Advertisement

Nucleic Acid Synthesis in Yeast

  • E. Wintersberger
Part of the Current Topics in Microbiology and Immunology book series (CT MICROBIOLOGY, volume 66)

Abstract

The last few years have seen decisive advances in our understanding of the structure, function and synthesis of nucleic acids in yeasts, in particular the genera Saccharomyces and Schizosacoharomyces. One very stimulating event in this area of research was the discovery of mitochondrial nucleic acids for biochemical and genetic studies of which yeast offers great advantages. Research into the synthesis of nucleic acids in yeast is still only beginning and this review therefore cannot be as detailed as is possible for some bacterial and phage systems. It is intended rather to summarize recent developments which might stimulate further research. “There are now many reasons to intensify work on organisms like yeast” (Watson, 1970). A number of recent review articles (Robichon-Szulmajster, 1971; Mounolou, 1971; Linnane et al., 1972; Mortimer and Hawthorne, 1966; Mortimer and Hawthorne, 1969) dealing with aspects of yeast biochemistry and genetics should be consulted for more information on particular subjects.

Keywords

Nucleic Acid Synthesis Yeast Mitochondrion Mitochondrial Protein Synthesis rRNA Precursor Petite Mutant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adman, R., Schultz, L. D., Hall, B. D.: Transcription in yeast: Separation and properties of multiple RNA polymerases. Proc. nat. Acad. Sci. (Wash.) 69, 1702–1706 (1972).CrossRefGoogle Scholar
  2. Bak, A. L., Christiansen, C., Christiansen, G.: Circular repetitive DNA in yeast. Biochim. biophys. Acta (Amst.) 269, 527–530 (1972).Google Scholar
  3. Barath, Z., Küntzel, H.: Induction of mitochondrial RNA polymerase in Neurospora crassa. Nature (Lond.) New Biol. 240, 195–197 (1972).Google Scholar
  4. Bernardi, G., Carnevali, F., Nicolaieff, A., Piperno, G., Tecce, G.: Separation and characterization of satellite DNA from a yeast cytoplasmic petite mutant. J. molec. Biol. 37, 493–505 (1968).PubMedCrossRefGoogle Scholar
  5. Bernardi, G., Faures, M., Piperno, G., Slonimski, P. P.: Mitochondrial DNAs from respiratory-sufficient and cytoplasmic respiratory-deficient mutant yeast. J. molec. Biol. 48, 23–42 (1970).PubMedCrossRefGoogle Scholar
  6. Bernardi, G., Timasheff, S. N.: Optical rotatory dispersion and circular dichroism properties of yeast mitochondrial DNAs. J. molec. Biol. 48, 43–52 (1970).PubMedCrossRefGoogle Scholar
  7. Bhargava, M. M., Cramer, J. H., Halvorson, H. O.: Isolation of high molecular weight DNA from yeast nuclei. Analyt. Biochem. 49, 276–284 (1972).PubMedCrossRefGoogle Scholar
  8. Bhargava, M. M., Halvorson, H. O.: Isolation of nuclei from yeast. J. Cell Biol. 49, 423–429 (1971).PubMedCrossRefGoogle Scholar
  9. Blamire, J., Cryer, D. R., Finkelstein, D. B., Marmur, J.: Sedimentation properties of yeast nuclear and mitochondrial DNA. J. molec. Biol. 67, 11–24 (1972).PubMedCrossRefGoogle Scholar
  10. Bleeg, H. S., Bak, A. L., Christiansen, C., Smith, K. E., Stenderup, A.: Mitochondrial DNA and glucose repression in yeast. Biochem. biophys. Res. Commun. 47, 524–530 (1972).PubMedCrossRefGoogle Scholar
  11. Borst, P.: Mitochondrial nuclei acids. Ann. Rev. Biochem. 41, 333–376 (1972).PubMedCrossRefGoogle Scholar
  12. Borst-Pauwels, G. W. F. H.: The uptake of radioactive phosphate by yeast. I. The uptake of phosphate by yeast compared with that by higher plants. Biochim. biophys. Acta (Amst.) 65, 403–406 (1962a).CrossRefGoogle Scholar
  13. Borst-Pauwels, G. W. F. H., Loef, H. W., Havinga, E.: The uptake of radioactive phosphate by yeast. II. The primary phosphorylation products. Biochim. biophys. Acta (Amst.) 65, 407–411 (1962b).CrossRefGoogle Scholar
  14. Bos, R. C. van den, Klootwijk, J., Planta, R. J.: Structural comparison of 17S ribosomal RNA of yeast and its immediate precursor, 18S RNA. FEBS Letters 24, 93–97 (1972).PubMedCrossRefGoogle Scholar
  15. Bos, R. C. van den, Planta, R. J.: Structural comparison of 26S and 17S ribosomal RNA of yeast. Nature (Lond.) 225, 183–184 (1970).CrossRefGoogle Scholar
