetic sea urchin eggs. Biol. Bull. 92, 151–161.

    Article  PubMed  CAS  Google Scholar 

  • MORGAN, T.H., 1927. Experimental Embryology, 200. New York: Columbia University Press.

    Google Scholar 

  • MOTOMURA, I., 1950. Studies of cleavage. V. The role of vacuoles in the cleavage plane formation in sea urchin’s eggs. Sci. Rep. Tôhoku Univ., 4th Ser., 18, 255–261.

    Google Scholar 

  • MOTOMURA, I., 1966. Secretion of a mucosubstance in the cleaving egg of the sea urchin. Acta Embryol. Morphol. Exp. 9, 56–60.

    PubMed  CAS  Google Scholar 

  • MOTOMURA, I., 1967. Formation of diastema in the cleaving egg of the sea urchin. Sci. Rep. Tôhoku Univ., 4th Ser., 33, 135–142.

    Google Scholar 

  • PORTZEHL, H., 1951. Muskelkontraction und Modellkontraction. Z. Naturforsch. 66, 355–361.

    Google Scholar 

  • RAPPAPORT, R., 1960. Cleavage of sand dollar eggs under constant tensile stress. J. Exp. Zool. 144, 225–231.

    Article  PubMed  Google Scholar 

  • RAPPAPORT, R., 1961. Experiments concerning the cleavage stimulus in sand dollar eggs. J. Exp. Zool. 148, 81–89.

    Article  PubMed  CAS  Google Scholar 

  • RAPPAPORT, R., 1964. Geometrical relations of the cleavage stimulus in constricted sand dollar eggs. J. Exp. Zool. 155, 225–230.

    Article  Google Scholar 

  • RAPPAPORT, R., 1965. Geometrical relations of the cleavage stimulus in invertebrate eggs. J. Theoret. Biol. 9, 51–66.

    Article  CAS  Google Scholar 

  • RAPPAPORT, R., 1966. Experiments concerning the cleavage furrow in invertebrate eggs. J. Exp. Zool. 161, 1–8.

    Article  PubMed  CAS  Google Scholar 

  • RAPPAPORT, R., 1967. Cell division: direct measurement of maximum tension exerted by furrow of echinoderm eggs. Science 156, 1241–1243.

    Article  PubMed  CAS  Google Scholar 

  • RAPPAPORT, R., 1968. Geometrical relations of the cleavage stimulus in flattened, perforated sea urchin eggs. Embryologia 10, 115–130.

    Article  Google Scholar 

  • RAPPAPORT, R., 1969a. Aster-equatorial surface relations and furrow establishment. J. Exp. Zool. 171, 59–68.

    Article  PubMed  CAS  Google Scholar 

  • RAPPAPORT, R., 1969b. Division of isolated furrows and furrow fragments in invertebrate eggs. Exp. Cell Res. 56, 87–91.

    Article  PubMed  CAS  Google Scholar 

  • RAPPAPORT, R., 1970. An experimental analysis of the role of fountain streaming in furrow establishment. Develop. Growth Diff. 12, 31–40.

    Article  CAS  Google Scholar 

  • RAPPAPORT, R., 1971. Cytokinesis in animal cells. Int. Rev. Cytol. 31, 169–213.

    Article  PubMed  CAS  Google Scholar 

  • RAPPAPORT, R., 1972. On the rate of movement of the cleavage stimulus in sand dollar eggs. J. Exp. Zool. 183, 115–120.

    Article  Google Scholar 

  • RAPPAPORT, R., CONRAD, G.W., 1963. An experimental analysis of unilateral cleavage in invertebrate eggs. J. Exp. Zool. 153, 99–112.

    Article  PubMed  CAS  Google Scholar 

  • RAPPAPORT, R., EBSTEIN, R.P., 1965. Duration of stimulus and latent period preceding furrow formation in sand dollar eggs. J. Exp. Zool. 158, 373–382.

