Skip to main content

Borings As Trace Fossils, and the Processes of Marine Bioerosion

  • Chapter
The Study of Trace Fossils

Synopsis

Marine borers are nearly ubiquitous in the modern seabed. Their distinctive excavations provide abundant potential trace fossils, and their general erosional activities (bioerosion) are important factors in marine sedimentation and benthic ecology.

Species of excavators include protozoans, plants, and animals. Those best studied are boring fungi, algae, sponges, sipunculids, polychaetes, gastropods, bivalves, and echinoids; however, several other groups also contain species of borers.

Many excavations in the fossil record are distinctive enough to be identified and named as trace fossils. Rock borings mark ancient shorelines, hardgrounds, and unconformities. Shell borings are useful for paleoecologic and taphonomic reconstructions.

Most borers penetrate for their protection, but in the process they sculpt and significantly bioerode exposed substrates. This process is especially evident on coral reefs and limestone outcrops, because these substrates are very susceptible to biochemical attack.

The mechanisms of penetration are understood for very few borers. Certain borers use solely mechanical processes, whereas others supplement or replace these with chemical means. Although bioerosion is an important natural process, little is known of the rates at which it proceeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahr, W. M. and R. J. Stanton. 1973. The sedimentologic and paleoecologic significance of Lithotrya, a rock boring barnacle. Jour. Sed. Petrol., 43:20–23.

    Google Scholar 

  • Alexandersson, T. 1972. Micritization of carbonate particles: processes of precipitation and dissolution in modern shallow-marine sediments. Geol. Inst. Univ. Uppsala, Bull. (N.S. 3), 7:201–236.

    Google Scholar 

  • Bakus, G. J. 1966. Some relationships of fishes to benthic organisms on coral reefs. Nature, 210:280.

    Article  Google Scholar 

  • Banner, F. T. 1971. A new genus of the Planorbulinidae, an endoparasite of another foraminifer. Rev. Española Micropaleont., 3:113–128.

    Google Scholar 

  • Barnes, H. and J. A. Topinka. 1969. Effect of the nature of the substratum on the force required to detach a common littoral alga. Amer. Zool., 9:753–758.

    Google Scholar 

  • Barnes, J. et al. 1971. Morphology and ecology of the reef front of Aldabra. Zool. Soc. London, Symp., 28:87–114.

    Google Scholar 

  • Barrows, A. L. 1919. The occurrence of a rockboring isopod along the shore of San Francisco Bay, California. Univ. California Publ. Zool., 19:299–316.

    Google Scholar 

  • Bathurst, R. G. C. 1966. Boring algae, micrite envelopes, and lithification of molluscan biosparites. Geol. Jour., 5:15–32.

    Article  Google Scholar 

  • Bergquist, P. R. 1965. The sponges of Micronesia, Part I: the Palau Archipelago. Pacific Sci., 4:123–204.

    Google Scholar 

  • Bertram, G. C. L. 1936. Some aspects of the breakdown of coral at Ghardaga, Red Sea. Zool. Soc. London, Proc. 1936, p. 1011–1026.

    Google Scholar 

  • Biffar, T. A. 1971. The genusCallianassa (Crustacea, Decapoda, Thalassinidea) in south Florida, with keys to the western Atlantic species. Bull. Marine Sci., 21:637–715.

    Google Scholar 

  • Blake, J. A. 1969. Systematics and ecology of shell-boring polychaetes from New England. Amer. Zool., 9:813–820.

    Google Scholar 

  • ——. 1971. Revision of the genus Poly dora from the east coast of North America (Polychaeta: Spionidae). Smithsonian Contr. Zool., 75, 32 p.

    Google Scholar 

  • Boekschoten, G. J. 1966. Shell borings of sessile epibiontic organisms as paleoecological guides (with examples from the Dutch Coast). Palaeogeogr., Palaeoclimatol., Palaeoecol., 2:333–379.

    Article  Google Scholar 

  • ——. 1967. Palaeoecology of some Mollusca from the Tielrode Sands (Pliocene, Belgium). Palaeogeogr., Palaeoclimatol., Palaeoecol., 3:311–362.

    Article  Google Scholar 

  • ——. 1970. On bryozoan borings from the Danian at Fakse, Denmark. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:43–48.

    Google Scholar 

  • Bonar, L. 1936. An unusualAscomycete in the shells of marine animals. Univ. California Publ. Bot., 19:187–194.

    Google Scholar 

  • Boreske, J. R. et al. 1972. A reworked cetacean with clam borings: Miocene of North Carolina. Jour. Paleont., 46:130–139.

    Google Scholar 

  • Bornet, E. and C. Flauhault. 1889. Sur quelques plantes vivant dans le test calcaire des mollusques. Soc. Bot. France, Bull., 36:147–x176.

    Google Scholar 

  • Boyd, D. W. and N. D. Newell. 1972. Taphonomy and diagenesis of a Permian fossil assemblage from Wyoming. Jour. Paleont., 46:1–14.

    Google Scholar 

  • Bradley, W. C. 1956. Carbon-14 date for a marine terrace at Santa Cruz, California. Geol. Soc. America, Bull., 67:675–677.

    Article  Google Scholar 

  • Bromley, R. G. 1967. Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Geol. Soc. London, Quart. Jour., 123:157–182.

    Article  Google Scholar 

  • ——. 1970a. Borings as trace fossils and Entobia cretacea Portlock, as an example. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:49–90.

    Google Scholar 

  • ——. 1970b. Predation and symbiosis in some Upper Cretaceous clionid sponges. Dansk Geol. Foren. Meddr., 19:398–405.

    Google Scholar 

  • ——. 1972. On some ichnotaxa in hard substrates, with a redefinition of Trypanites Mägdefrau. Paläont. Zeitschr., 46: 93–98.

    Google Scholar 

  • ——. and E. Nordmann. 1971. Maastrichtian adherent foraminifera encircling clionid pores. Geol. Soc. Denmark, Bull., 20:362–368.

    Google Scholar 

  • ——. and F. Surlyk. 1973. Borings produced by brachiopod pedicles, fossil and recent. Lethaia, 6:349–365.

    Article  Google Scholar 

  • Cameron, B. 1967. Fossilization of an ancient(Devonian) soft-bodied worm. Science, 155: 1246–1248.

    Article  Google Scholar 

  • ——. 1969. Paleozoic shell-boring annelids and their trace fossils. Amer. Zool., 9:689–703.

    Google Scholar 

  • Cannon, H. G. 1935. On the rock-boring barnacle, Lithotrya valentiana. British Mus. (Nat. Hist.), Sci. Repts., 5:1–17.

    Google Scholar 

  • Carriker, M. R. 1969. Excavation of boreholes by the gastropod, Urosalpinx: an analysis by light and scanning electron microscopy. Amer. Zool., 9:917–934.

    Google Scholar 

  • —— and E. H. Smith. 1969. Comparative calcibiocavitology: summary and conclusions. Amer. Zool., 9:1011–1020.

    Google Scholar 

  • —— et al. (eds.) 1969. Penetration of calcium carbonate substrates by lower plants and invertebrates. Amer. Zool., v. 9, no. 3, ed. 2, 391 p.

    Google Scholar 

  • Cavaliere, A. R. and R. S. Alberte. 1970. Fungi in animal shell fragments. Jour. Elisha Mitchell Sci. Soc., 86:203–206.

    Google Scholar 

  • Cheng, T. C. 1967. Marine molluscs as hosts for symbiosis. In F. S. Russell (ed.), Advances in marine biology, vol. 5. New York, Academic Press, 424 p.

    Google Scholar 

  • Clapp, W. F. and R. Kenk. 1963. Marine borers: an annotated bibliography. Office Naval Res., Dept. Navy, ACR-74, 1136 p.

    Google Scholar 

  • Clarke, J. M. 1921. Organic dependence and disease: their origin and significance. New York State Mus., Bull. 221–222, 113 p.

    Google Scholar 

  • Cloud, P. E., Jr. 1952. Preliminary report on the geology and marine environments of Onotoa Atoll, Gilbert Islands. Atoll Res. Bull. 12, 73 p.

    Google Scholar 

  • ——. 1959. Geology of Saipan, Mariana Islands. Part 4. Submarine topography and shoalwater ecology. U. S. Geol. Surv., Prof. Paper 280-K: K361–K445.

    Google Scholar 

  • Cobb, W, R. 1969. Penetration of calcium carbonate substrates by the boring sponge, Cliona. Amer. Zool., 9:783–790.

    Google Scholar 

  • Cotte, J. 1914. L’association de Clionia viridis (Schmidt) et de Lithophyllum expansum (Phillippi). Compt. Rend. Séanc. Soc. Biol., 76:739–740.

    Google Scholar 

  • Craig, A. K. et al. 1969. The gastropod, Siphonaria pectinata: a factor in destruction of beach rock. Amer. Zool., 9:895–901.

    Google Scholar 

  • Crimes, T. P. and J. C. Harper (eds.). 1970. Trace fossils. Geol. Jour., Spec. Issue 3, 547 p.

    Google Scholar 

  • Dean, D. and J. A. Blake. 1966. Life history of Boccardia hamata (Webster) on the east and west coasts of North America. Biol. Bull., 130:316–330.

    Article  Google Scholar 

  • Delaca, T. E. and J. H. Lipps. 1972. The mechanism and adaptive significance of attachment and substrate pitting in the foraminiferan Rosalina globularis d’Orbigny. Jour. Foraminiferal Res., 2:68–72.

    Article  Google Scholar 

  • Dillon, W. P. and H. B. Zimmerman. 1970. Erosion by biological activity in two New England submarine canyons. Jour. Sed. Petrol., 40:542–547.

    Google Scholar 

  • DiSalvo, L. H. 1969. Isolation of bacteria from the corallum of Porites lobata (Vaughn) and its possible significance. Amer. Zool., 9:735–740.

    Google Scholar 

  • Doran, R., Jr. 1955. Land forms of the southeast Bahamas. Univ. Texas Publ. 5509: 1–38.

    Google Scholar 

  • Dorsett, D. A. 1961. The behavior of Poly dora ciliata (Johnst.). Tube-building and burrowing. Jour. Marine Biol. Assoc. United Kingdom, 41:577–590.

    Article  Google Scholar 

  • Duerden, J. E. 1902. Boring algae as agents in the disintegration of corals. Amer. Mus. Nat. Hist., Bull., 16:323–332.

    Google Scholar 

  • Duncan, P. M. 1876. On some thallophytes parasitic within recent Madreporaria. Royal Soc. London, Proc., 25:238–257.

    Article  Google Scholar 

  • Ebbs, N. K. 1966. The coral-inhabiting polychaetes of the northern Florida reef tract. Part 1. Aphroditidae, Polynoidae, Amphinomidae, Eunicidae, and Lysaretidae. Bull. Marine Sci., 16:485–555.

    Google Scholar 

  • Elias, M. K. 1956. Recent and ancient penetrants. Jour. Paleont., 30:1001.

    Google Scholar 

  • Ellenberger, F. 1947. Le problème lithologique de la craie durcie de Meudon. Bancs-limites et “contacts par racines”: lacune sousmarine ou émersion? Soc. Géol. France, Bull., 17:255–274.

    Google Scholar 

  • Elliott, W. T. and B. Lindsay. 1912. Remarks on some of the boring Mollusca. British Assoc. Advmt. Sci., Rept., 81:433.

    Google Scholar 

  • Emery, K. O. 1946. Marine solution basins. Jour. Geol., 54:209–228.

    Article  Google Scholar 

  • ——. 1960. The sea off southern California. New York, John Wiley, 366 p.

    Google Scholar 

  • ——. 1963. Organic transportation of marine sediments. In M. N. Hill (ed.), The sea. New York, Wiley-Interscience, p. 776–793.

    Google Scholar 

  • Evans, J. W. 1968a. The effect of rock hardness and other factors on the shape of the burrow of the rock-boring clam, Penitella penita. Palaeogeogr., Palaeoclimatol., Palaeoecol., 4:271–278.

    Article  Google Scholar 

  • ——. 1968b. The role of Penitella penita (Conrad 1837) (Family Pholadidae) as eroders along the Pacific coast of North America. Ecology, 49:156–159.

    Article  Google Scholar 

  • ——. 1968c. A theoretical consideration of crowding and its effects on the biology of the rock-boring clam, Penitella penita. 2nd Internat. Congr. Marine Corrosion, Fouling, 1968, Athens, Greece.

    Google Scholar 

  • ——. 1969. Borers in the shell of the sea scallop, Placopecten magellanicus. Amer. Zool., 9:775–782.

    Google Scholar 

  • ——. 1970a. A method for measurement of the rate of intertidal erosion. Bull. Marine Sci., 20:305–314.

    Google Scholar 

  • ——. 1970b. Palaeontological implications of a biological study of rock-boring clams (Family Pholadidae). In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:127–140.

    Google Scholar 

  • Farran, C. 1851. Thalassema neptuni. Ann. Mag. Nat. Hist., 7:156.

    Google Scholar 

  • Fewkes, J. W. 1890. On excavations made in rocks by sea urchins. Amer. Naturalist, 21:1–21.

    Google Scholar 

  • Fremy, P. 1945. Contribution a la physiologie des thallophytes marins perforant et cariant les roches calcaires et les coquilles. Ann. Inst. Océanogr., 22:107–144.

    Google Scholar 

  • Frey, R. W. 1973. Concepts in the study of biogenic sedimentary structures. Jour. Sed. Petrol., 43:6–19.

    Google Scholar 

  • Gardiner, J. S. 1902. The action of boring and sand-feeding organisms. In J. S. Gardiner (ed.), The fauna and geography of the Maldive and Laccadive Archipelagoes. New York, Cambridge Univ. Press, 1:333–341.

    Google Scholar 

  • ——. 1903. The origin of coral reefs as shown by the Maldives. Amer. Jour. Sci., 16:203–213.

    Article  Google Scholar 

  • Gatrall, M. and S. Golubic. 1970. Comparative study on some Jurassic and recent endolithic fungi using scanning electron microscope. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:167–178.

    Google Scholar 

  • Ginsburg, R. N. 1953. Intertidal erosion on the Florida Keys. Bull. Marine Sci., 3:55–69.

    Google Scholar 

  • Gohar, H. A. F. and G. N. Soliman. 1963. On biology of three coralliophilids boring in living corals. Mar. Biol. Sta. Al-Ghardaga, Red Sea, Publ., 12:99–126.

    Google Scholar 

  • Golubic, S. 1969. Distribution, taxonomy, and boring patterns of marine endolithic algae. Amer. Zool., 9:747–751.

    Google Scholar 

  • Goreau, T. F. and W. D. Hartman. 1963. Boring sponges as controlling factors in the formation and maintenance of coral reefs. In R. F. Sognnaes (ed.), Mechanisms of hard tissue destruction. Amer. Assoc. Advmt. Sci., Publ. 75, p. 25–54.

    Google Scholar 

  • —— et al. 1969. On a new commensal mytilid (Mollusca, Bivalvia) opening into the coelenteron of a Fungia scutaria (Coelenterata). Jour. Zool. London, 158:171–195

    Article  Google Scholar 

  • —— et al. 1971. On feeding and nutrition in Fungiacava eilatensis (Bivalvia, Mytilidae), a commensal living in funguid corals. Jour. Zool. London, 160:159–172.

    Article  Google Scholar 

  • Gripp, K. 1967. Poly dor a biforans n. sp., ein in Belemniten—Rostrum bohrender Wurm der Kreidezert. Meynicana, 17:9–10.

    Google Scholar 

  • Haas, E. 1942. The habits and life of some west coast bivalves. Nautilus, 55:109–113.

    Google Scholar 

  • Haigler, S. A. 1969. Boring mechanism of Polydora websteri inhabiting Crassostrea virginica. Amer. Zool., 9:821–828.

    Google Scholar 

  • Häntzschel, W. 1962. Trace fossils and problematica. In R. C. Moore (ed.), Treatise on invertebrate paleontology, Pt. W, Miscellanea. Lawrence, Kan., Geol. Soc. America and Univ. Kansas Press, p. W177-W245.

    Google Scholar 

  • Hartman, O. 1954. Marine annelids from the northern Marshall Islands. U.S. Geol. Surv., Prof. Paper 260-Q:Q619–Q644.

    Google Scholar 

  • ——. 1968. Atlas of the errantiate polychaetous annelids from California. Allan Hancock Found., 828 p.

    Google Scholar 

  • ——. 1969. Atlas of the sedentariate poly-chaetous annelids from California. Allan Hancock Found., 812 p.

    Google Scholar 

  • Hartman, W. D. 1957. Ecological niche differentiation in the boring sponges (Clionidae). Evolution, 11:294–297.

    Article  Google Scholar 

  • Hecker, R. T. 1970. Palaeoichnological research in the Palaeontological Institute of the Academy of Sciences of the USSR. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:215–226.

    Google Scholar 

  • Hessland, I. 1949. Investigations of the lower Ordovician of the Siljan District, Sweden. II. Lower Ordovician penetrative and enveloping algae of the Siljan District. Geol. Inst. Univ. Uppsala, Bull., 33:409–428.

    Google Scholar 

  • Higgens, C. G. 1956. Rock-boring isopod. Geol. Soc. America, Bull., 67:1770.

    Google Scholar 

  • ——. 1960. Ohlson Ranch Formation, Pliocene, northwestern Sonoma County, California. Univ. California Publ. Geol. Sci., 36:197–232.

    Google Scholar 

  • Hodgkin, E. P. 1964. Rate of erosion of intertidal limestone. Zeitschr. Geomorph., 8: 385–392.

    Google Scholar 

  • Hodgkin, N. M. 1962. Limestone boring by the mytilid Lithophag. Veliger, 4:123–129.

    Google Scholar 

  • Hölder, H. and R. Hollmann. 1969. Bohrgänge mariner Organismen in jurassischen Hart und Felsböden. Neues Jahrb. Geol. Paläont., Abh., 133:79–88.

    Google Scholar 

  • Hopkins, S. H. 1956. Notes on the boring sponges in Gulf Coast estuaries and their relation to salinity. Bull. Marine Sci., 6:44–58.

    Google Scholar 

  • ——. 1962. Distribution of species of Cliona (boring sponge) on the eastern shore of Virginia in relation to salinity. Chesapeake Sci., 3:121–124.

    Article  Google Scholar 

  • Hoskin, C. M. 1966. Coral pinnacle sedimentation, Alacran Reef Lagoon, Mexico. Jour. Sed. Petrol., 36:1058–1074.

    Google Scholar 

  • Hunt, M. 1969. A preliminary investigation of the habits and habitat of the rock-boring urchinEchinometra lacunter near Devonshire Bay, Bermuda. In R. N. Ginsburg and P. G. Garrett (eds.), Seminar on organism-sediment interrelationships. Bermuda Biol. Sta. Res., Spec. Publ. 2, 153 p.

    Google Scholar 

  • Hunter, W. R. 1949. The structure and behavior of Hiatella gallicana (Lamarck) and H. arctica (L.) with special reference to the boring habit. Royal Soc. Edinburgh, Proc., (B), 63:271–289.

    Google Scholar 

  • Hyman, L. H. 1959. The invertebrates (vol. 5). Smaller coelomate groups. New York, McGraw-Hill, 783 p.

    Google Scholar 

  • Jaccarini, V. et al. 1968. The pallial glands and rock boring in Lithophaga lithophaga (Lammellibranchia, Mytilidae). Jour. Zool. London, 154:397–401.

    Article  Google Scholar 

  • Jehu, T. J. 1918. Rock-boring organisms as agents in coast erosion. Scottish Geogr. Magazine, 34:1–11.

    Article  Google Scholar 

  • Jones, M. L. 1969. Boring of shell by Coabangia in freshwater snails of Southeast Asia. Amer. Zool., 9:829–835.

    Google Scholar 

  • Joysey, K. A. 1959. Probable cirripede, phoronid, and echiuroid burrows within a Cretaceous echinoid test. Palaeontology, 1: 397–400.

    Google Scholar 

  • Kaye, C. A. 1959. Shoreline features and Quaternary shoreline changes, Puerto Rico. U.S. Geol. Surv., Prof. Paper 317-B, 140 p.

    Google Scholar 

  • Kennedy, W. J. and H. C. Klinger. 1972. Hiatus concretions and hardground horizons in the Cretaceous of Zululand. Palaeontology, 15:539–549.

    Google Scholar 

  • Kern, J. P. et al. 1974. A new fossil spionid tube, Pliocene and Pleistocene of California and Baja California. Jour. Paleont., 48:978–982.

    Google Scholar 

  • Kohlmeyer, J. 1969. The role of marine fungi in the penetration of calcareous substances. Amer. Zool., 9:741–746.

    Google Scholar 

  • Korringa, P. 1951. The shell of Ostrea edulis as a habitat: observations on the epifauna of oysters, living in Oosterschelde, Holland, with some notes on polychaete worms occurring there and in other habitats. Arch. Néerl. Zool., 10:32–152.

    Article  Google Scholar 

  • ——. 1952. Recent advances in oyster biology. Quart. Rev. Biol., 27:266–308, 339–365.

    Article  Google Scholar 

  • Kühnelt, W. 1930. Bohrmuschelstudien. I. Palaeobiologica, 3:53–91.

    Google Scholar 

  • Kühnelt, W. 1933. Bohrmuschelstudien. II. Palaeobiologica, 5:371–408.

    Google Scholar 

  • Lamy, E. and M. André. 1937. Annélides perforants les coquilles de mollusques. Compt. Rend. 12th Internai. Congr. Zool., Lisbon 1935, p. 946–948.

    Google Scholar 

  • Lawrence, D. R. 1969. The use of clionid sponges in paleoenvironmental analyses. Jour. Paleont., 43:539–543.

    Google Scholar 

  • Lewis, J. B. 1960. The fauna of the rocky shores of Barbados, West Indies. Canadian Jour. Zool., 38:391–435.

    Article  Google Scholar 

  • Lönöy, N. 1954. A comparative study of Phoronis ovalis Wright from Norwegian, Swedish, and Brazilian waters. Univ. Bergen, Naturv. Rekke, 1953, 2:1–29.