  16. Bos, R. C. van den, Planta, R. J.: Structural comparison of 37S and 32S ribosomal precursor RNA in yeast with the mature ribosomal RNA components. Biochim. biophys. Acta (Amst.) 294, 464–471 (1973).Google Scholar
  17. Bos, R. C. van den, Retel, J., Planta, R. J.: The size and the location of the ribosomal RNA segments in ribosomal precursor RNA of yeast. Biochim. biophys. Acta (Amst.) 232, 494–508 (1971).Google Scholar
  18. Brogt, Th. M., Planta, R. J.: Characterization of DNA-dependent RNA polymerase activity from isolated yeast nucleus. FEBS Letters 20, 47–52 (1972).PubMedCrossRefGoogle Scholar
  19. Chambon, P., Gissinger, F., Kedinger, C., Mandel, J. L., Meilhac, M., Nuret, P.: Structural and functional properties of three mammalian nuclear DNA-dependent RNA polymerases. In: Gene transcription in reproductive tissue. Acta endocr. (Kbh.) Suppl. 168, 222–246 (1972).Google Scholar
  20. Chang, L. M. S., Bollum, F. J.: Antigenic relationship in mammalian DNA polymerase. Science 175, 1116–1117 (1972).PubMedCrossRefGoogle Scholar
  21. Christiansen, C., Bak, A. L., Stenderup, A., Christiansen, G.: Repetitive DNA in yeasts. Nature (Lond.) New Biol. 231, 176–177 (1971).CrossRefGoogle Scholar
  22. Clark-Walker, D. G., Linnane, A. W.: The biogenesis of mitochondria in Saccharo- myces cerevisiae. A comparison between cytoplasmic respiratory-deficient mutant yeast and chloramphenicol-inhibited wild type cells. J. Cell Biol. 34, 1–14 (1967).PubMedCrossRefGoogle Scholar
  23. Clark-Walker, G. D.: Isolation of circular DNA from a mitochondrial fraction of yeast. Proc. nat. Acad. Sci. (Wash.) 69, 388–392 (1972).CrossRefGoogle Scholar
  24. Cohen, J., Casay, J., Rabinowitz, M., Gerz, G. S.: Hybridization of mitochondrial transfer RNA and mitochondrial DNA in petite mutants of yeast. J. molec. Biol. 63, 441–451 (1972).PubMedCrossRefGoogle Scholar
  25. Cottrell, S. F., Avers, Ch. J.: Evidence of mitochondrial synchrony in synchronous cell cultures of yeast. Biochem. biophys. Res. Commun. 38, 973–980 (1970).PubMedCrossRefGoogle Scholar
  26. Cramer, J. H., Bhargava, M. M., Halvorson, H. O.: Isolation and characterization of γ-DNA of Saccharomyces cerevisiae. J. molec. Biol. 71, 11–20 (1972).PubMedCrossRefGoogle Scholar
  27. Culotti, J., Hartwell, L. H.: Genetic control of the cell division cycle in yeast. III. Seven genes controlling nuclear division. Exp. Cell, Res. 67, 389–401 (1971).CrossRefGoogle Scholar
  28. Darnell, J. E., Philipson, L., Wall, R., Adesnik, M.: Polyadenylic acid sequences: Role in conversion of nuclear RNA into messenger RNA. Science 174, 507–510 (1971b).PubMedCrossRefGoogle Scholar
  29. Darnell, J. E., Wall, R., Tushinski, R. J.: An adenylic acid-rich sequence in messenger RNA of Ha cells and its possible relationship to reiterated sites in DNA. Proc. nat. Acad. Sci. (Wash.) 68, 1321–1325 (1971a).CrossRefGoogle Scholar
  30. Dezelee, S., Sentenac, A., Fromageot, P.: Study on yeast RNA polymerase, Effect of a-amanitin and rifampicin. FEBS Letters 7, 220–222 (1970).PubMedCrossRefGoogle Scholar
  31. Dezelee, S., Sentenac, A., Fromageot, P.: Role of DNA-RNA hybrids in eukaryotes. Purification of yeast RNA polymerase B. FEBS Letters 21, 1–6 (1972).PubMedCrossRefGoogle Scholar
  32. Dezelee, S., Sentenac, A.: Role of DNA-RNA hybrids in eukaryotes. Purification and properties of yeast RNA polymerase B. Europ. J. Biochem. 34, 41–52 (1973).PubMedCrossRefGoogle Scholar
  33. Di Mauro, E., Hollenberg, C. P., Hall, B. D.: Transcription in yeast: A factor that stimulates yeast RNA polymerases. Proc. nat. Acad. Sci. (Wash.) 69, 2818–2822 (1972).CrossRefGoogle Scholar
  34. Duffus, J. H.: The isolation and properties of nucleohistone from the fission yeast, Schizosaccharomyces pombe. Biochim. biophys. Acta (Amst.) 228, 627–635 (1971).Google Scholar
  35. Eckstein, M., Paduch, V., Hilz, H.: Synchronized yeast cells 3. DNA synthesis and DNA polymerase after inhibition of cell division by X-rays. Europ. J. Biochem. 3, 224–231 (1967).PubMedCrossRefGoogle Scholar
