Micas in Macroscopic Forms

  • E. W. Radoslovich


The micas are very important mineralogical components of a wide range of agriculturally significant soils. For example, the red-brown earths in Australia cover large areas of the most productive wheat-growing country. Their clay mineralogy has been systematically studied by Radoslovich [1958], who showed that illitic minerals generally make up from 40 to 60% of the clay fraction, which is itself the major fraction of the whole soil. This kind of result would be typical for many soils in the main agricultural zones of the world. The micaceous clay minerals in such soils are important because of their chemistry (e.g., as sources of nutrient elements) and because of their colloidal properties (e.g., their large surface areas which may be highly reactive). Their platy morphology contributes to the physical properties of many soils having a moderate to heavy texture—e.g., the formation of “cutans” as studied by micropedologists (Brewer [1964]).


Octahedral Site Layer Silicate Interlayer Cation Tetrahedral Group Macroscopic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, S. W., P. M. Hurley, H. W. Fairbairn, and W. H. Pinson, 1962. K-Ar dating of sedimentary illite polytypes. Bull. Geol. Soc. Am. 73:1167.CrossRefGoogle Scholar
  2. Bassett, W. A., 1960. Role of hydroxyl orientation in mica alteration. Bull. Geol. Soc. Am. 71:449.CrossRefGoogle Scholar
  3. Bernai, J. D., 1963. The importance of geometrical factors in the structure of matter. Soviet Physics—Crystallography (in transl.) 7:410.Google Scholar
  4. Bloss, F. D., G. V. Gibbs, and D. Cummings, 1963. Polymorphism and twinning in synthetic fluorophlogopite. J. Geol. 71:537.CrossRefGoogle Scholar
  5. Bragg, Sir L. and G. F. Claringbull, 1965. Crystal Structures of Minerals. London: G. Bell and Sons.Google Scholar
  6. Brewer, R., 1964. Fabric and Mineral Analysis of Soils. New York: Wiley.Google Scholar
  7. Brindley, G. W., and D. M. C. MacEwan, 1953. Structural aspects of the mineralogy of clays and related silicates. Ceramics; a symposium. Brit. Cer. Soc. 15.Google Scholar
  8. Brown. G., 1951. In The X-ray Identification and Crystal Structures of Clay Minerals. G. W. Brindley, ed. London: The Mineralogical Society of London, p. 160.Google Scholar
  9. —, 1955. The effect of chemical composition on (001) intensities of micas and chlorites. Min. Mag. 30:657.CrossRefGoogle Scholar
  10. —, ed. 1961. The X-ray Identification and Crystal Structures of Clay Minerals. London: Mineralogical Society of London.Google Scholar
  11. —, 1965. Significance of recent structure determinations of layer silicates for clay studies. Clay Miner. 6:73.CrossRefGoogle Scholar
  12. —, and K. Norrish, 1952. Hydrous micas. Mineral Mag. 29:929.CrossRefGoogle Scholar
  13. Buerger, M. J., 1960. Crystal-Structure Analysis. New York: Wiley.Google Scholar
  14. —, 1961. Polymorphism and phase transformations. Fortschr. Miner. 39:9.Google Scholar
  15. Burnham, C. W., and E. W. Radoslovich, 1963–1964. Crystal structures of coexisting muscovite and paragonite. Ann. Rep., Geophys. Lab., Carnegie Institute of Washington, p. 232.Google Scholar
  16. Burns, A. F., and J. L. White, 1963. Removal of potassium alters b-dimension of muscovite. Science 139:39.CrossRefGoogle Scholar
  17. Deer, W. A., R. A. Howie, and J. Zussman, 1962. Rock-forming Minerals. Vol. 3. Sheet Silicates. London: Longmans.Google Scholar
  18. DeVore, G., 1963. Compositions of silicate surface and surface phenomena. Contrib. Geol., University of Wyoming 2:21.Google Scholar
  19. Donnay, G., I. Wyart, and G. Sabatier, 1959. Structural mechanism of thermal and compositional transformations in silicates. Z. Krist. 112:161.CrossRefGoogle Scholar
  20. —, J. D. H. Donnay, and H. Takeda, 1964. Trioctahedral one-layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Cryst. 17:1374.CrossRefGoogle Scholar