    Google Scholar 

  • Lowenstam, H. A. 1962a. Goethite in radular teeth of recent marine gastropods. Science, 137:279–280.

    Article  Google Scholar 

  • ——. 1962b. Magnetite in denticle capping in recent chitons (Polyplacophora). Geol. Soc. America, Bull., 73:435–438.

    Article  Google Scholar 

  • ——. 1971. Opal precipitation by marine gastropods (Mollusca). Science, 171:487–490.

    Article  Google Scholar 

  • Macfadyen, W. A. 1930. The undercutting of coral reef limestone on the coast of some islands in the Red Sea. Geogr. Jour., 75: 27–34.

    Article  Google Scholar 

  • MacGinitie, G. E. 1935. Ecological aspects of a California marine estuary. Amer. Midland Natur., 16:629–765.

    Article  Google Scholar 

  • Mägdefrau, K. 1932. Über einege Bohrgänge aus dem Unteren Muschelkalk von Jena. Paläont. Zeitschr., 14:150.

    Google Scholar 

  • Marcus, E. du B. R. 1949. Phoronis ovalis from Brazil. Zoologia, 14:157–171.

    Google Scholar 

  • Märkel, K. and R. Maier. 1967. Über die Beweglichkeil von Seeizeln. Naturwissensschaften, 53:535.

    Article  Google Scholar 

  • Marsden, J. R. 1962. A coral-eating polychaete. Nature, 193:598.

    Article  Google Scholar 

  • Matthews, R. K. 1966. Genesis of recent lime mud in southern British Honduras. Jour. Sed. Petrol., 36:428–454.

    Google Scholar 

  • McCrevey, J. A. 1974. Fossil traces of the Whitestone Limestone and associated strata of the Walnut Formation, Lower Cretaceous, south-central Texas. Unpubl. M.A. Thesis, Rice Univ., 105 p.

    Google Scholar 

  • McHuron, E. J. 1972. Characteristic morphology of modern invertebrate borers and borings: paléontologie implications. Geol. Soc. America, Abs. Prog., 4(4):285.

    Google Scholar 

  • McLean, R. F. 1967. Erosion of burrows in bedrock in the tropical sea urchin, Echinometra lucunter. Canadian Jour. Zool., 45:586–588.

    Article  Google Scholar 

  • ——. 1972. Nomenclature for rock-destroying organisms. Nature, 240:490.

    Article  Google Scholar 

  • Menzies, R. J. 1957. Marine borers (annotated bibliography). In J. W. Hedgpeth (ed.), Treatise on marine ecology and paleoecology, vol. I, Ecology. Geol. Soc. America, Mem. 67(1): 1029–1034.

    Google Scholar 

  • Muraoka, J. S. 1965. Deep-ocean boring mollusk. Bioscience, 15:191.

    Article  Google Scholar 

  • Nadson, G. A. 1927a. Les algues perforantes de la mer Noire. Compt. Rend. Acad. Sei., Paris, 184:896–898.

    Google Scholar 

  • ——. 1927b. Les algues perforantes, leur distribution et leur rôle dans la nature. Compt. Rend. Acad. Sci., Paris, 184:1015–1017.

    Google Scholar 

  • ——. 1932. Contribution à l’étude des algues perforantes. Acad. Sei. U.S.S.R., Bull., 7:833–845.

    Google Scholar 

  • Nassonow, N. 1883. Zur Biologie und Anatomie der Cliona. Zeitschr. Wiss. Zool., 39:295–308.

    Google Scholar 

  • Neumann, A. C. 1966. Observations on coastal erosion in Bermuda and measurements of the boring rate of the sponge, Cliona lampa. Limnol. Oceanogr., 11:92–108.

    Article  Google Scholar 

  • Newall, G. 1970. A symbiotic relationship between Lingula and the coral Heliolites in the Silurian. In T. P. Crimes and J. C. Harper (eds.,), Trace fossils. Geol. Jour., Spec. Issue 3:335–345.

    Google Scholar 

  • Newell, N. D. 1954. Reefs and sedimentary processes of Raroia. Atoll Res. Bull., 36:1–35.

    Google Scholar 

  • ——. 1956. Geological reconnaissance of Raroia (Kon Tiki) Atoll, Tuamoto Archipelago. Amer. Mus. Nat. Hist., Bull., 109:311–372.

    Google Scholar 

  • ——. and J. Imbrie. 1955. Biological reconnaissance in the Bimini area, Great Bahama Bank. New York Acad. Sci., Trans., 18:3–14.

    Google Scholar 

  • Newmann, W. A. et al. 1969. Cirripedia. In R. C. Moore (ed.), Treatise on invertebrate paleontology, Pt. R, Arthropoda. Lawrence, Kan., Geol. Soc. America and Univ. Kansas Press, p. R206-R295.

    Google Scholar 

  • North, W. J. 1954. Size distribution, erosive activities, and gross metabolic efficiency of the marine intertidal snails, Littorina plan axis and L. scutulata. Biol. Bull., 106:185–197.

    Article  Google Scholar 

  • Odum, H. T. and E. P. Odum. 1955. Trophic structure and productivity of a windward coral reef community on Eniwetok Atoll. Ecol. Monogr., 25:291–320.

    Article  Google Scholar 

  • Old, M. C. 1941. The taxonomy and distribution of boring sponges (Clionidae) along the Atlantic coast of North America. Chesapeake Biol. Sta., Publ. 44, 30 p.

    Google Scholar 

  • Ormond, R. F. G. and A. C. Campbell. 1971. Observations on Acanthaster planci and other coral reef echinoderms in the Sudanese Red Sea. In D. R. Stoddart and C. M. Yonge (eds.), Regional variation in Indian Ocean coral reefs. Zool. Soc. London, Symp., 28:433–454.