  36. Edmonds, M., Yaughan, M. H., Nakazato, H.: Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly labelled polyribosomal RNA of Ha cells: possible evidence for a precursor relationship. Proc. nat. Acad. Sei. (Wash.) 68, 1336–1340 (1971).CrossRefGoogle Scholar
  37. Finkelstein, D. B., Blamire, J., Marmur, J.: Location of ribosomal RNA cistrons in yeast. Nature (Lond.) New Biol. 240, 279–281 (1972).Google Scholar
  38. Fischer, P., Weingartner, B., Wintersberger, U.: Visualization of chromosome-like structures in protoplasts of the yeast Saccharomyces carlsbergensis. Exp. Cell Res. 79, 452–456 (1973).PubMedCrossRefGoogle Scholar
  39. Frederick, E. W., Maitra, U., Hurwitz, J.: The role of deoxyribonucleic acid in ribonucleic acid synthesis. XVI. The purification and properties of ribonucleic acid polymerase from yeast: Preferential utilization of denatured deoxyribonucleic acid as template. J. biol. Chem. 244, 413–424 (1969).PubMedGoogle Scholar
  40. Fukuhara, H.: Informational role of mitochondrial DNA studied by hybridization with different classes of RNA in yeast. Proc. nat. Acad. Sci. (Wash.) 58, 1065–1072 (1967).CrossRefGoogle Scholar
  41. Goldring, E. S., Grossman, L. I., Krupnik, D., Cryer, D. R., Marmur, J.: The petite mutation in yeast. Loss of mitochondrial deoxyribonucleic acid during induction of petites with ethidium bromide. J. molec. Biol. 52, 323–335 (1970).PubMedCrossRefGoogle Scholar
  42. Gold ring, E. S., Grossman, L. I., Marmur, J.: Petite mutation in yeast. II. Isolation of mutants containing mitochondrial DNA of reduced size. J.Bact. 107, 377–381 (1971).PubMedGoogle Scholar
  43. Golombek, J., Wintersberger, E.: DNA replication and DNA polymerase activity in synchronized yeast cells. Hoppe-Seylers Z. physiol. Chem. 354, 1194–1995 (1973).Google Scholar
  44. Golombek, J., Wolf, W., Wintersberger, E.: Molec. gen. Genet, in press (1974).Google Scholar
  45. Grierson, D., Rogers, M. E., Sartirama, M. L., Loening, M. E.: The synthesis of ribosomal RNA in different organisms: Structure and evolution of NA precursors. Cold Spr. Harb. Symp. quant. Biol. 35, 589–597 (1970).Google Scholar
  46. Grivell, L. A., Reijnders, L., Borst, P.: Isolation of yeast mitochondrial ribosomes highly active in protein synthesis. Biochim. biophys. Acta (Amst.) 247, 91–103 (1971).Google Scholar
  47. Grossman, L. I., Cryer, D. R., Goldring, E. S., Marmur, J.: The petite mutation in yeast. III. Nearest-neighbor analysis of mitochondrial DNA from normal and mutant cells. J. molec. Biol. 62, 565–575 (1971).PubMedCrossRefGoogle Scholar
  48. Grossman, L. I., Goldring, E. S., Marmur, J.: Preferential synthesis of yeast mitochondrial DNA in the absence of protein synthesis. J. molec. Biol. 46, 367–376 (1969).PubMedCrossRefGoogle Scholar
  49. Guerineau, M., Grandchamp, C., Paoletti, C., Slonimski, P.: Characterization of a new class of circular DNA molecules in yeast. Biochem. biophys. Res. Commun. 42, 550–557 (1971).PubMedCrossRefGoogle Scholar
  50. Hartlief, R., Koningsberger, V. V.: Characterization of messenger RNA in protoplasts of Saccharomyces carlsbergensis. Biochim. biophys. Acta (Amst.) 166, 512–531 (1968).Google Scholar
  51. Hartwell, L. H.: Gentic control of the cell division cycle in yeast. II. Genes controlling DNA replication and its initiation. J. molec. Biol. 59, 183–194 (1971).PubMedCrossRefGoogle Scholar
  52. Hartwell, L. H., Culotti, J., Reid, B.: Genetic control of the cell division cycle in yeast. I. Detection of mutans. Proc. nat. Acad. Sci. (Wash.) 66, 352–359 (1970b).CrossRefGoogle Scholar
  53. Hartwell, L. H., Hutchinson, H. T., Holland, T. M., Maughlin, C. S.: The effect of cycloheximide upon polyribosome stability in two yeast mutants defective respectively in the initiation of polypeptide chains and in messenger RNA synthesis. Molec. gen. Genet. 106, 347–361 (1970a).PubMedCrossRefGoogle Scholar
  54. Hartwell, L. H., Maughlin, C. S.: A mutant yeast apparently defective in the initiation of protein synthesis. Proc. nat. Acad. Sci. (Wash.) 62, 468–474 (1969).CrossRefGoogle Scholar
  55. Hartwell, L. H., Maughlin, C. S.: Temperature-sensitive mutants of yeast exhibiting a rapid inhibition of protein synthesis. J. Bact. 96, 1664–1671 (1968).PubMedGoogle Scholar
  56. Helfman, W. B.: The presence of an exonuclease in highly purified DNA polymerase from baker’s yeast. Europ. J. Biochem. 32, 42–50 (1973).PubMedCrossRefGoogle Scholar
  57. Hendrick, D. V., Andrean, B. A. G., de Kloet, S. R.: Effects of cycloheximide and 5-fluorouracil on formation of low-molecular weight ribonucleic acid in yeast. J. Bact. 97, 743–748 (1969).Google Scholar
  58. Hollenberg, C. P., Borst, P.: Conditions that prevent ϱ-induction by ethidium bromide Biochem. biophys. Res. Commun. 45, 1250–1254 (1971).Google Scholar
  59. Hollenberg, C. P., Borst, P., v. Bruggen, E. F. J.: Mitochondrial DNA. V. A 25 y. closed circular duplex DNA molecule in wild-type yeast mitochondria, structure and genetic complexity. Biochim. biophys. Acta (Amst.) 209, 1–15 (1970).Google Scholar
  60. Hollenberg, C. P., Borst, P., v. Bruggen, E. F. J.: Mitochondrial DNA from cytoplasmic petite mutants of yeast. Biochim. biophys. Acta (Amst.) 277, 35–43 (1972a).Google Scholar
  61. Hollenberg, C. P., Borst, P., Flavell, R. A., van Kreijl, C. F., v. Bruggen, E.F. J., Arnberg, A. C.: The unusual properties of mitochondrial DNA from a low density petite mutant of yeast. Biochim. biophys. Acta (Amst.) 277, 44–58 (1972b).Google Scholar
  62. Hutchinson, H. T., Hartwell, L. H., Maughlin, C. S.: Temperature sensitive yeast mutant defective in ribonucleic acid production. J. Bact. 99, 807–814 (1969).Google Scholar
  63. Iwashima, A., Rabinowitz, M.: Partial purification of mitochondrial and supernatant DNA polymerase fromSaccharomyces cerevisiae. Biochim. biophys. Acta (Amst.) 178, 283–293 (1969).Google Scholar
  64. Jacob, S. T., Schindler, D. G.: Polyriboadenylate polymerase solubilized from rat liver in mitochondria. Biochem. biophys. Res. Commun. 48, 126–134 (1972).PubMedCrossRefGoogle Scholar
  65. Jannsen, S., Wütte, I., Megnet, R.: Mutants for the specific labeling of DNA in Saccharomyces cerevisiae. Biochim. biophys. Acta (Amst.) 299, 681–685 (1973).Google Scholar
  66. Kadowaki, K., Halvorson, H. O.: Appearance of a new species of ribonucleic acid during sporulation in Saccharomyces cerevisiae. J. Bact. 105, 826–830 (1971).PubMedGoogle Scholar
  67. Klein, A., Bonhoeffer, F.: DNA replication. Ann. Rev. Biochem. 41, 301–332 (1972).PubMedCrossRefGoogle Scholar
  68. Kitazume, Y., Ycas, M.: The calculated composition of newly synthesized yeast ribonucleic acid. Biochim. biophys. Acta (Amst.) 76, 391–400 (1963).CrossRefGoogle Scholar
  69. Kloet, S. R. de: Accumulation of RNA with a DNA like base composition in Saccharomyces carlsbergensis in the presence of cycloheximide. Biochem. biophys. Res. Commun. 19, 582–586 (1965).PubMedCrossRefGoogle Scholar
  70. Kloet, S. R. de: Ribonucleic acid synthesis in yeast. The effect of cycloheximide on the synthesis of ribonucleic acid in Saccharomyces carsbergensis. Biochem. J. 99, 566–581 (1966).PubMedGoogle Scholar
  71. Kloet, S. R. de: Effects of 5-fluorouracil and 6-azuracil on the synthesis of ribonucleic acid and protein in Saccharomyces carlsbergensis. Biochem. J. 106, 167–178 (1967).Google Scholar
  72. Kloet, S. R. de: The formation of ribonucleic acid in yeast: Hybridization of high molecular weight RNA species to yeast DNA. Arch. Biochem. Biophys. 136, 402–412 (1970).CrossRefGoogle Scholar
  73. Lark, K. G.: Initiation and control of DNA synthesis. Ann. Rev. Biochem. 38, 569–604 (1969).PubMedCrossRefGoogle Scholar
  74. Lee, S. Y., Mendecki, J., Brawerman, G.: A polynucleotide segment rich in adenylic acid in the rapidly-labelled polyribosomal RNA component of mouse sarcoma 180 ascites cells. Proc. nat. Acad. Sci. (Wash.) 68, 1331–1335 (1971).CrossRefGoogle Scholar
  75. Linnane, A. W., Haslam, J. M., Lukins, H. B., Nagley, P.: The biogenesis of mitochondria in microorganisms. Ann. Rev. Microbiol. 26, 163–198 (1972).CrossRefGoogle Scholar
  76. Lucia, P. de, Cairns, J.: Isolation of an E. coli strain with a mutation affecting DNA polymerase. Nature (Lond.) 224, 1164–1165 (1969).CrossRefGoogle Scholar
  77. Marmur, J.: A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J. molec. Biol. 3, 208–218 (1961).CrossRefGoogle Scholar
  78. May, R.: Isolationsbedingungen für Zellkerne aus Hefeprotoplasten. Z. allg. Mikrobiol. 11, 131–142 (1971).PubMedCrossRefGoogle Scholar
  79. Maughlin, C. S., Magee, P. T., Hartwell, L. H.: Role of isoleucyl-transfer ribonucleic acid synthetase in ribonucleic acid synthesis and enzyme repression in yeast. J. Bact. 100, 579–584 (1969).Google Scholar
  80. Maughlin, C. S., Warner, J. R., Edmonds, M., Nakazato, H., Vaughan, M. H.: Polyadenylic acid sequences in yeast messenger ribonucleic acid. J. biol. Chem. 248, 1466–1471 (1973).Google Scholar
  81. Michaelis, G., Douglass, S., Tsai, M. J., Criddle, R. S.: In vitro transcription of mitochondrial deoxyribonucleic acid from yeast. Biochemistry (Wash.) 11, 2026–2036 (1972).CrossRefGoogle Scholar
  82. Mitchison, J. M., Gross, P. R.: Selective synthesis of messenger RNA in fission yeast during a step-down and its relation to the cell-cycle. Exp. Cell Res. 37, 259–277 (1965).PubMedCrossRefGoogle Scholar
  83. Mortimer, R. K., Hawthorne, D. C.: Yeast genetics. Ann. Rev. Microbiol. 20, 151–168 (1966).CrossRefGoogle Scholar
  84. Mortimer, R. K., Hawthorne, D. C.: Yeast genetics. In: The yeasts, vol. 1, p. 385–460. London, New York: Academic Press 1969a.Google Scholar
  85. Mortimer, R. K.: Genetic redundancy in yeast: In: Nuclear physiology and differentiation. Genetics, Supplement 69, 1, 329–334 (1969b).Google Scholar
  86. Mounolou, J. C.: The properties and composition of yeast nucleic acids. In: The yeasts, vol. 2, p. 309–333- London, New York: Academic Press 1971.Google Scholar
  87. Mounolou, J. C., Perrodin, G., Slonimski, P. P.: Specific synthesis of a small part of mitochondrial DNA concomittant with the onset of the oxygen-induced development of mitochondria. In: Biochemical aspects of the biogenesis of mitochondria, p. 133–148. Bari: Adriatico Editrice 1968.Google Scholar
  88. Nagley, P., Linnane, A. W.: Mitochondrial DNA-deficient petite mutants of yeast. Biochem. biophys. Res. Commun. 39, 989–996 (1970).PubMedCrossRefGoogle Scholar
  89. Nagley, P., Linnane, A. W.: Biogenesis of mitochondria. XXI. Studies on the nature of the mitochondrial genome in yeast: The degenerative effects of ethidium bromide on mitochondrial genetic information in a respiratory competent strain. J. molec. Biol. 66, 181–193 (1972).PubMedCrossRefGoogle Scholar
  90. Oyen, T. B.: Chromosome I as a possible site for some NA cistrons in Saccharomyces cerevisiae: FEBS Letters 30, 53–56 (1973).Google Scholar
  91. Perlman, P. S., Mahler, H. R.: Molecular consequences of ethidium bromide mutagenesis. Nature (Lond.) New Biol. 231, 12–16 (1971).Google Scholar
  92. Perlman, S., Abelson, H. T., Penman, S.: Mitochondrial protein synthesis: RNA with the properties of eukaryotic messenger RNA. Proc. nat. Acad. Sei. (Wash.) 70, 350–353 (1973).CrossRefGoogle Scholar
  93. Petes, T. D., Fangman, W. L.: Sedimentation properties of yeast chromosomal DNA. Proc. nat. Acad. Sci. (Wash.) 69, 1188–1191 (1972).CrossRefGoogle Scholar
  94. Ponta, H., Ponta, U., Wintersberger, E.: DNA-dependent RNA polymerase from yeast, partial characterization of three nuclear enzyme activities. FEBS Letters 18, 204–208 (1971).PubMedCrossRefGoogle Scholar
  95. Ponta, H., Ponta, U., Wintersberger, E.: Purification and properties of DNA- dependent RNA polymerases from yeast. Europ. J. Biochem. 29, 110–118 (1972).PubMedCrossRefGoogle Scholar
  96. Ponta, H., Ponta, U., Kraft, V., Wintersberger, E.: In vitro transcription of yeast DNA. Preparation of yeast DNA which is used as template by the purified DNA- dependent RNA polymerases A and B from yeast. Europ. J. Biochem. in press (1974).Google Scholar
  97. Rabinowitz, M., Getz, G. S., Casey, J., Swift, H.: Synthesis of mitochondrial and nuclear DNA in anaerobically grown yeast during the development of mitochondrial function in response to oxygen. J. molec. Biol. 41, 381–400 (1969).PubMedCrossRefGoogle Scholar
