Fats, Waxes, and Resins in Soil

  • O. C. Braids
  • R. H. Miller


A survey of the literature pertaining to soil fats, waxes, and resins (often called bitumens or simply lipids) indicates that these substances are probably the least studied of soil organic matter components. Soil organic matter chemists have largely ignored these materials in preference to studies on the true humic materials. This neglect is probably based on the fact that fats, waxes, and resins comprise but a small percentage of the total organic matter of mineral soils (1 to 5%). However, 10 to 20% of the total organic matter of organic soils may come under the lipid classification. Three review articles deal with the soil lipid fraction:HOWARD and HAMER [1960], STEVENSON [1966], and MORRISON [1969]. WOLLRAB and STREIBL [1969] also review the literature on peat and lignite waxes.


Wheat Straw Physical Data Total Organic Matter Lipid Material High Moor Peat 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adelson, L. M., A. Schatz, and G. S. Trelawny, 1957. Metabolism of lipids and lipid derivatives by a soil actinomycete. J. Bacteriol. 73:148.Google Scholar
  2. Agarwal, G. S., K. S. K. Rao, and L. S. Negi, 1958. Influence of certain species of earthworms on the structure of some hill soils. Curr. Sci. 27:213.Google Scholar
  3. Alexander, M., 1961. Introduction to soil microbiology. New York:John Wiley.Google Scholar
  4. Aschan, O., 1921. Humoceric acid. Finska Kern, sanfundets Medal. 30:37. Chem. Abstr. 16:1567 (1921).Google Scholar
  5. Asinger, F., 1956. Chemie und Technologie der Paraffin—Kohlenwasserstoffe. Berlin:Akademie.Google Scholar
  6. Barton, L. V., and M. L. Solt, 1948. Growth inhibitors in seeds. Contrib. Boyce Thompson Inst. 15:259.Google Scholar
  7. Baudisch, O., and H. Von Euler, 1935. Uber den Gehalt einiger Moor-Erdarten an Carotinoiden. Arkiv Kemi. Miner. Geol. 11:21, A, 10.Google Scholar
  8. Bel’kevich, P. I., 1960. Production of wax from peat. Tr. Inst. Torfa, Akad. Nauk Belarussk.S.S.R. 9:19. Chem. Abstr. 58:6620P (1963).Google Scholar
  9. Bel’kevich, P. I, G. P. Verkholitova, F. L. Kaganovich, and L. V. Targov, 1963. ß-Sitosterol from peat wax. Izv. Akad. Nauk. S.S.S.R., Otd. Khim Nauk. 112. Chem. Abstr. 58:10011 (1963).Google Scholar
  10. Bel’kevich, P. I, F. L. Kaganovich, E. V. Trubilko, A. V. Bystraya, and E. A. Yurkevich., 1965. The presence of stearins in peat waxes. Kompleksn. Ispol’z Torfa, Uses. Nauchn.-Issled. Inst. Torfa 73. Chem. Abstr. 64:7929 (1966).Google Scholar
  11. Bergmann, E. D., R. Ikan, and J. Kashmann, 1964. The occurrence of perylene in Huleh peat. Israel J. Chem. 2:171.Google Scholar
  12. Bhandari, G. S., M. S. Maskina, and N. S. Randhawa, 1969. Characterization of lipids in some soils and their humic acids formed under different agro-climatic conditions. Sci. Cult. 35:68. Chem. Abstr. 71:111908 (1969).Google Scholar
  13. Bishop, D. G., and J. L. Still, 1961. Fatty acid metabolism in Serratia marcescens. 1. Oxidation of saturated fatty acid by whole cells. J. Bacteriol. 82:370.Google Scholar
  14. Black, W. A. P., W. J. Cornhill, and F. N. W. Woodward, 1955. A preliminary investigation on the chemical composition of sphagnum moss and peat. J. Appl. Chem. 5:484.CrossRefGoogle Scholar