    Article  PubMed  CAS  Google Scholar 

  • SCHROEDER, T.E., 1969. The role of “contractile ring” filaments in dividing Arbacia egg. Biol. Bull. 137, 413–414.

    Google Scholar 

  • SCOTT, A.C., 1960. Furrowing in flattened sea urchin eggs. Biol. Bull. 119, 246–259.

    Article  Google Scholar 

  • SPEK, J., 1918. Oberflächenspannungsdifferenzen als eine Ursache der Zellteilung. Arch. f. Entw. Mech. 44, 5–113.

    Google Scholar 

  • SUGIYAMA, M., 1951. Refertilization of the fertilized eggs of the sea urchin. Biol. Bull. 101, 335–343.

    Article  Google Scholar 

  • SWANN, M.M., 1951. Protoplasmic structure and mitosis II. The nature and cause of birefringence changes in the sea urchin egg at anaphase. J. Exp. Biol. 28, 434–441.

    Google Scholar 

  • SWANN, M.M., MITCHISON, J.M., 1953. Cleavage of sea urchin eggs in colchicine. J. Exp. Biol. 30, 506–514.

    CAS  Google Scholar 

  • SWANN, M.M., MITCHISON, J.M., 1958. The mechanism of cleavage in animal cells. Biol. Rev. 33, 103–135.

    Article  Google Scholar 

  • TILNEY, L.G., MARSLAND, D., 1969. A fine structural analysis of cleavage induction and furrowing in the eggs of Arbacia punctulata. J. Cell Biol. 42, 170–184.

    Article  PubMed  CAS  Google Scholar 

  • WEINSTEIN, R.S., HEBERT, R.B., 1964. Electron microscopy of cleavage furrows in sea urchin blastomeres. J. Cell Biol. 23, 101A.

    Article  Google Scholar 

  • WILSON, E.B., 1895. An atlas of fertilization and karyokinesis of the ovum. New York: Macmillan & Co.

    Google Scholar 

  • WILSON, E.B., 1901. Experimental studies in cytology. II. Some phenomena of fertilization and cell division in etherized eggs. Arch. f. Entw. Mech. 13, 353–373.

    Google Scholar 

  • WILSON, E.B., 1928. The cell in development and heredity, 1059. New York: Macmillan & Co.

    Google Scholar 

  • WOLPERT, L., 1960. The mechanics and mechanism of cleavage. Intern. Rev. Cytol. 10, 163–216.

    Google Scholar 

  • WOLPERT, L., 1963. Some problems of cleavage in relation to the cell membrane. In: Cell growth and cell division (R.J.C. HARRIS, ed.), 277–298. New York: Academic Press.

    Google Scholar 

  • WOLPERT, L., 1966. The mechanical properties of the membrane of the sea urchin egg during cleavage. Exp. Cell Res. 41, 385–396.

    Article  PubMed  CAS  Google Scholar 

  • YATSU, N., 1910. An experimental study on the cleavage of the ctenophore egg. Proc. 7th Internat. Zool. Congr., 1–4.

    Google Scholar 

  • YATSU, N., 1912. Observations and experiments on the ctenophore egg. Jour. Coll. Sci. Tokyo 32, Art. 3, 1–21.

    Google Scholar 

  • ZIEGLER, H.E., 1903. Experimentelle Studien über Zellteilung. IV. Die Zellteilung der Furchungszellen bei Beroë und Echinus. Arch. f. Entw. Mech. 16, 155–175.

    Google Scholar 

  • ZIMMERMAN, A.M., LANDAU, J.V., MARSLAND, D., 1957. Cell division: A pressure-temperature analysis of the effects of sulfhydryl reagents on the cortical plasmagel structure and furrowing strength of dividing eggs (Arbacia and Chaetopterus). J. Cell Comp. Physiol. 49, 395–435.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Rappaport, R. (1975). The Biophysics of Cleavage and Cleavage of Geometrically Altered Cells. In: Czihak, G. (eds) The Sea Urchin Embryo. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65964-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65964-5_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65966-9

  • Online ISBN: 978-3-642-65964-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics