The Significance of Shearing Displacements for the Mechanical Stimulation of Cochlear Hair Cells

  • Juergen Tonndorf
Conference paper
Part of the Communication and Cybernetics book series (COMMUNICATION, volume 8)

Abstract

Hair cells respond only to deflections of their sensory cilia caused by tangential, “shearing”, displacements of the membrane covering a given sense organ (Steinhausen, 1931; von Holst, 1950).

Keywords

Permeability Expense Crest Phen Prep 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Békésy, G. von (1947). “The Variation of Phase along the Basilar Membrane with Sinusoidal Vibrations,” J. Acoust. Soc. Amero 19, 452–460. CrossRefGoogle Scholar
  2. Békésy, G. von (1951). “Microphonics Produced by Touching the Cochlear Partition with a Vibrating Electrode,” J. Acoust. Soc. Amer. 23, 29–35.CrossRefGoogle Scholar
  3. Békésy, G. von (1953a). “Description of Some Mechanical Properties of the Organ of Corti,” J. Acoust. Soc. Amer. 25, 770–765.CrossRefGoogle Scholar
  4. Békésy, G. von (1953b). “Shearing Microphonics Produced by Vibrations Near the Inner and Outer Hair Cells,” J. Acoust. Soco Amer. 25, 786–790.CrossRefGoogle Scholar
  5. Billone, M. & Raynor, S. (1973). “Transmission of Radial Shear Forces to Cochlear Hair Cells,” J. Acoust. Soc. Amer. 54, 1143–1156.CrossRefGoogle Scholar
  6. Bredberg, G., Ades, H. W., & Engström, H. (1972). “Scanning Electron Microscopy in the Normal and Pathologically Altered Organ of Corti,” Acta Otolaryngo suppl. 301, 3–48.CrossRefGoogle Scholar
  7. Dallos, P., Billone, M. C., Durrant, J. D., Wang, C.-Y., & Raynor, S. (1972). “Cochlear Inner and Outer Hair Cells: Functional Differences,” Science 177, 356–358.PubMedCrossRefGoogle Scholar
  8. Davis, H. (1957). In Physiological Triggers and Discontinuous Rate Processes, T. H. Bullock (ed), Washington: Amer. Physiological Soc.Google Scholar
  9. Evans, E. F. (1973). Personal Communication.Google Scholar
  10. Evans, E. F. & Wilson, J. P. (1973). “The Frequency Selectivity of the Cochlea,” In Basic Mechanism in Hearing, A. R. Møller (ed), Academic Press, New York.Google Scholar
  11. Friedman, J. A. (1963). “La Cytologie de l’oreille on Microscope Electrique,” Triangle (J. Sandoz) 6, 74Google Scholar
  12. Helmholtz, H. (l868). “Die Mechanik der Gehörknöchelchen und des Trommelfells,” Pflügers Archiv 1, 1–60.CrossRefGoogle Scholar
  13. Holst, E. von (l950). “Die Tätigkeit des Statolithenapparates im Wirbeltierlabyrinth,” Naturwiss. 37, 265–272.CrossRefGoogle Scholar
  14. Johnsson, L. G. (1974). Personal Communication.Google Scholar
  15. Johns son, L. G. & Hawkins, J. W. (1973). Personal Communication.Google Scholar
  16. Johnstone, B. M. & Boyle, A. J. F. (1967). “Basilar Membrane Vibration Examined with the Mössbauer Technique,” Science 158, 389–390.PubMedCrossRefGoogle Scholar
  17. Johnstone, B. M., Taylor, K. J., & Boÿle, A. J. F. (1970). “Mechanics of the Guinea Pig Cochlea,” J. Acoust. Soc. Amer. 47, 504–509.CrossRefGoogle Scholar
  18. Khanna, S. M., Sears, R. E., & Tonndorf, J. (1968). “Some Properties of Longitudinal Shear Waves: A Study by Computer Simulation,” J. Acoust. Soc. Amer. 43, 1077–1084.CrossRefGoogle Scholar
  19. Kimura, R. S. (1966). “Hairs of the Cochlear Sensory Cells and Their Attachment to the Tectorial Membrane,” Acta Otcolaryng. 6l, 55–72.CrossRefGoogle Scholar
  20. Lim, D. J. (1971). “Acoustic Damage of the Cochlea,” Arch. Otolaryng. 94,294–305.PubMedGoogle Scholar
  21. Lim, D. J. (1972). “Fine Morphology of the Tectorial Membrane, Its Relationship to the Organ of Corti,” Arch. Otolaryng. 96, 199–215.PubMedGoogle Scholar
  22. Lim, D. J. (1972). Unpublished Data.Google Scholar
  23. Lowenstein, O., & Wersäll, J. (1959). “A Functional Interpretation of the Electron Microscopic Structure of the Sensory Hairs in the Crista of the elasmobranch, Raja clavata in terms of Directional Sensitivity.” Nature (London) 184, l807-l8l0.CrossRefGoogle Scholar
  24. Møller, A. R. (1972). “Coding of Sounds in Lower Levels of the Auditory System,” Quart. Rev. Biophys. 5, 59–155.CrossRefGoogle Scholar
  25. Rhode, W. S. (1971). “Observations of the Vibration of the Basilar Membrane in Squirrel Monkeys Using the Mössbauer Technique,” J. Acoust. Soc. Amer.49, 1218–1231.CrossRefGoogle Scholar
  26. Rhode, W. S. & Geisler, C. D. (1966). “Model of the Displacement Between Opposing Points on the Tectorial Membrane and Reticular Lamina,” J. Acoust. Soc. Amer.42, 185–190.CrossRefGoogle Scholar
  27. Spoendlin, H. (1966). The Organization of the Cochlear Receptor, Vol. 13 of Advances in Otco-Rhino-Laryng., L. Rüedi (ed), Karger, Basel.Google Scholar
  28. Steinhausen, W. (1931). “Über den Nachweis der Bewegung der Cupula in der intakten Bogengangsampulle des Labyrinths bei der natürlichen rotatorischen und kalorischen Reizung,” Pflügers Arch. ges Physiol. 228, 322.CrossRefGoogle Scholar
  29. Tonndorf, J. (1960). “Shearing Motion in Scala Media of Cochlear Models,” J. Acoust. Soc. Amer. 32, 238–244.CrossRefGoogle Scholar
  30. Tonndorf, J. (1970). “Cochlear Mechanics and Hydrodynamics,” In Foundations of Modern Auditory Theory, Vol. I, J. Tobias (ed), Academic Press, New York.Google Scholar
  31. Tonndorf, J. (1974). Unpublished Data.Google Scholar
  32. Tonndorf, J., Duvall, A. J. III, and Reneau, J. P (1962). “Permeability of Intracochlear Membranes to Various Vital Stains,” Ann. Oto-Rhino- Laryngo. 71, 801–839.Google Scholar
  33. Tonndorf, J., & Khanna, S. M. (1968). “Displacement Pattern of the Basilar Membrane: A Comparison of Experimental Data,” Science l60, 1139–1140CrossRefGoogle Scholar
  34. Zwislocki, J. J. & Sokolich, W. G. (1973). “Velocity and Displacement Response in Auditory-Nerve Fibers,” Science 182, 64–66.PubMedCrossRefGoogle Scholar

Copyright information

© Spinger-Verlag Berlin Heidelberg 1974

Authors and Affiliations

  • Juergen Tonndorf
    • 1
  1. 1.Columbia UniversityNew YorkUSA

Personalised recommendations