  15. Blumer, M., 1961. Benzypyrenes in soil. Science 134:474.CrossRefGoogle Scholar
  16. Bond, R. D., 1964. The influence of the microflora on the physical properties of soils. 2. Field studies on water repellent sands. Australian J. Soil Res. 2:123.CrossRefGoogle Scholar
  17. Bond, R. D, and J. R. Harris, 1964. The influence of the microflora on physical properties of soils. 1. Effects associated with filamentous algae and fungi. Australian J. Soil Res. 2:111.CrossRefGoogle Scholar
  18. Bone, W. A., and L. J. Tei, 1934. Researches on the chemistry of coal. Part 7. An investigation of German brown coals and Irish peat. Proc. Royal Soc. (London) A 147:58.CrossRefGoogle Scholar
  19. Borneff, I., and H. Kante, 1963. Kanzerogene Substanzen in Wasser und Boden. Weitere Untersuchungen über polyzyklische, aromatische Kohlenwasserstoffe in Erdproben. Arch. Hyg. Bakt. 147:401.Google Scholar
  20. Braids, O. C., 1966. A study of the components of the lipid fraction of Rifle peat. Ph.D. Dissertation, The Ohio State University.Google Scholar
  21. Braids, O. C., F. L. Himes, and G. W. Volk, 1967. The occurrence of carbazole in a peat soil. Soil Sci. Soc. Amer. Proc. 31:435.CrossRefGoogle Scholar
  22. Butler, J. H. A., D. T. Downing, and R. S. Swaby, 1964. Isolation of chlorinated pigment from green soil. Aust. J. Chem. 17:717.CrossRefGoogle Scholar
  23. Cawley, C. M., and J. G. King, 1945. Ester waxes from British lignite and peat. J. Soc. Chem. Ind. (London) 64:237.Google Scholar
  24. Cawley, C. M., J. H. G. Carlile, and C. C. Naaks, 1948. Ester waxes from British peat. Petroleum (London) 11:77. Chem. Abstr. 42:520r (1948).Google Scholar
  25. Chahal, K. S., J. L. Mortensen, and F. L. Himes, 1966. Decomposition products of carbon-14 labelled rye tissue in a peat profile. Soil Sci. Soc. Amer. Proc. 30:217.CrossRefGoogle Scholar
  26. Dawes, E. A., and D. W. Ribbons, 1964. Some aspects of the endogenous metabolism of bacteria. Bact. Rev. 28:126.Google Scholar
  27. Deinema, M. H., 1961. Intra- and extracellular lipid production by yeast. Meded. Landbouwhogeschool, Wageningen 61:1.Google Scholar
  28. Deinema, M. H, and C. A. Landheer, 1960. Extracellular lipid production by a strain of Rhodotorula graminis Biochem. Biophys. Acta 37:178.CrossRefGoogle Scholar
  29. Deinema, M. H, M. Van Ammers, G. A. Landheer, and M. H. M. Van Rooyen, 1964. Note on the isolation of ß-hydroxypalmitic acid from the extracellular lipids of Rhodotorula glutinis. Rec. Trav. Chim. Pays-Bas 83:708.Google Scholar
  30. Di Menna, M. E ., 1958. Two new species of yeasts from New Zealand. J. Gen. Microbiol. 18:269.Google Scholar
  31. Edigarova, N. N., 1963. Behavior of organic substances of petroleum origin in the soil. Neft. Udo- breniya i Stimulyatory (Baku:Akad. Nauk Azerb. S.S.R.) Sb. 190. Chem. Abstr. 60:13, 822a (1964).Google Scholar
  32. Fehl, A. J., and W. Lange, 1965. Soil stabilization induced by growth of microorganisms on high calorie mold nutrients. Soil Sci. 100:368.CrossRefGoogle Scholar
  33. Feustel, I. C., and H. G. Byers, 1930. The physical chemical characteristics of certain American peat profiles. U.S. Dept. Agr. Tech. Bull. 214.Google Scholar
