Problems in Interpreting Unusually Large Burrows

  • Richard G. Bromley
  • H. Allen Curran
  • Robert W. Frey
  • Raymond C. Gutschick
  • Lee J. Suttner


Although marine burrows of unusually large dimensions have long been known in certain areas, they are probably much more widespread in the rock record than is generally recognized. Such burrows constitute a heterogeneous group, having little in common other than “exceptional” size. Yet their size alone unites them in difficulty of interpretation: e.g., densely spaced?dwelling burrows or combined dwelling-escape burrows as much as 12 cm in diameter and 5 m long; vertical dwelling burrows only 0.5 cm in diameter but up to 9 m long; possible escape structures as much as 24 cm in diameter and 3 m long, subsequently penetrated in some cases by secondary burrow-like structures.

Numerous special problems are encountered in the study and interpretation of burrows of these extreme dimensions: (1) field exposure and accessibility, so that the full extent, or a large part, of the structures can be studied; (2) preservation of the burrows in continuity, not merely in places where they pass through certain beds or within concretion horizons; (3) the “fossilization barrier”; our knowledge of comparable modern structures of similar dimensions or of the animals responsible for them is negligible; and (4) the possibility that certain of these unusual structures were formed by physical rather than organic processes; again, our criteria for comparisons are limited.

The examples selected by us—from the Permian of Montana, Idaho, and Wyoming, the Cretaceous and Paleocene of northwestern Europe, and the Pleistocene of North Carolina—are intended primarily (1) to call additional attention to such intriguing structures, and (2) to illustrate some of the problems involved in interpreting their origin and function. Hopefully, future work will solve many of these problems.