    Google Scholar 

  • Osier, E. 1826. On burrowing and boring marine animals. Royal Soc. London, Philos. Trans., 116:342–371.

    Article  Google Scholar 

  • Otter, G. W. 1932. Rock-burrowing echinoids. Biol. Rev. (Biol. Proc. Cambridge Philos. Soc.), 7:89–107.

    Article  Google Scholar 

  • ——. 1937. Rock-destroying organisms in relation to coral reefs. British Mus. (Nat. Hist.), Great Barrier Reef Expedit. 1928–1929, Sci. Rept. l(12):323–352.

    Google Scholar 

  • Perkins, B. F. 1971. Traces of rock-boring organisms in the Comanche Cretaceous of Texas. In B. F. Perkins (ed.), Trace fossils, a field guide. Louisiana State Univ., School Geosci., Misc. Pubi. 71–1:137–147.

    Google Scholar 

  • Perkins, R. D. and S. D. Halsey. 1971. Geologic significance of microboring fungi and algae in Carolina shelf sediments. Jour. Sed. Petrol., 41:843–853.

    Google Scholar 

  • Poag, C. W. 1969. Dissolution of molluscan calcite by the attached foraminifer Vasiglobulina, new genus (Vasiglobulininae, new subfamily). Tulane Stud. Geol. Paleont., 7:45–72.

    Google Scholar 

  • ——. 1971. Notes on the morphology and habit of Vasiglobulina alabamensis (Foraminiferida). Jour. Paleont., 45:961–962.

    Google Scholar 

  • Porter, C. L. and G. Zebrowski. 1937. Lime loving molds from Australian sands. Mycologia, 29:252–257.

    Article  Google Scholar 

  • Purdy, E. G. and L. S. Kornicker. 1958. Algal disintegration of Bahamian limestone coasts. Jour. Geol., 66:97–99.

    Article  Google Scholar 

  • Radwański, A. 1964. Boring animals in Miocene littoral environments of southern Poland. Acad. Pol. Sci. (Sér. Sci. Géol. Géogr.), Bull., 12:57–62.

    Google Scholar 

  • ——. 1965. Additional notes on Miocene littoral structures of southern Poland. Acad. Pol. Sci (Sér. Sci. Géol. Géogr.), Bull., 13:167–173.

    Google Scholar 

  • ——. 1968. Tortonian cliff deposits at Zahorska Bystrica near Bratislava (southern Slovakia). Acad. Pol. Sci. (Sér. Sci. Géol. Géogr.) Bull., 16:97–102.

    Google Scholar 

  • ——. 1970. Dependence of rock-borers and burrowers on the environmental conditions within the Tortonian littoral zone of southern Poland. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:371–390.

    Google Scholar 

  • Ray, D. L. (ed.) 1959. Marine boring and fouling organisms. Seattle, Univ. Washington Press, 536 p.

    Google Scholar 

  • Raynaud, J-F. 1969. Lamellibranches lithophages. Application à l’étude d’un conglomérat à cailloux perforés du Miocène du midi de la France. Travaux Lab. Paléont. Orsay, Univ. Paris, 75 p.

    Google Scholar 

  • Reidl, J. M. R. 1969. Sea caves. Oceans, 1(4): 32–43.

    Google Scholar 

  • Revelle, R. and R. W. Fairbridge. 1957. Carbonate and carbon dioxide. In J. W. Hedgpeth (ed.), Treatise on marine ecology and paleoecology, vol. 1, Ecology. Geol. Soc. America, Mem. 67(l):239–296.

    Google Scholar 

  • Rice, M. E. 1969. Possible boring structures of sipunculids. Amer. Zool., 9:803–812.

    Google Scholar 

  • Richards, R. P. and C. W. Shabica. 1969. Cylindrical living burrows in Ordovician dalmanellid brachiopod beds. Jour. Paleont., 43:838–841.

    Google Scholar 

  • Ricketts, E. F. and J. Calvin. 1968. Between Pacific Tides (4th ed., revised by J. W. Hedgpeth). Stanford, Calif., Stanford Univ. Press, 614 p.

    Google Scholar 

  • Robertson, P. B. 1963. A survey of the marine rock-boring fauna of southeast Florida. Unpubl. M. S. Thesis, Inst. Mar. Sci., Univ. Miami, 167 p.

    Google Scholar 

  • Rodda, P. U. and W. L. Fisher. 1962. Upper Paleozoic acrothoracic barnacles from Texas. Texas Jour. Sci., 14:460–479.

    Google Scholar 

  • Rodriguez, J. and R. C. Gutschick. 1970. Late Devonian-Early Mississippian ichnofossils from western Montana and northern Utah. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:407–438.

    Google Scholar 

  • Roniewicz, P. 1970. Borings and burrows in the Eocene littoral deposits of the Tatra Mountains, Poland. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:439–446.

    Google Scholar 

  • Rose, P. R. 1970. Stratigraphic interpretation of submarine versus subaerial discontinuity surfaces: an example from the Cretaceous of Texas. Geol. Soc. America, Bull., 81:2787–2798.

    Article  Google Scholar 

  • ——. 1972. Edwards Group, surface and subsurface, central Texas. Bur. Econ. Geol., Univ. Texas, Rept. Invest. 74, 198 p.

    Google Scholar 

  • Rowland, R. W. and D. M. Hopkins. 1971. Comments on the use of Hiatella arctica for determining Cenozoic sea temperatures. Palaeogeog., Palaeoclimatol., Palaeoecol., 9:59–64.