  21. —, N. Morimoto, H. Takeda, and J. D. H. Donnay, 1964. Trioctahedral one-layer micas. I. Crystal structure of a synthetic iron mica. Acta Cryst. 17:1369.CrossRefGoogle Scholar
  22. Farmer, V. C., and J. D. Russell, 1964. The infrared spectra of layer silicates. Spectrochim. Acta 20:1149.CrossRefGoogle Scholar
  23. Foster, M. D. 1956. Correlation of dioctahedral potassium micas on the basis of their charge relations. U.S. Geol. Survey Bull. 1036-D:57.Google Scholar
  24. —, 1960a. Layer charge relations in dioctahedral and trioctahedral micas. Am. Mineral. 45:383.Google Scholar
  25. —, 1960b. Interpretation of the composition of trioctahedral micas. U.S. Geol. Survey Prof. Pap. 354-B:11.Google Scholar
  26. —, 1960c. Interpretation of the composition of lithium micas. U.S. Geol. Survey Prof Pap. 354-B:115.Google Scholar
  27. Franzini, M., and L. Schiaffino, 1963. On the crystal structure of biotites. Z. Krist. 119:297.CrossRefGoogle Scholar
  28. —, and L. Schiaffino, 1963b. Polimorfismo e leggi di geminazione delle biotiti. Atti Soc. Toscana Sci. Nat. Pisa Pro Verbali Mem 70A:1.Google Scholar
  29. Gatineau, L., 1963. Localization of isomorphous replacement in muscovite. Compt. Rend. 256(22):4648.Google Scholar
  30. —, 1964a. Real structure of muscovite. Distribution of isomorphic substitutions. Bull. Soc. Franc. Mineral. Crist. 87(3):321.Google Scholar
  31. Gatineau, L., 1964b. Structure réelle de la muscovite, répartition des substitution isomorphes. Doctoral thesis. L’Université de Paris.Google Scholar
  32. Glasser, L. S. D., F. P. Glasser, and H. F. W. Taylor, 1962. Topotactic reactions in inorganic oxycompounds. Quart. Rev. 16:343.CrossRefGoogle Scholar
  33. Gower, J. A., 1957. X-ray measurement of the iron-magnesium ratio in biotites. Am. J. Sci. 255:142.CrossRefGoogle Scholar
  34. Güven, N., and C. W. Burnham, 1965–1966. The crystal structure of 3T muscovite. Ann. Rep., Geophys. Lab., Carnegie Institute of Washington, p. 290.Google Scholar
  35. Hendricks, S. B., and M. E. Jefferson, 1939. Polymorphism of the micas. Am. Mineral. 24:729.Google Scholar
  36. Heinrich, E. W., and A. A. Levinson, 1955. Studies in the mica group; polymorphism among the high-silica sericites. Am. Mineral. 40:983.Google Scholar
  37. Jackson, W. W., and J. West, 1933. The crystal structure of muscovite. Z. Krist., 85:160.Google Scholar
  38. Jones, J. B., and W. H. Taylor, 1961. The structure of orthoclase. Acta Cryst. 14:443.CrossRefGoogle Scholar
  39. Jørgensen, P., 1966. Infrared absorption of O—H bonds in some micas and other phyllosilicates. Clays Clay Min. 13:263.CrossRefGoogle Scholar
  40. Lipson, H., and W. Cochran, 1966. The Determination of Crystal Structures. 2nd ed. London: G. Bell and Sons.Google Scholar
  41. Loewenstein, W., 1954. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral. 39:92.Google Scholar
  42. Lyon, R. J. P., and W. M. Tuddenham, 1960. Determination of tetrahedral aluminum in mica by infrared absorption analysis. Nature 185:374.CrossRefGoogle Scholar
  43. Mathieson, A. McL., E. W. Radoslovich, and G. F. Walker, 1959. Accuracy in structure analysis of layer silicates. Acta Cryst. 12:937.CrossRefGoogle Scholar
  44. Nahin, P. G., 1955. Infrared analysis of clays and related minerals. Proc. First Nat. Conf. Clays Clay Tech. 112.Google Scholar
  45. Newnham, R. E., 1961. A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals. Min. Mag. 32:683.CrossRefGoogle Scholar
  46. Pabst, A., 1955. Redescription of the single-layer structure of the micas. Am. Mineral. 40:967.Google Scholar
  47. Radoslovich, E. W., 1958. Clay mineralogy of some Australian red-brown earths. J. Soil Sci., 9:242.CrossRefGoogle Scholar
  48. —, 1959. Structural control of polymorphism in micas. Nature 183:253.CrossRefGoogle Scholar
  49. —, 1960a. The structure of muscovite, KAl2(Si3Al)O10(OH)2. Acta Cryst. 13:919.CrossRefGoogle Scholar
  50. —, 1960b. Hydromuscovite with the 2M2 structure—a criticism. Am. Mineral. 45:894.Google Scholar
  51. —, and J. B. Jones, 1961. Transparent packing models of layer-lattice silicates based on the observed structure of muscovite. Clay Min. Bull. 4:318.CrossRefGoogle Scholar
  52. —, and K. Norrish, 1962. The cell dimensions and symmetry of layer-lattice silicates. I. Some structural considerations. Am. Mineral. 47:599.Google Scholar
  53. —, 1962. The cell dimensions and symmetry of layer-lattice silicates. II. Regression relations. Am. Mineral. 47:617.Google Scholar
  54. —, 1963a. The cell dimensions and symmetry of layer-lattice silicates. IV. Interatomic forces. Am. Mineral. 48:76.Google Scholar
  55. —, 1963b. The cell dimensions and symmetry of layer-lattice silicates. V. Composition limits. Am. Mineral. 48:348.Google Scholar
  56. Ross, M., H. Takeda, and D. R. Wones, 1966. Mica polytypes: Systematic description and identification. Science 151:191.CrossRefGoogle Scholar
  57. Sadanaga, R., and Y. Takéuchi, 1961. Polysynthetic twinning of micas. Z. Krist. 116:406.CrossRefGoogle Scholar
  58. Saksena, B. D., 1964. Infrared hydroxyl frequencies of muscovite, phlogopite, and biotite micas in relation to their structures. Trans. Faraday Soc. 60:1715.CrossRefGoogle Scholar
  59. Serratosa, J. M., and W. F. Bradley, 1958. Determination of the orientation of OH bond axes in layer silicates by infrared absorption. J. Fhys. Chem. 62:1164.CrossRefGoogle Scholar
  60. Smith, J. V., and H. S. Yoder, 1956. Experimental and theoretical studies of the mica polymorphs. Min. Mag. 31:209.CrossRefGoogle Scholar
  61. Steinfink, H. 1962. Crystal structure of a trioctahedral mica: phlogopite. Am. Mineral 47:886.Google Scholar
  62. Sunagawa, I., 1964. Growth spirals on phlogopite crystals. Am. Mineral. 49:1427.Google Scholar
  63. Takéuchi, Y., 1966. Structures of brittle micas. Clays Clay Min. 13:1.CrossRefGoogle Scholar
  64. Takéuchi, Y., and R. Sadanaga, 1959. The crystal structure of xanthophyllite. Acta Cryst. 12:945.CrossRefGoogle Scholar
  65. Vedder, W., 1964. Correlations between infrared spectrum and chemical composition of mica. Am. Mineral. 49:736.Google Scholar
  66. —, 1965. Ammonium in muscovite. Geochim. Cosmochim. Acta 29:221.CrossRefGoogle Scholar
  67. Vedder, W., and R. S. McDonald, 1963. Vibrations of the OH ions in muscovite. J. Chem. Phys. 38:1583.CrossRefGoogle Scholar
  68. Veitch, L. G., and E. W. Radoslovich, 1963. The cell dimensions and symmetry of layer-lattice silicates. III. Octahedral ordering. Am. Mineral. 48:62.Google Scholar
  69. Velde, B., 1965. Experimental determination of muscovite polymorph stabilities. Am. Mineral. 50:436.Google Scholar
  70. —, and J. Hower, 1963. Petrological significance of illite polymorphism in Paleozoic sedimentary rocks. Am. Mineral. 48:1239.Google Scholar
  71. Wones, D. R., 1963. Physical properties of synthetic biotities on the join phlogopite-annite. Am. Mineral. 48:1300.Google Scholar
  72. —, and H. P. Eugster, 1965. Stability of biotite: experiment, theory and application. Am. Mineral. 50:1228.Google Scholar
  73. Yoder, H. S., and H. P. Eugster, 1955. Synthetic and natural muscovites. Geochim. Cosmochim. Acta 8:225.CrossRefGoogle Scholar
  74. —, and H. P. Eugster, 1954. Phlogopite synthesis and stability range. Geochim. Cosmochim. Acta 6:157.CrossRefGoogle Scholar
  75. Zen. E-an, and A. L. Albee, 1964. Coexistent muscovite and paragonite in pelitic schists. Am. Mineral. 49:904.Google Scholar
  76. Zviagin, B. B., 1957. Determination of the structure of celadonite by electron diffraction. Soviet Physics—Crystallography (in translation), 2:388.Google Scholar
  77. Zviagin, B. B.,—, 1962. A theory of polymorphism of micas. Soviet PhysicsCrystallography (in translation) 6:571.Google Scholar
  78. —, and K. S. Mischenko, 1961. Electron diffraction refinement of the structure of muscovite. Soviet PhysicsCrystallography (in translation) 5:575.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • E. W. Radoslovich

There are no affiliations available

Personalised recommendations