  34. Fraps, G. S ., 1915. The effect of organic compounds in pot experiments. Texas Agr. Exp. Sta. Bull. 174.Google Scholar
  35. Foster, J. W., 1949. Chemical activities of fungi. New York:Academic Press.Google Scholar
  36. Gallopini, C., and R. Rifffadi, 1969. Composition of ether extracts of soil. Agrochimica 13:207.Google Scholar
  37. Geoghegan, M. J., 1950. Aggregate formation in soil. Influence of some microbial metabolic products and other substances on aggregation of soil particles. Trans. 4th Int. Congr. Soil Sci. 1:198.Google Scholar
  38. Geoghegan, M. J., and E. R. Armitage, 1949. Influence of some lipoidal substances on aggregate formation in soils. Nature, Lond. 163:29.CrossRefGoogle Scholar
  39. Gilliland, M. R., and A. J. Howard, 1968. Some constituents of peat wax separated by column chromatography. Transactions of the 2nd International Peat Congress, Leningrad, 1963. Vol. II, p. 877. Edinburgh:H.M.S.O.Google Scholar
  40. Gilliland, M. R., A. J. Howard, and D. Hamer, 1960. Polycyclic hydrocarbons in crude peat wax. Chem. Ind. 1357.Google Scholar
  41. Greenland, D. J., G. R. Lindstrom, and J. P. Quirk, 1961. Role of polysaccharides in stabilization of natural soil aggregates. Nature, Lond. 191:1283.CrossRefGoogle Scholar
  42. Greenland, D. J., G. R. Lindstrom, and J. P. Quirk, 1962. Organic materials which stabilize natural soil aggregates. Soil Sci. Soc. Amer. Proc. 26:366.CrossRefGoogle Scholar
  43. Gregors-Hansen, B., 1964. Decomposition of diethylstilboestrol in soil. Plant Soil 20:50.CrossRefGoogle Scholar
  44. Greig-Smith, R., 1910. Contributions to our knowledge of soil fertility. 1. The action of wax solvents and the presence of thermolabile bacteriotoxins in soil. Proc. Linn. Soc. N.S. Wales 35:808.Google Scholar
  45. Guenzi, W. D., and T. M. McCalla, 1962. Inhibition of germination and seedling development by crop residues. Soil Sci. Soc. Amer. Proc. 26:456.CrossRefGoogle Scholar
  46. Hance, R. J., and Anderson, G., 1963a. Extraction and estimation of soil phospholipids. Soil Sci. 96:94.CrossRefGoogle Scholar
  47. Hance, R. J., and G. Anderson, 1963b. Identification of hydrolysis products of soil phospholipids. Soil Sci. 96:157.CrossRefGoogle Scholar
  48. Hauser, G., and M. Karnovsky, 1954. Studies on the production of glycolipids by Pseudomonas aeruginosa. J. Bacteriol. 68:645.Google Scholar
  49. Himes, F. L., and C. Bloomfield, 1967. Extraction of triacontyl stearate from a soil. Plant Soil 26:383.CrossRefGoogle Scholar
  50. Howard, A. J., and D. Hamer, 1960. The extraction and constitution of peat wax. Review of peat wax chemistry. J. Amer. Oil Chem. Soc. 37:478.CrossRefGoogle Scholar
  51. Ikan, R., and J. Kashman, 1963. Steroids and triterpenoids of Hula peat as compared to other humoliths. Israel J. Chem. 1:502.Google Scholar
  52. Ivanova, L. A., P. I. Bel’kevich, F. L. Kaganovich, and P. D. Shepetovskii, 1968. Acids of peat wax. 2. Separation and identification of methylates from insoluble sodium salts by gas-liquid chromatography. Vestsi. Akad. Navuk Belarus. SSR, Ser. Khim. Navuk 121. Chem. Abstr. 70:79824 (1969).Google Scholar
  53. Ives, A. J., and A. N. O’Neill, 1958. The chemistry of peat. Part 1. The sterols of peat moss (Sphagnum). Can. J. Chem. 36:434.CrossRefGoogle Scholar
  54. Ivler, D., J. B. Wolfe, and S. O. Rittenberg, 1955. Studies on the aerobic oxidation of fatty acids by bacteria. 5. Caprate oxidation by cell-free extracts of Pseudomonas fluorescens. J. Bacteriol. 70:99.Google Scholar
  55. Jamison, V. C., 1942. The slow reversible drying of soil beneath citrus trees in Central Florida. Soil Sci. Soc. Amer. Proc. 7:36.CrossRefGoogle Scholar
  56. Jamison, V. C., 1945. Penetration of irrigation and rain water into sandy soils of central Florida. Soil Sci. Soc. Amer. Proc. 10:25.CrossRefGoogle Scholar
  57. Jarvis, F. G., and M. J. Johnson, 1949. A glyco-lipid produced by Pseudomonas aeruginosa. J. Am. Chem. Soc. 71:4124.CrossRefGoogle Scholar
  58. Johnson, R. C., and R. Thiessen, 1934. Studies on peat alcohol and ether-soluble matter of certain soils. Fuel 8:44. Chem. Abstr. 28:4205 (1934).Google Scholar
  59. Josephy, E., and F. Radt, editors. 1946. Elsevier’s Encyclopedia of Organic Chemistry. New York:Elsevier.Google Scholar
  60. Katkouski, A. P., and N. Ts. Karosik., 1954. Preparation of bitumens from peat. Vestsi Akad. Navuk, Belarus, S.S.R. No. 2, 78. Chem. Abstr. 49:15211 (1955).Google Scholar
  61. Kern, W., 1947. The occurrence of chrysene in soil. Helv. Chim. Acta 30:1595.CrossRefGoogle Scholar
  62. Khesina, A. Ya., N. P. Shcherback, L. M. Shabad, and I. S. Vostrov, 1969. Destruction of benzo [x] pyrene by soil microflora. Byull. Eksp. Biol. Med. 68:70. Chem. Abstr. 72:42240 (1969).Google Scholar
  63. Kian, R., G. Stahl, and E. D. Bergmann, 1968. Constituents of Huleh peat. 3. Acids. Israel J. Chem. 6:485.Google Scholar
  64. Kleinzeller, A., 1944. Fat formation in Torulopsis lipofera. Biochem. J. 38:480.Google Scholar
  65. Kononenko, E. V., 1958. Soil yeasts of the genus Lipomyces. Mikrobiologiya 27:605.Google Scholar
  66. Kowalenko, C. G., and R. B. McKercher, 1971. Phospholipid components extracted from Saskatchewan soils. Can. J. Soil Sci. 51:19.CrossRefGoogle Scholar
  67. Krause, F. P., and W. Lang, 1965. Vigorous mold growth in soils after addition of water insoluble fatty substances. Appl. Microbiol. 13:160.Google Scholar
  68. Ksenofontova, E. V., M. V. Mukhina, A. M. Khaletskii, F. L. Kaganovich, and P. I. Bel’kevich, 1969. Quantitative determination of ß-sito-sterol in peat wax resin. Dokl. Akad. Nauk Beloruss. SSR 13:143. Chem. Abstr. 70:99569 (1969).Google Scholar
  69. Kwiatkowski, A., 1963. Effect of the extracting solvent on the composition of peat bitumen. Zeszyty Nauk. Politech. Gdansk. Chem. 33:53. Chem. Abstr. 60:7839 (1964).Google Scholar
  70. Lukoshko, E S., 1965. Changes in the chemical composition of peat-forming plants during decomposition of peat-forming layers under aerobic and unaerobic conditions. Vestis Akad. Navuk Belarusk. SSR. Ser:Khim. Navuk 90. Chem. Abstr. 64:4212d (1966).Google Scholar
  71. Mair, B. J., 1964. Terpenoids, fatty acids and alcohols as source materials for petroleum hydrocarbons. Geochim. Cosmochim. Acta 28:1303.CrossRefGoogle Scholar
  72. Mallet, L., and M. Tissier, 1969. Biosynthesis of polycyclic hydrocarbons of the benzoa-pyrene type in forest soil. C. R. Soc. Biol. 163:63.Google Scholar
  73. Martin, J. P., J. D. Ervin, and R. A. Shepard, 1959. Decomposition and aggregating effect of fungus cell material in soil. Soil Sci. Soc. Amer. Proc. 23:217.CrossRefGoogle Scholar
  74. McCalla, T. M., 1945. Influence of microorganisms and some organic substances on soil structure. Soil Sci. 59:287.CrossRefGoogle Scholar
  75. McCalla, T. M. 1946. The biology of soil structure. J. Soil Water Cons. 1:71.Google Scholar
  76. McCalla, T. M. 1964. Phytotoxic substances from soil microorganisms and crop residue. Bact. Rev. 28:181.Google Scholar
  77. McCalla, T. M., W. D. Guenzi, and F. A. Norstadt, 1963. Microbial studies of phytotoxic substances in the stubble-mulch system. Z. Allgem, Microbiol. 3:202.CrossRefGoogle Scholar
  78. McLean, J., G. H. Rettie, and F. S. Spring, 1958. Triterpenoids from peat. Chem. Ind. 1515. Mishustin, E. N., and N. S. Erofeev, 1966. Nature of toxic substances accumulating during straw decomposition in soil. Mikrobiol. 35:150.Google Scholar
  79. Morrison, R. I., 1969. Soil lipids. In Organic geochemistry, Chap. 23, p. 558. New York:Springer-Verlag.Google Scholar
  80. Morrison, R. I., and W. Bick, 1966. Long-chain methyl ketones in soils. Chem. Ind. (London) 596.Google Scholar
  81. Morrison, R. I., and W. Bick, 1967. The wax fraction of soils; separation and determination of some components. J. Sci. Food Agr. 18:351.CrossRefGoogle Scholar
  82. Nagy, B., 1966. The optical rotation of lipids extracted from soils, sediments, and the Orgueil carbonaceous meteorite. Proc. Natl. Acad. Sci. U.S. 56:389.CrossRefGoogle Scholar
  83. Oro, J., D. W. Nooner, A. Zlatkis, S. A. Wikstrom, and E. S. Barghoorn, 1965. Hydrocarbons of biological origin in sediments about 2 billion years old. Science 148:77.CrossRefGoogle Scholar
  84. Pedersen, T. A., 1958. Cryptococcus terricolus Nov. spec. A new yeast isolated from Norwegian soils. C. R. Trav. Lab. Czarlsberg 31:93.Google Scholar
  85. Prill, E. A., L. V. Barton, and M. L. Solt, 1949a. Effects of some surface-active agents on the growth of wheat roots in solutions. Contrib. Boyce Thompson Inst. 15:311.Google Scholar
  86. Prill, E. A., L. V. Barton, and M. L. Solt, 1949b. Effect of some organic acids on the growth of wheat roots in solutions. Contrib. Boyce Thompson Inst. 15:429.Google Scholar
  87. Rakovskii, V. E., and E. S. Lukoshko, 1965. Changes in the chemical composition of peat-forming plants during the growth period. Kompleksn. Ispol’z. Torfa, Vses. Nauchn.-Issled. Inst. Torfa. 24. Chem. Abstr. 64:7042h (1966).Google Scholar
  88. Rakowski, E. W., and N. G. Edelstein, 1932. Peat bitumens. 1. Fatty acids. Brennstoff— Chem. 13:46. Chem. Abstr. 26:1751 (1932).Google Scholar
  89. Ralston, A. W., 1948. Fatty acids and their derivatives. New York:John Wiley. Randies, G. I., 1950. The oxidation of fatty acids by Neisseria catarrholis. J. Bacteriol. 60:627.Google Scholar
  90. Reilly, J., and J. A. Emlyn, 1940. Studies in peat. 8. Preliminary note on Irish peat wax (mona wax). Sci. Proc. Royal Dublin Soc. 22:263.Google Scholar
  91. Reilly, J., and J. P. Wilson, 1940. Studies in peat. 9. The cerotic and carboceric acid fractions of mona wax. Sci. Proc. Royal Dublin Soc. 22:321.Google Scholar
  92. Reilly, J., D. F. Kelly, and J. Duffy, 1939. Extraction of peat with azeotrope-like petroleum mixed solvents. Sci. Proc. Royal Dublin 22:149.Google Scholar
  93. Reilly, J., D. F. Kelly, and D. J. Ryan, 1937. Mixtures of constant boiling point for solvent-extraction purposes. Extraction of waxes from peat. J. Soc. Chem. Ind. 56:231.Google Scholar
  94. Robinson, T., 1963. The organic constituents of higher plants. Minneapolis:Burgess Publishing Co. Rodd, E. H., ed. 1951. Chemistry of the carbon compounds, Vol. Ia. Amsterdam:Elsevier.Google Scholar
  95. Roginskaya, E. V., 1936. The composition of the acids of high molecular weight from the bitumen wax of peat. J. Applied Chem. (USSR) 9:108. Chem. Abstr. 30:5441 (1936).Google Scholar
  96. Rogoff, M. H., and I. Wander, 1957. The microbiology of coal. 1. Bacterial oxidation of phenanthrene. J. Bacteriol. 73:764.Google Scholar
  97. Romashkevich, I. F., 1964. Role of bitumens in delaying mobilization of nitrogen compounds in peats and uptake of nitrogen by plants. Soviet Soil Sci. 1:81. Translation of Pochvovednie 1:102 (1964).Google Scholar
  98. Ruinen, J., and M. H. Deinema, 1964. Composition and properties of the extra-cellular lipids of yeast species from the phyllosphere. Antonie van Leeuwenhoek 30:377.CrossRefGoogle Scholar
  99. Ryan, H., and T. Dillon, 1909. Montanin and montana (montan) waxes. Proc. Dublin Soc. 12:202.Google Scholar
  100. Schatz, A., K. Savard, and I. J. Pintner, 1949. The ability of soil microorganisms to decompose steroids. J. Bacteriol. 58:117.Google Scholar
  101. Schreiner, O., and E. C. Lathrop, 1911. Examination of soils for organic constituents, especially dihydroxystearic acid. U.S. Dept. Agr. Bur. Soils Bull. 80.Google Scholar
  102. Schreiner, O, and E. C. Shorey, 1908. The isolation of dihydroxystearic acid from soils. J. Amer. Chem. Soc. 30:1599.CrossRefGoogle Scholar
  103. Schreiner, O, and E. C. Shorey, 1909a. The presence of a cholesterol substance in soils. Agrosterol. J. Amer. Chem. Soc. 31:116.CrossRefGoogle Scholar
  104. Schreiner, O, and E. C. Shorey, 1909b. The isolation of harmful organic substances from soils. U.S. Dept. Agr. Bur. Soils, Bull. 53.Google Scholar
  105. Schreiner, O, and E. C. Shorey, 1910. Some acid constituents of soil humus. J. Amer. Chem. Soc. 32:1674CrossRefGoogle Scholar
  106. Schreiner, O, and E. C. Shorey, 1911a. Cholesterol bodies in soils:Phytosterol. J. Biol. Chem. 9:9.Google Scholar
  107. Schreiner, O, and E. C. Shorey, 1911b. Glycerides of fatty acids in soils. J. Amer. Chem. Soc. 33:78.CrossRefGoogle Scholar
  108. Shcherbak, N. P ., 1969. Fate of benzo[α]pyrene in soil. Vop. Onkol. 15:75. Chem. Abstr. 71:48877 (1969).Google Scholar
  109. Shcherbak, N. P., 1969. Fate of benzo[α]pyrene in soil. Vop. Onkol. 15:75. Chem. Abstr. 71:48877 (1969).Google Scholar
  110. Silliker, J. H., and S. C. Rittenberg, 1951. Studies on the aerobic oxidation of fatty acids by bacteria. 1. The nature of the enzymes constitutive or adaptive. J. Bacteriol. 61:653.Google Scholar
  111. Silliker, J. H., and S. C. Rittenberg, 1952. Studies on the aerobic oxidation of fatty acids by bacteria. 3. The effect of 2,4-dinitrophenol on the oxidation of fatty acids by Serratia marcescens. J. Bacteriol. 64:197.Google Scholar
  112. Simonart, P., and L. Batistic, 1966. Aromatic hydrocarbons in soils. Nature 212:1461.CrossRefGoogle Scholar
  113. Simonsen, J., and W. C. J. Ross, 1957. The terpenes. Vol. 4. The triterpenes and their derivatives. Cambridge:Cambridge University Press.Google Scholar
  114. Smirnov, G. A., 1970. Benzo[a] pyrene content in soil and vegetation near an airport. Vop. Onkol. 16:83. Chem. Abstr. 73:59045 (1970).Google Scholar
  115. Springer, V., and A. Lehner, 1952a. Decomposition and the synthesis of humus by aerobic and anaerobic decomposition of organic substances important in agriculture and forestry. 1. Z. Pflernahr. Dung. 58:193.CrossRefGoogle Scholar
  116. Springer, V., and A. Lehner, 1952b. Decomposition and the synthesis of humus by aerobic and anaerobic decomposition of organic substances important in agriculture and forestry. 2. Z. Pflernahr. Dung. 59:1.Google Scholar
  117. Stadnikoff, G., and R. Wahner, 1931. Uber die Natur der Kohlenbitumina. Brennstoff-Chem. 12:23.Google Scholar
  118. Starkey, R. L., 1946. Lipid production by a soil yeast. J. Bacteriol. 51:33.Google Scholar
  119. Stecher, P.CG., Ed. 1960. The Merck index. Rahway, N. J.:Merck and Company.Google Scholar
  120. Stern, A. M., Z. J. Ordal, and H. O. Halverson, 1954. Utilization of fatty acids by and lipolytic activities of Mucor mucedo. J. Bacteriol. 68:25.Google Scholar
  121. Stevenson, F. J., 1966. Lipids in soil. J. Amer. Oil Chem. Soc. 43:203.CrossRefGoogle Scholar
  122. Sundgren, A., 1949. Investigations on extraction of peat and manufacture of wax and resinous substances from the peat bitumen obtained. Tek. Foren. Finland. Fork. 69:29. Chem. Abstr. 43:5570 (1949).Google Scholar
  123. Sundgren, A., and V. T. Rauhala, 1949. Preliminary note on fatty acids in peat. Suomen Kemistilekti 228:24 Chem. Abstr. 44:3270 (1950).Google Scholar
  124. Sundgren, A., and V. T. Rauhala, 1965. Free acids of peat wax. Valtion Tek. Tutkimuslaitos, Julkaisu No. 92, 27 pp. Chem. Abstr. 65:3610 (1966).Google Scholar
  125. Swan, E. P., 1965. Identity of a hydrocarbon found in a forest soil. Forest Prod. J. 15:272.Google Scholar
  126. Tenney, F. G., and S. A. Waksman, 1929. Composition of natural organic materials and their decomposition in the soil. 4. The nature and rapidity of decomposition of the various organic complexes in different plant materials, under aerobic conditions. Soil Sci. 28:55.CrossRefGoogle Scholar
  127. Tenney, F. G., and S. A. Waksman, 1930. Composition of natural organic materials and their decomposition in the soil. 5. Decomposition of various chemical constituents in plant materials, under anaerobic conditions. Soil Sci. 30:143.CrossRefGoogle Scholar
  128. Titov, N., 1932. Bitumens of sphagnum peat. Brennstoff-Chem. 13:266. Chem. Abstr. 26:5195 (1932).Google Scholar
  129. Tsybul’kin, V. M., and P. I. Bel’kevich, 1964. Comparative study of bitumen-forming substances of some species of plant and peat bitumens. Vest is Akad. Tavik. Belarusk. SSSR, Ser. Fiz-Telshan Navik, 101. Chem. Abstr. 61:1671 (1964).Google Scholar
  130. Turfitt, G. E ., 1943. The microbiological degradation of steroids. 1. The sterol content of soils. Biochem. J. 37:115.Google Scholar
  131. Turfitt, G. E. 1944a. The microbiological agencies in the degradation of steroids. 1. The cholesterol-decomposing organisms of soils. J. Bacteriol. 47:487.Google Scholar
  132. Turfitt, G. E., 1944b. The microbiological degradation of steroids. 2. Oxidation of cholesterol by Pro-actinomyces spp. Biochem. J. 38:492.Google Scholar
  133. Turfitt, G. E. 1947. Microbiological agencies in the degradation of steroids. 2. Steroid utilization by the microflora of soils. J. Bacteriol. 54:557.Google Scholar
  134. Waksman, S. A., 1936. Humus. Baltimore:Williams and Wilkins.Google Scholar
  135. Waksman, S. A., and I. J. Hutchings, 1935. Chemical nature of organic matter in different soil types. Soil Sci. 40:347.CrossRefGoogle Scholar
  136. Waksman, S. A., and K. R. Stevens, 1929. Contribution to the chemical composition of peat. 5. The role of microorganisms in peat formation and decomposition. Soil Sci. 28:315.CrossRefGoogle Scholar
  137. Waksman, S. A., and K. R. Stevens, 1930. A critical study of the methods for determining the nature and abundance of soil organic matter. Soil Sci. 30:97.CrossRefGoogle Scholar
  138. Waksman, S. A., F. G. Tenny, and K. R. Stevens, 1928. The role of microorganisms in the transformations of organic matter in forest soils. Ecology 9:126.CrossRefGoogle Scholar
  139. Wander, I. W., 1949a. An interpretation of the cause of water-repellent sandy soils found in citrus groves in central Florida. Science 110:299.CrossRefGoogle Scholar
  140. Wander, I. W . 1949b. An interpretation of the cause of resistance to wetting in Florida soils. Proc. Fla. Hort. Soc. Nov., 92.Google Scholar
  141. Wang, T. S. C., Pau-Tsung Hwang, and Chung-Yi Chen, 1971. Soil lipids under various crops. Soil Sci. Soc. Amer. Proc. 35:584.CrossRefGoogle Scholar
  142. Wang, T. S. C., Yu-Cheng Liang, and Wei-Chiang Shen, 1969. Method of extraction and analysis of higher fatty acids and triglycerides in soils. Soil Sci. 107:181.CrossRefGoogle Scholar
  143. Warth, A. H., 1956. The chemistry and technology of waxes. New York:Reinhold.Google Scholar
  144. Webley, D. M. 1954. The morphology of Nocardia opaca Waksman and Henrici (Proactinomyces opacus Jensen) when grown on hydrocarbons, vegetable oils, fatty acids and related substances. J. Gen. Microbiol. 12:420.Google Scholar
  145. Webley, D. M., R. B. Duff, and V. C. Farmer, 1955. Beta-oxidation of fatty acids by Nocardia opaca. J. Gen. Microbiol. 13, 361.Google Scholar
  146. Winter, A. G., 1961. New physiological and biological aspects in the interrelationships between higher plants. Symposia Soc. Exptl. Biol. 15:229.Google Scholar
  147. Wollrab, V., and M. Streibl, 1969. Earth waxes, peat, montan wax and other organic brown coal constituents. In Organic geochemistry, Chap. 24, p. 576. New York:Springer-Verlag.Google Scholar
  148. Zalozieki, R., and J. Hausman, 1907. Zer Kenntnis des Torfwachses. Z. Angew. Chem. 20:1141.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1975

Authors and Affiliations

  • O. C. Braids
  • R. H. Miller

There are no affiliations available

Personalised recommendations