    Article  Google Scholar 

  • Rudwick, M. J. S. 1965. Ecology and paleoecology. In R. C. Moore (ed.), Treatise on invertebrate paleontology, Pt. H, Brachiopoda. Lawrence, Kan., Geol. Soc. America and Univ. Kansas Press, p. H199-H214.

    Google Scholar 

  • Rützler, K. 1971. Bredin-Archbold-Smithsonian biological survey of Dominica: burrowing sponges, genus Siphonodictyon Bergquist, from the Caribbean. Smithsonian Contr. Zool., 77, 37 p.

    Google Scholar 

  • Santeson, R. 1939. Die Geologische Bedeutung von Bohr-Organismen in tierischen Hartteilen, aufgezeigt an Balaniden-Schill der Innenjade. Senckenbergiana Leth., 20:304–313.

    Google Scholar 

  • Sàra, M. and L. Liaci. 1964. Symbiotic association between zooxanthellae and two marine sponges of the genus Cliona. Nature, 203:321.

    Article  Google Scholar 

  • Scholl, D. W. et al. 1970. The structure and origin of the large submarine canyons of the Bering Sea. Marine Geol., 8:187–210.

    Article  Google Scholar 

  • Schroeder, J. H. 1972. Calcified filaments of an endolithic alga in recent Bermuda reefs. Neues Jahrb. Geol. Paläont., Mb., 1972:16–33.

    Google Scholar 

  • Scoffin, T. P. 1972. Fossilization of Bermuda patch reefs. Science, 178:1280–1282.

    Article  Google Scholar 

  • Scott, R. B. et al. 1972. Manganese crusts of the Atlantic fracture zone. EOS, Amer. Geophys. Union, Trans., 53:529.

    Google Scholar 

  • Seilacher, A. 1968. Swimming habits of belemnites—recorded by boring barnacles. Palaeogeogr., Palaeoclimatol., Palaeoecol., 4:279–285.

    Article  Google Scholar 

  • Seilacher, A. 1969. Paleoecology of boring barnacles. Amer. Zool., 9:705–719.

    Google Scholar 

  • Sewell, R. B. S. 1926. A study ofLithotrya nicobarica Reinhardt. Records, Indian Mus. (Calcutta), 28:269–330.

    Google Scholar 

  • Shinn, E. A. 1969. Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentology, 12:109–144.

    Article  Google Scholar 

  • Shipley, A. E. 1902. Sipunculoidea, with an account of a new genus Lithocrosiphon. In J. S. Gardiner (ed.), The fauna and geography of the Maldive and Laccadive Archipelagoes. New York, Cambridge Univ. Press, 1:131–140.

    Google Scholar 

  • Silén, L. 1946. On two new groups of Bryozoa living in shells of molluscs. Ark. Zool., 38B: 1–7.

    Google Scholar 

  • Silén, L. 1948. On the anatomy and biology of Penetrantiidae and Immergentiidae (Bryozoa). Ark. Zool., 40A: 1–48.

    Google Scholar 

  • Sliter, W. V. 1965. Laboratory experiments on the life cycle and ecologic controls of Rosalina globularis d’Orbigny. Jour. Protozool., 12:210–215.

    Google Scholar 

  • Sluiter, C. P. 1891. Die Evertebraten aus der Sammlung des Königlichen Naturwissenschaftlichen Vereins in Niederländisch Indien in Batavia. III. Die Gephyreen. Natuurk. Tijdschr. Nederlandsch-Indie, 50:102–125.

    Google Scholar 

  • Smarsh, A. et al. 1969. Carbonic anhydrase in the accessory boring organ of the gastropod, Urosalpinx. Amer. Zool., 9:967–982.

    Google Scholar 

  • Smith, E. H. 1969. Functional morphology of Penitella conradi relative to shell penetration. Amer. Zool., 9:869–880.

    Google Scholar 

  • Sognnaes, R. F. (ed.) 1963. Mechanisms of hard tissue destruction. Amer. Assoc. Advmt. Sci., Publ. 75, 764 p.

    Google Scholar 

  • Sohl, N. F. 1969. The fossil record of shell boring by snails. Amer. Zool., 9:725–734.

    Google Scholar 

  • Soliman, G. N. 1969. Ecological aspects of some coral-boring gastropods and bivalves of the northwestern Red Sea. Amer. Zool., 9:887–894.

    Google Scholar 

  • Soule, J. D. and D. F. Soule. 1969. Systematics and biogeography of burrowing bryozoans. Amer. Zool., 9:791–802.

    Google Scholar 

  • Stephenson, W. 1961. Experimental studies on the ecology of intertidal environments at Heron Island. II. The effect of substratum. Australian Jour. Mar. Freshw. Res., 12:164–176.

    Article  Google Scholar 

  • Storr, J. F. 1964. Ecology and oceanography of the coral-reef tract, Abaco Island, Bahamas. Geol. Soc. America, Spec. Paper 79, 98 p.

    Google Scholar 

  • Swinchatt, J. P. 1969. Algal boring: a possible depth indicator in carbonate rocks and sediments. Geol. Soc. America, Bull., 80:1391–1396.

    Article  Google Scholar 

  • Taylor, B. J. 1971. Thallophyte borings in phosphatic fossils from the Lower Cretaceous of southeast Alexander Island, Antarctica. Palaeontology, 14:294–302.

    Google Scholar 

  • Teichert, C. 1945. Parasitic worms in Permian brachiopod shells in Western Australia. Amer. Jour. Sci., 243:197–209.

    Article  Google Scholar 

  • Thornton, I. W. B. 1956. Diurnal migrations of the echinoid Diadema setosum (Leske). British Jour. Animal Behavior, 4:143–146.