Trace Fossil Barrier Island Clay Lining Burrow Wall Vertical Burrow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, J. R. L. 1961. Sandstone-plugged pipes in the lower Old Red Sandstone of Shropshire, England. Jour. Sed. Petrol., 31:325–335.Google Scholar
  2. Annandale, N. 1912. Aged sea anemones. Nature, 89:607.CrossRefGoogle Scholar
  3. Arai, M. N. 1972. The muscular system of Pachycerianthus fimbriatus. Canadian Jour. Zool., 50:311–317.CrossRefGoogle Scholar
  4. Asgaard, U. and R. G. Bromley. 1974. Sporfossiler fra den mellemmiocæne transgression i Søby-Fasterholt området. Dansk Geol. Foren., Årsskrift 1973:11–19.Google Scholar
  5. Barnes, R. D. 1968. Invertebrate zoology (2nd ed.). Philadelphia, Saunders, 743 p.Google Scholar
  6. Belt, E. S. et al. in press. Pleistocene coastal marine sequences, Lee Creek (Texas Gulf) phosphate mine, eastern North Carolina. In C. E. Ray (ed.), The geology and paleontology of the Lee Creek Mine. Smithsonian Contr. Paleobiol., R. Kellogg Mem. Vol.Google Scholar
  7. Boyd, D. W. 1966. Lamination deformed by burrowers in Flathead Sandstone (Middle Cambrian) of central Wyoming. Contr. to Geol., 5:45–53.Google Scholar
  8. Bromley, R. G. 1967. Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Geol. Soc. London, Quart. Jour., 123:157–182.CrossRefGoogle Scholar
  9. Bromley, R. G. et al. in press. Paramoudras: giant flints, long burrows and the early diagenesis of chalks. Kgl. Dansk Vidensk. Selsk., Biol. Skr.Google Scholar
  10. Buckland, W. 1817. Description of the paramoudra, a singular fossil body that is found in the chalk of the north of Ireland. Geol. Soc. London, Trans., (1)4:413–423.CrossRefGoogle Scholar
  11. Chamberlain, C. K. and J. L. Baer. 1973. Ophiomorpha and a new thalassinid burrow from the Permian of Utah. Brigham Young Univ. Geol. Stud., 20(l):79–94.Google Scholar
  12. Clark, E. 1972. The Red Sea’s gardens of eels. Natl. Geogr. Magazine, 142:724–735.Google Scholar
  13. Cressman, E. R. and R. W. Swanson. 1964. Stratigraphy and petrology of the Permian rocks of southwestern Montana. U.S. Geol. Survey, Prof. Paper 313-C:C275-C569.Google Scholar
  14. Curran, H. A. and R. W. Frey. 1973. Pleistocene and recent biogenic sedimentary structures as paleoenvironmental indicators (abs.). Geol. Soc. America, Abs. Prog., 5(7):588.Google Scholar
  15. Curran, H. A. and R. W. Frey. et al. 1973. Pleistocene trace fossils and recent analogues as paleoenvironmental indicators (abs.). Geol. Soc. America, Abs. Prog., 5(5): 391–392.Google Scholar
  16. Dionne, J.-C. and C. Laverdière. 1972. Structure cylindrique verticale dans un dépôt meuble Quaternaire, au nord de Montréal, Québec. Canadian Jour. Earth Sci., 9:528–543.CrossRefGoogle Scholar
  17. Driscoll, E. G. 1969. Animal-sediment relationships of the Coldwater and Marshall Formations of Michigan. In K. S. W. Campbell (ed.), Stratigraphy and paleontology. Canberra, Australian Nat. Univ. Press, p. 337–352.Google Scholar
  18. Felder, W. M. 1971. Een bijzondere vuursteenknol. Grondboor en Hamer, 1971:30–38.Google Scholar
  19. Frey, R. W. 1970a. The lebensspuren of some common marine invertebrates near Beaufort, North Carolina. II. Anemone burrows. Jour. Paleont., 44:308–311.Google Scholar
  20. Frey, R. W. 1970b. Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), west-central Kansas. Univ. Kansas Paleont. Contr., Art. 53, 41 p.Google Scholar
  21. Frey, R. W. and T. V. Mayou. 1971. Decapod burrows in Holocene barrier island beaches and washover fans, Georgia. Senckenbergiana Marit., 3:53–77.Google Scholar
  22. Gableman, J. W. 1955. Cylindrical structures in Permian(?) siltstone, Eagle County, Colorado. Jour. Geol., 63:214–227.CrossRefGoogle Scholar
  23. Gosner, K. L. 1971. Guide to identification of marine and estuarine invertebrates. New York, Wiley-Interscience, 693 p.Google Scholar
  24. Gutschick, R. C. and L. J. Suttner. 1972. Sandstone and chert columns in Permian rocks of southwest Montana: biogenic or inorganic? (abs.). Amer. Assoc. Petrol. Geol., Bull, 56:621.Google Scholar
  25. Hallam, A. and K. Swett. 1966. Trace fossils from the Lower Cambrian Pipe Rock of the north-west Highlands. Scottish Jour. Geol., 2:101–106.CrossRefGoogle Scholar
  26. Hanor, J. S. and N. F. Marshall. 1971. Mixing of sediment by organisms. In B. F. Perkins (ed.), Trace fossils, a field guide. Louisiana State Univ., School Geosci., Misc. Publ. 71–1:127–135.Google Scholar
  27. Howard, J. D. 1971. Trace fossils as paleoecological tools. In J. D. Howard et al., Recent advances in paleoecology and ichnology. Amer. Geol. Inst., Short Course Lect. Notes, p. 184–212.Google Scholar
  28. Ivanov, A. V. 1960. Embranchement des Pogonophores. In P.-P. Grassé (ed.), Traité de Zoologie, 5:1521–1622.Google Scholar
  29. Kennedy, W. J. 1970. Trace fossils in the chalk environment. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:263–282.Google Scholar
  30. Kirby-Smith, W. W. and I. E. Gray. 1971. A checklist of common marine animals of Beaufort, North Carolina. Duke Univ. Marine Lab. Mus., 31 p.Google Scholar
  31. Kranz, P. M. 1970. Bivalve escape behavior as an indication of sedimentary rates and environments (abs.). Geol. Soc. America, Abs. Prog., 2(7): 599.Google Scholar
  32. Lagler, K. F. et al. 1962. Ichthyology. New York, John Wiley, 545 p.Google Scholar
  33. Lyell, C. 1865. Elements of geology (6th ed.). London, John Murray, 794 p.Google Scholar
  34. Mangum, C. P. 1964. Activity patterns in metabolism and ecology of polychaetes. Comp. Biochem. Physiol., 11:239–256.CrossRefGoogle Scholar
  35. McKee, E. D. et al. 1967a. Paleotectonic investigations of the Permian System in the United States. U.S. Geol. Survey, Prof. Paper 515, 271 p.Google Scholar
  36. McKee, E. D. et al. 1967b. Paleotectonic maps of the Permian system. U.S. Geol. Survey, Misc. Geol. Invest., Map 1–450.Google Scholar
  37. McKelvey, V. E. et al. 1959. The Phosphoria, Park City, and Shedhorn Formations in the western phosphate field. U.S. Geol. Survey, Prof. Paper 313-A:A1-A47.Google Scholar
  38. Peake, N. B. and J. M. Hancock. 1961. The Upper Cretaceous of Norfolk. Norfolk Norwich Natural. Soc., Trans., 19:293–339.Google Scholar
  39. Peterson, J. A. 1972. Permian sedimentary facies, southwestern Montana. Montana Geol. Soc., 21 Ann. Field Conf., p. 69–74.Google Scholar
  40. Plessmann, W. 1965. Laterale Gesteinsverformung vor Faltungsbeginn im Unterkarbon des Edersees (Rheinisches Schiefergebirge). Geol. Mitt., 5:271–284.Google Scholar
  41. Reineck, H.-E. and F. Wunderlich. 1968. Classification and origin of flaser and lenticular bedding. Sedimentology, 11:99–104.CrossRefGoogle Scholar
  42. Schäfer, W. 1956. Wirkungen der Benthos-Organismen auf den jungen Schichtverband. Senckenbergiana Leth., 37:183–263.Google Scholar
  43. Schäfer, W. 1972. Ecology and palaeoecology of marine environments. Edinburgh and Chicago, Oliver & Boyd and Univ. Chicago Press, 568 p.Google Scholar
  44. Seilacher, A. 1964. Biogenic sedimentary structures. In J. Imbrie and N. D. Newell (eds.), Approaches to paleoecology. New York, John Wiley, p. 296–316.Google Scholar
  45. Sheldon, R. P. 1963. Physical stratigraphy and mineral resources of Permian rocks in western Wyoming. U.S. Geol. Survey, Prof. Paper 313-B:B47-B271.Google Scholar
  46. Sheldon, R. P. 1964. Paleolatitudinal and paleogeographic distribution of phosphorite. U.S. Geol. Survey, Prof. Paper 501-C:C106-C113.Google Scholar
  47. Sheldon, R. P. 1972. Phosphate deposition seaward of barrier islands at edge of Phosphoria sea in northwest Wyoming (abs.). Amer. Assoc. Petrol. Geol., Bull., 56:653.Google Scholar
  48. Shinn, E. A. 1968. Burrowing in recent lime sediments of Florida and the Bahamas. Jour. Paleont., 42:879–894.Google Scholar
  49. Stanley, S. M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve mollusks—a consequence of mantle fusion and siphon formation. Jour. Paleont., 42:214–229.Google Scholar
  50. Steinich, G. 1972. Endogene Tecktonik in den Unter-Maastricht—Vorkommen auf Jasmund (Rügen). Geologie, 20 (Beiheft 71/72): 1–207.Google Scholar
  51. Valeton, I. 1971. Tubular fossils in the bauxites and the underlying sediments of Surinam and Guyana. Geol. en Mijnbouw, 50:733–741.Google Scholar
  52. Vogel, S. and W. L. Bretz. 1972. Interfacial organisms: passive ventilation in the velocity gradients near surfaces. Science, 175:210–211.CrossRefGoogle Scholar
  53. Walter, M. R. 1972. Technically deformed sand volcanoes in a Precambrian greywacke, Northern Territory of Australia. Jour. Geol. Soc. Australia, 18:395–399.CrossRefGoogle Scholar
  54. Weimer, R. J. and J. H. Hoyt. 1964. Burrows of Callianassa major Say, geologic indicators of littoral and shallow neritic environments. Jour. Paleont., 38:761–767.Google Scholar
  55. Welch, J. S. et al. 1972. Physical and biogenic sedimentary structures as depositional indicators in the Pleistocene of North Carolina (abs.). Geol. Soc. America, Abs. Prog., 4(2): 113.Google Scholar
  56. Yochelson, E. L. 1968. Biostratigraphy of the Phosphoria, Park City, and Shedhorn Formations. U.S. Geol. Survey, Prof. Paper 313-D:D571-D660.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • Richard G. Bromley
    • 1
  • H. Allen Curran
    • 2
  • Robert W. Frey
    • 3
  • Raymond C. Gutschick
    • 4
  • Lee J. Suttner
    • 5
  1. 1.Institut for historisk Geologi og PalæontologiKøbenhavns UniversitetKøbenhavnDenmark
  2. 2.Department of GeologySmith College NorthamptonUSA
  3. 3.Department of GeologyUniversity of GeorgiaAthensUSA
  4. 4.Department of Earth SciencesUniversity of Notre DameNotre DameUSA
  5. 5.Department of GeologyIndiana University BloomingtonUSA

Personalised recommendations