  98. Amsterdam.
    Reed, J., Wintersberger, E.: Occurrence of polyadenylic acid in RNA released from yeast polysomes. Fed. Eur. Biochem. Soc. 8th Meeting, 1972, abstract Nr. 478.Google Scholar
  99. Reed, J., Wintersberger, E.: Adenylic-acid-rich sequences in messenger RNA from yeast polysomes. FEBS Letters 32, 213–217 (1973).PubMedCrossRefGoogle Scholar
  100. Reijnders, L., Borst, P.: The number of 4S RNA genes on yeast mitochondrial DNA. Biochem. biophys. Res. Commun. 47, 126–133 (1972).PubMedCrossRefGoogle Scholar
  101. Reijnders, L., Kleisen, C. M., Grivell, L. A., Borst, P.: Hybridization studies with yeast mitochondrial RNAs. Biochim. biophys. Acta (Amst.) 272, 396–407 (1972).Google Scholar
  102. Retel, J., Bos, R. C. van den, Planta, R. J.: Characteristics of the methylation in vivo of ribosomal RNA in yeast. Biochim. biophys. Acta (Amst.) 195, 370–380 (1969).Google Scholar
  103. Retel, J., Planta, R. J.: Ribosomal precursor RNA in Saccharomyces carlsbergensis. Europ. J. Biochem. 3, 248–258 (1967).PubMedCrossRefGoogle Scholar
  104. Retel, J., Planta, R. J.: The investigation of the ribosomal RNA sites in yeast DNA by the hybridization technique. Biochim. biophys. Acta (Amst.) 169, 416–429 (1968).Google Scholar
  105. Retel, J., Planta, R. J.: Non-conservative processing of ribosomal precursor RNA in yeast. Biochim. biophys. Acta (Amst.) 199, 286–288 (1970).Google Scholar
  106. Retel, J., Planta, R. J.: Nuclear satellite DNAs of yeast. Biochim. biophys. Acta (Amst.) 281, 299–309 (1972).Google Scholar
  107. Riva, S., Pietta, A., Silvestry, L. G.: Mechanism of action of a rifamycin derivative (AF/013) which is active on the nucleic acid polymerases insensitive to rifampicin. Biochem. biophys. Res. Commun. 49, 1263–1271 (1972).PubMedCrossRefGoogle Scholar
  108. Robichon-Szulmajster, H. de, Surdin-Kerjan, Y.: Nucleic acid and protein synthesis in yeast. In: The yeasts, vol.2, p. 335–418. New York, London: Academic Press 1971.Google Scholar
  109. Roth, R. M., Dampier, C.: Dependence of ribonucleic acid synthesis on continuous protein synthesis in yeast. J. Bact. 109, 773–779 (1972).PubMedGoogle Scholar
  110. Saccone, C., Gadaleta, M. N., Gimigliano, A. F.: Properties of the incorporation of nucleoside triphosphates into RNA of rat liver mitochondria. In: Biochemical aspects of the biogenesis of mitochondria, p. 265–276. Bari: Adriatico Editrice 1968.Google Scholar
  111. Sager, R.: Cytoplasmic genes and organelles. New York: Academic Press 1972.Google Scholar
  112. Schatz, G., Haslbrunner, E., Tuppy, H.: Deoxyribonucleic acid associated with yeast mitochondria. Biochem. biophys. Res. Commun. 15, 127–132 (1964).CrossRefGoogle Scholar
  113. Schmitt, H.: Characterization of a 72S mitochondrial ribosome from S. cerevisiae. Europ. J. Biochem. 17, 278–283 (1970).PubMedCrossRefGoogle Scholar
  114. Schweizer, E., Maechnie, C., Halvorson, H. O.: The redundancy of ribosomal and transfer RNA genes in S. cerevisiae. J. molec. Biol. 40, 261–277 (1969).PubMedCrossRefGoogle Scholar
  115. Scragg, A. H.: Mitochondrial DNA-directed RNA polymerase from Saccharomyces cerevisiae mitochondria. Biochem. biophys. Res. Commun. 45, 701–706 (l971).CrossRefGoogle Scholar
  116. Sebastian, I., Bhargava, M. M., Halvorson, H. O.: Nuclear DNA dependent RNA polymerases fromSaccharomyces cerevisiae. J. Bact. 114, 1–6 (1973).PubMedGoogle Scholar
  117. Sheiness, D., Darnell, J. E.: Poly (A) segment in NA becomes shorter with age. Nature (Lond.) New Biol. 241, 265–268 (1973).Google Scholar
  118. Shortman, K., Fukuhara, H.: Metabolism of ribonucleic acid during respiratory adaption of yeast. Biochim. biophys. Acta (Amst.) 76, 501–524 (1963).CrossRefGoogle Scholar
  119. Sinclair, J. H., Stevens, B. J., Sanghari, P., Rabinowitz, M.: Mitochondrial satellite and circular DNA filaments in yeast. Science 156, 1234–1237 (1967).PubMedCrossRefGoogle Scholar
  120. Slonimski, P. P., Perrodin, G., Croft, J. H.: Ethidium bromide induced mutation of yeast mitochondria: Complete transformation of cells into respiratory deficient non- chromosomal “petites”. Biochem. biophys. Res. Commun. 30, 232–239 (1968).PubMedCrossRefGoogle Scholar
  121. Smith, D., Tauro, P., Schweizer, E., Halvorson, H. O.: The replication of mitochondrial DNA during the cell cycle in Saccharomyces lactis. Proc. nat. Acad. Sci. (Wash.) 60, 936–942 (1968).CrossRefGoogle Scholar
  122. Smith, P., Wintersberger, U.: Unpublished observation (1972).Google Scholar
  123. Sogin, S. J., Haber, J. E., Halvorson, H. O.: Relationship between sporulation- specific 20 s ribonucleic acid and ribosomal ribonucleic acid processing in Saccharomyces cerevisiae. J. Bact. 112, 806–814 (1972).PubMedGoogle Scholar
  124. Taber, R. L., Vincent, W. S.: The synthesis and processing of ribosomal RNA precursor molecules in yeast. Biochim. biophys. Acta (Amst.) 186, 317–325 (1969a).Google Scholar
  125. Taber, R. L., Vincent, W. S.: Effects of cycloheximide on ribosomal RNA synthesis in yeast. Biochem. biophys. Res. Commun. 34, 488–494 (1969b).PubMedCrossRefGoogle Scholar
  126. Tonino, G. J. M., Rozijn, Th. H.: On the occurrence of histones in yeast. Biochim. biophys. Acta (Amst.) 124, 427–429 (1966).Google Scholar
  127. Tsai, M. J., Michaelis, G., Criddle, R. S.: DNA-dependent RNA polymerase from yeast mitochondria. Proc. nat. Acad. Sci. (Wash.) 68, 473–477 (1971).CrossRefGoogle Scholar
  128. Udem, S. A., Warner, J. R.: Ribosomal RNA synthesis in S. cerevisiae. J. molec. Biol. 65, 227–242 (1972).PubMedCrossRefGoogle Scholar
  129. Vaughan, M. H. Jr., Soeiro, R., Warner, J. R., Darnell, J. E., Jr.: Effects of methionine deprivation on ribosome synthesis in Ha cells. Proc. nat. Acad. Sci. (Wash.) 58, 1527–1534 (1967).CrossRefGoogle Scholar
  130. Vidova, M., Kovac, L.: Nalidixic acid prevents the induction of yeast cytoplasmic respiration-deficient mutants by intercalating drugs. FEBS Letters 22, 347–351 (1972).PubMedCrossRefGoogle Scholar
  131. Vignais, P. V., Stevens, B. J., Huet, J., Andre, J.: Mitoribosomes fromCandida utilis. J. Cell Biol. 54, 468–492 (1972).PubMedCrossRefGoogle Scholar
  132. Vliet, P. Ch. van der, Tonino, G. J. M., Rozijn, Th. H.: Studies on the yeast nucleus. III. Properties of a deoxyribonucleoprotein complex derived from yeast. Biochim. biophys. Acta (Amst.) 195, 473–483 (1969).Google Scholar
  133. Vliet, P. Ch. van der, Zandvliet, G. M., Rozijn, Th. H.: Absence of complete repression of a specific part of the DNA during in vitro transcription of yeast deoxyribonucleoprotein. Biochim. biophys. Acta (Amst.) 247, 373–383 (1971).Google Scholar
  134. Warner, J. R., Udem, S. A.: Temperature sensitive mutants affecting ribosome synthesis in S. cerevisiae. J. molec. Biol. 65, 243–257 (1972).PubMedCrossRefGoogle Scholar
  135. Watson, J.: Molecular biology of the gene, p. 519. New York: W. A. Benjamin 1970.Google Scholar
  136. Weislogel, P. O., Butow, R. A.: Low temperature and chloramphenicol induction of respiratory deficiency in a coldsensitive mutant ofSaccharomyces cerevisiae. Proc. nat. Acad. Sci. (Wash.) 67, 52–58 (1970).CrossRefGoogle Scholar
  137. Weislogel, P. O., Butow, R. A.: Control of the mitochondrial genome inSaccharomyces cerevisiae. J. biol. Chem. 246, 5113–5119 (1971).PubMedGoogle Scholar
  138. Whittaker, P. A., Hammond, R. C., Luha, A. A.: Mechanism of mitochondrial mutation in yeast. Nature (Lond.) New Biol. 238, 266–268 (1972).CrossRefGoogle Scholar
  139. Whittaker, P. A., Wright, M.: Prevention by cycloheximide of petite mutation in yeast. Biochem. biophys. Res. Commun. 48, 1455–1459 (1972).PubMedCrossRefGoogle Scholar
  140. Wilkie, D.: The induction by monochromatic u.v. light of respiratory-deficient mutants in aerobic and anaerobic cultures of yeast. J. molec. Biol. 7, 527–533 (1963).PubMedCrossRefGoogle Scholar
  141. Williamson, D. H.: Replication of M-DNA in yeasts. In: Control of organelle development, p. 247–277. Cambridge/Mass.: Cambridge University Press 1970.Google Scholar
  142. Williamson, D. H.: Replication of the nuclear genome in yeast does not require concomitant protein synthesis. Biochem. biophys. Res. Commun. 52, 731–740 (1973).PubMedCrossRefGoogle Scholar
  143. Williamson, D. H., Moroudas, N. G., Wilkie, D.: Induction of the cytoplasmic petite mutation in Saccharomyces cerevisiae by the antibacterial antibiotics erythromycin and chloramphenicol. Molec. gen. Genet. 111, 209–223 (1971a).PubMedCrossRefGoogle Scholar
  144. Williamson, D. H., Moustacchi, E.: The synthesis of mitochondrial DNA during the cell cycle in the yeast Saccharomyces cerevisiae. Biochem. biophys. Res. Commun. 42, 195–201 (1971b).PubMedCrossRefGoogle Scholar
  145. Wintersberger, E.: Synthesis and function of mitochondrial ribonucleic acid. In: Metabolic processes in mitochondria, p. 439–450. Amsterdam: Elsevier 1966.Google Scholar
  146. Wintersberger, E.: Occurrence of a DNA polymerase in isolated yeast mitochondria. Biochem. biophys. Res. Commun. 25, 1–7 (1966b).PubMedCrossRefGoogle Scholar
  147. Wintersberger, E.: A distinct class of ribosomal RNA components in yeast mitochondria as revealed by gradient centrifugation and by DNA-RNA-hybridization. Hoppe-Seylers Z. physiol. Chem. 348, 1701–1704 (1967).PubMedGoogle Scholar
  148. Wintersberger, E.: DNA-dependent RNA polymerase from mitochondria of a cytoplasmic petite mutant of yeast. Biochem. biophys. Res. Commun. 40, 1179–1184 (1970).PubMedCrossRefGoogle Scholar
  149. Wintersberger, E.: Isolation of a distinct rifampicin-resistant RNA polymerase from mitochondria of yeast, Neurospora and liver. Biochem. biophys. Res. Commun. 48, 1287–1294 (1972a).PubMedCrossRefGoogle Scholar
  150. Wintersberger, E.: Synthesis of mitochondrial RNA. In: Mitochondria: Biogenesis and bioenergetics. Biomembranes: Molecular arrangements and transport mechanism. Proceedings of the 8th FEBS meeting, vol. 28, p. 21–33. Amsterdam: North Holland Publishers 1972b.Google Scholar
  151. Wintersberger, E., Tuppy, H.: DNA-abhängige RNA-Synthese in isolierten Hefe- mitochondrien. Biochem. Z. 341, 399–408 (1965).Google Scholar
  152. Wintersberger, E., Viehhauser, G.: Function of mitochondrial DNA in yeast. Nature (Lond.) 220, 699–702 (1968).CrossRefGoogle Scholar
  153. Wintersberger, E., Wintersberger, U.: Rifamycin insensitivity of RNA synthesis in yeast. FEBS Letters 6, 58–60 (1970c).PubMedCrossRefGoogle Scholar
  154. Wintersberger, U., Hirsch, J.: Induction of cytoplasmic respiration deficient mutants in yeast by the folic acid analogue, methotrexate. Molec. gen. Genet. 126, 61–70 (1973).PubMedCrossRefGoogle Scholar
  155. Wintersberger, U., Smith, P., Letnansky, K.: Yeast chromatin. Preparation from isolated nucleic, histone composition and transcription capacity. Europ. J. Biochem. 33, 123–130 (1973).PubMedCrossRefGoogle Scholar
  156. Wintersberger, U., Wintersberger, E.: Studies on deoxyribonucleic acid polymerases from yeast. 1. Partial purification and properties of two DNA polymerases from mitochondria-free cell extracts. Europ. J. Biochem. 13, 11–19 (1970a).PubMedCrossRefGoogle Scholar
  157. Wintersberger, U., Wintersberger, E.: Studies on deoxyribonucleic acid polymerases from yeast. 2. Partial purification and characterization of mitochondrial DNA polymerase from wild type and respiration-deficient yeast cells. Europ. J. Biochem. 13, 20–27 (1970b).PubMedCrossRefGoogle Scholar
  158. Wintersberger, U., Wintersberger, E.: Nucleo-cytoplasmic interaction in the biogenesis of mitochondria. In: Cell differentiation, p. 281–284. Copenhagen: Munks- gaard 1972.Google Scholar
  159. Wolf, W.: Ph. D. Thesis, University of Würzburg 1972.Google Scholar
  160. Ycas, M., Vincent, W. S.: A ribonucleic acid fraction from yeast related in composition to desoxyribonueleic acid. Proc. nat. Acad. Sci. (Wash.) 46, 804–811 (1960).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1974

Authors and Affiliations

  • E. Wintersberger
    • 1
  1. 1.Institute of Physiological ChemistryUniversity of WürzburgGermany

Personalised recommendations