    Article  Google Scholar 

  • Todd, R. 1965. A new Rosalina (Foraminifera) parasitic on a bivalve. Deep-Sea Res., 12:831–837.

    Google Scholar 

  • Tomlinson, J. T. 1953. A burrowing barnacle of the genus Trypetesa (Order Aero thoracica). Jour. Washington Acad. Sci., 43:373–381.

    Google Scholar 

  • Tomlinson, J. T. 1969a. The burrowing barnacles (Cirripedia, Order Aero thoracica). U. S. Nat. Mus., Bull., 296:1–162.

    Article  Google Scholar 

  • Tomlinson, J. T. 1969b. Shell-burrowing barnacles. Amer. Zool., 9:837–840.

    Google Scholar 

  • Topsent, É. 1887. Contribution à l’étude des Clionides. Arch. Zool. Expér. Gén., (2)5, Sup., Mem. 4, 165 p.

    Google Scholar 

  • Turner, R. D. 1954. The family Pholadidae in the western Atlantic and the eastern Pacific, Part I—Pholadinae. Johnsonia, 3:1–63.

    Google Scholar 

  • Turner, R. D. 1955. The family Pholadidae in the western Atlantic and eastern Pacific, Part II—Martesiinae, Jouannetiinae and Xylophaginae. Johnsonia, 3:65–160.

    Google Scholar 

  • Turner, R. D. 1967. The Xylophaginae and Teredinidae—a study in contrasts. Amer. Malacol. Union, Ann. Rept. 1967:46–48.

    Google Scholar 

  • Turner, R. D. and K. J. Boss. 1962. The genusLithophaga in the western Atlantic. Johnsonia, 4:81–116.

    Google Scholar 

  • Umbgrove, J. H. F. 1947. Coral reefs of the East Indies. Geol. Soc. America, Bull., 58:729–778.

    Article  Google Scholar 

  • Utinomi, H. 1953. Coral-dwelling organisms as destructive agents of corals. Pan-Pacific Sei. Congr., Auckland, Proc., Pt. 4, Zool., 533 p.

    Google Scholar 

  • Voigt, E. 1970. Endolithische Wurm-Tunnelbauten (Lapispecus caniculus n. g. n. sp. und Dodecaceria [?] sp.) in Brandungsgeröllen der oberen Kreide im nördlichen Harzvorlande. Geol. Rundschau, 60:355–380.

    Article  Google Scholar 

  • Voigt, E. 1972. Uber Talpina ramosa v. Hagenow 1840, ein wahr scheinlich zu den Phoronidea gehöriger Bohr Organismus aus der oberen Kreide. Nachr. Akad. Wiss. Göttingen II. Math.-Phys. Kl., 1972: 93–126.

    Google Scholar 

  • Voigt, E. and J. D. Soule. 1973. Cretaceous burrowing bryozoans. Jour. Paleont., 47:21–33.

    Google Scholar 

  • Warburton, F. E. 1958. The manner in which the sponge Cliona bores into calcareous objects. Canadian Jour. Zool., 36:555–562.

    Article  Google Scholar 

  • Warme, J. E. 1970. Traces and significance of marine rock borers. In T. P. Crimes and J. C. Harper (eds.), Trace fossils. Geol. Jour., Spec. Issue 3:515–526.

    Google Scholar 

  • Warme, J. E. 1971. Biological energy in erosion and sedimentation, and animal-sediment interrelationships. In J. D. Howard etal., Recent advances in paleoecology and ichnology. Amer. Geol. Inst., Short Course Lect. Notes, p. 55–72.

    Google Scholar 

  • Warme, J. E. and N. F. Marshall. 1969. Marine borers in calcareous terrigenous rocks of the Pacific Coast. Amer. Zool., 9:765–774.

    Google Scholar 

  • Warme, J. E. et al. 1971. Submarine canyon erosion: contribution of marine rock burrowers. Science, 173:1127–1129.

    Article  Google Scholar 

  • Warmke, G. L. and R. T. Abbott. 1962. Caribbean seashells. Wynnewood, Pa., Livingston Publ. Co., 348 p.

    Google Scholar 

  • Wiedemann, H. U. 1972. Shell deposits and shell preservation in Quaternary and Tertiary estuarine sediments in Georgia, U.S.A. Sediment. Geol., 7:103–125.

    Article  Google Scholar 

  • Yonge, C. M. 1955. Adaptation to rock boring in Botula and Lithophaga (Lamellibraiichia, Mytilidae) with a discussion on the evolution of this habit. Micros. Sci., Quart. Jour., 96:383–410.

    Google Scholar 

  • Yonge, C. M. 1963a. The biology of coral reefs. In F. S. Russell (ed.), Advances in marine biology, v. 1. New York, Academic Press, p. 209–260.

    Google Scholar 

  • Yonge, C. M. 1963b. Rock-boring organisms. In R. F. Sognnaes (ed.), Mechanisms of hard tissue destruction. Amer. Assoc. Advmt. Sci., Publ. 75:1–24.

    Google Scholar 

  • Yonge, C. M. 1964. Rock borers. Sea Frontiers, 10:106–116.

    Google Scholar 

  • Zankl, H. and J. H. Schroeder. 1972. Interaction of genetic processes in Holocene reefs off North Eleuthera Island, Bahamas. Geol. Rundschau, 61:520–541.

    Article  Google Scholar 

  • Zebrowski, G. 1936. New genera of Cladochytriaceae. Ann. Missouri Bot. Garden., 23:553–564.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Warme, J.E. (1975). Borings As Trace Fossils, and the Processes of Marine Bioerosion. In: Frey, R.W. (eds) The Study of Trace Fossils. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-65923-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-65923-2_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-65925-6

  • Online ISBN: 978-3-642-65923-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics